Development of a Potential At-home Assay for Tacrolimus Monitoring Using a Microsampling Device
transplants performed

Transplants performed in the U.S.

2015: 30,5
2010: 28,6
2005: 28,1

1,000 transplants

30,973 organ transplants in 2015

5% increase from 2014 to 2015

https://optn.transplant.hrsa.gov/
immunosuppressants background

• Prevent rejection of organs after transplantation
• Concentration is persistently monitored to ensure they are in therapeutic window
• Low dosing = organ rejection / High dosing = toxic side effects

[Diagram showing the therapeutic index of Tacrolimus with time on the x-axis and concentration on the y-axis, with peaks indicating rejection and troughs indicating necrosis, and the therapeutic window highlighted between the two extremes.]
Methods

Current Wet Method (Zinc Sulfate Precipitation)

1. Defrost aliquots of calibrators and QC material/ remove and allow them to reach room temperature.
2. Vortex mix and centrifuge samples for 5 minutes at 10,000 rpm.
3. Label sufficient 1.5mL microcentrifuge tubes
4. Place 25\(\mu\)L of calibration standards/QC/ patient sample into appropriate tube
5. Add 100\(\mu\)L 0.1M zinc sulphate solution followed by 250\(\mu\)L working cyclosporin D internal standard using a repeater pipette
6. Cap and vortex samples for 20 seconds each
7. Centrifuge tubes for 5 minutes at 10,000 rpm
8. Place tubes in worklist order in auto-sampler plate and remove tube lids
9. Cover with re-sealable film and heat seal
10. Place the plate into the LC auto-sampler in the appropriate position. It is now ready for injection.

Mitra Method (MeOH Extraction)

1. Mitra tips were sampled using blood containing EDTA from microcentrifuge tubes following the instructions for use.
2. Samples were allowed to completely dry
3. Tips were removed and placed into a 96-well collection plate containing 200 \(\mu\)L of Methanol (containing IS)
4. Collection plate was shaken on an orbital shaker for 1 hour (1100 RPM)
5. The solvent was evaporated and reconstituted in initial mobile phase for injection.
Tacrolimus EQA

Tac EQA Vs Mitra (%)

Correlation %

EQA Distribution
CSA Stability Over 7 Days
Tac Stability Over 7 Days

\[y = 0.00561x + 2.27e-08 \quad (r = 0.9958) \]

\[y = 0.00533x + 1.69e-08 \quad (r = 0.9980) \]
Multiple Site Study

- Two Sites (A and B); Hospitals in the UK.
- 36 Samples provided by Site A
- Wet Extraction vs. Mitra
- API-4000
- Low QC = 25 ng/mL
• Strong Correlation; Negative Bias (18%; B vs. A)
Mitra Methods
Site A vs. Site B

\[y = 0.8296x + 8.9758 \]
\[R^2 = 0.947 \]

- Strong Correlation; Negative Bias (18%; B vs. A)
Correlation (Wet vs Mitra)

- Strong Correlation at both sites (> .86)
- Positive Bias (60%; Mitra vs. Wet)
- Extraction May have been more efficient
Alternate Mitra Extraction
Protein Precipitation (Site B)

1. Add dried tips to 100 uL of water/5% MeOH (including IS) in square well collection plate
2. Plate shake for 20 min
3. Remove the tips which should be light pink
4. Add 100uL ZnSO4 (2.88g in 100mL)
5. Plate shake for 5 min
6. Add 100 uL of ACN
7. Plate shake for another 5 min
8. Spin (we transferred to Eppendorf tubes for this)
9. Transfer to autosampler vial and inject
Protein Crash Method CSA

Wet Method vs. Mitra (Cyclosporin A)

\[y = 0.9304x \]

\[R^2 = 0.9794 \]
Protein Crash Method Tac

Wet Method vs. Mitra Correlation (Tacrolimus)

\[y = 0.8239x \]
\[R^2 = 0.9533 \]
Conclusions and further investigations

• Strong Correlations can be built between standard methods and Mitra methods using simple extraction methods.

• Has good potential for home sampling option, in particular Paediatric patients.

• Need to explore venous draw vs finger-prick on as small patient cohort.
 • The current validation carried out has been on blood samples with anticoagulant and not intended use of product
Thank you

All expenses occurred in the workup and development of the sampling device were jointly funded by LTH and Neoteryx
Patient stability data Tac

<table>
<thead>
<tr>
<th>Tac 2</th>
<th>wet method</th>
<th>day 1 (5uL injection)</th>
<th>day 7 (10 uL injection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9044382</td>
<td>3</td>
<td>15/04/2016</td>
<td>3.17</td>
</tr>
<tr>
<td>9044361</td>
<td>6</td>
<td>15/04/2016</td>
<td>6.00</td>
</tr>
<tr>
<td>9044335</td>
<td>8</td>
<td>15/04/2016</td>
<td>7.71</td>
</tr>
<tr>
<td>3479879</td>
<td>12</td>
<td>15/04/2016</td>
<td>12.40</td>
</tr>
<tr>
<td>3479727</td>
<td>15</td>
<td>15/04/2016</td>
<td>14.60</td>
</tr>
<tr>
<td>9044390</td>
<td>20</td>
<td>15/04/2016</td>
<td>20.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEQAS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6530991</td>
<td>3.85</td>
<td>4.63</td>
</tr>
<tr>
<td>6530992</td>
<td>12.7</td>
<td>11.4</td>
</tr>
<tr>
<td>6530993</td>
<td>7.01</td>
<td>6.18</td>
</tr>
</tbody>
</table>