VECTOR
PACKET
PROCESSING

SIMPLIFIED
VPP Simplified

OVERVIEW

For decades, the only way to speed up packet processing -
central to all security and networking functions - was to add
faster and faster hardware. When Moore’s law couldn’t address
that need sufficiently on commodity silicon, the industry resorted
to expensive, painfully slow time-to-market, inflexible, specialty
silicon. But there is a new game in town: Vector Packet Process-
ing (VPP).

Powered by the FD.io open source project, VPP delivers up to VPP SI m p I'I ﬁ ed

two orders of magnitude greater packet processing throughput, H | G H I_ | G H T S
via software running on commodity processors. It is a core

component in a much larger transformation of how information -

the lifeblood of the digital age - will be moved and secured for

years to come. KERNEL VS. VECTOR
PACKET PROCESSING

Unlock two orders of magnitude speed gain from
bypassing the kernel with vector packet processing.

But what exactly is VPP? How does it perform this feat? How can
it benefit organizations like yours? This primer addresses four key

takeaways:

PROGRAMMARBILITY AND

. : EXTENSIBILITY
2. It makes packet processing easily programmable
and can be integrated into existing or new secure Quickly and easily add, move, and change packet
networking ecosystems processing policies.

1. It makes packet processing really fast

3. It can be deployed virtually anywhere

4.1t is a project, so unless you are a DIY-type, you'll want
to look for a product Agnostic to deployment need - appliance, virtual

machine, virtual network function (VNF). Access an
array of processor types.

PRODUCTIZATION

Projects are not products. TNSR is the answer to
Vector Packet Processing productization.

tn

PACKETING PROCESSING

EXPLAINED

First, a few basics. Internet traffic largely breaks down to either files or commands. Files could be a pdf, spread-
sheet, image or movie, etc. Commands are instructions to do something - typically managed by interaction
through a browser or client with an application somewhere. It’s, of course, much more complicated than that, but
for our purposes this will suffice.

D Files -+ Commands = @ Internet Traffic

Now commands and files have to be sent back and forth between your device and the far end server supporting
your application with streams of Internet Protocol (IP) packets, each with its own header and payload. As you are
likely aware, there are any number of network and/or security policies applied to each packet’s header and/or
payload along its journey to make sure it is 1) delivered along the most efficient path, 2) adherent to the rules of
its transmission protocol, and 3) hopefully protected from harm or misuse.

IP Packet Journey —
=]

DEVICE ROUTER INTERNET SERVER DESTINATION

Ok, probably for anyone reading this primer, that much is understood. But, repeating the basics serves a purpose.
It gives us a baseline for discussing what is more important - and that is how IP packets are processed.

KERNEL-BASED PACKET PROCESSING

The prevailing packet processing model for decades has been ‘kernel-based’. For every network device that
receives, inspects, and subsequently sends the packet to its next hop (from your mobile device, desktop device,
security camera, home theater system, etc. to the application server in a private data center or cloud somewhere,
and back again) that packet is received on a network interface, and sent straight into the computer’s operating
system (OS) - in fact, all the way to the core of the OS (the kernel) - for determination on how it should be
processed within that device.

Now, the kernel is the crown jewel of the OS. It manages the operation of the computer and its most important
hardware - notably memory and CPU time. The kernel is also small, (relatively speaking). It is delicate. And, it is
very, very busy when many computer processes request its attention.

So kernel processing of packets is designed around the principle of receiving one packet at a time, fetching an
instruction from an instruction cache, performing that instruction on the packet, fetching the next instruction,
performing that instruction, so on and so forth. Then that packet is sent on its merry way, and the second packet
enters and goes through the same routine.

The FD.io analogy for explaining this is a good one, so we’ll stick with it. Consider the problem of a stack of lumber
where each piece of lumber needs to be cut, sanded, and have holes drilled in it. There are two ways of doing the
job. Cut, sand, and drill each board one at a time. Or, cut all boards, then sand all boards, then drill all boards. The
second approach will save loads of time as you’ll avoid changing tools with each process step on each board.

Kernel-based processing is the former approach. On robust CPUs, e.g., Intel® Xeon® class processors, packet
forwarding with stock Linux tops out at 2 million packets per second (Mpps) - and can easily be stymied by
intracore locking and other effects. With experimental technologies, Linux has been shown to make some gains
in artificial benchmarks, such as dropping all received packets, but a lot of work is still required, and VPP is
available today.

Now, if one of the above-mentioned devices has a 10 Gbps interface, how will you process packets fast enough to
fill that pipe? 10 Gbps line rate processing of the smallest (most CPU intensive) packets we have to deal with
(64-byte packets, which is 84 bytes on the wire) is equivalent to 14.88 Mpps. Multiple Linux systems strapped
together with a load balancer will consume a lot of cost, space, heat, etc. for a single 10 Gbps link - so you see
where this is going. Extravagant CapEx and OpEx will be required.

Alternatively, you could opt for an expensive, vendor-proprietary application-specific integrated circuits (ASIC) or
field programmable gate array (FPGA) solution. Well, that won’t be cheap - and you’ll also just have begun your
subscription to ‘vendor lock-in’.

VECTOR PACKET PROCESSING

What if packet processing could be freed from the constraints of the kernel? What if the instruction cache could be
applied to an array of packets simultaneously, instead of one at a time?

It’s no longer a ‘what if’. It’s a reality. Introducing Vector Packet Processing (VPP). VPP is an open source version of
Cisco’s Vector Packet Processing technology - which is central to over $1 billion of Cisco ASA and CSR products. So,
the core technology is proven. In essence, VPP is a modular packet processing node graph abstraction, where each
node processes a vector of packets to reduce CPU I-cache thrashing, and is made extensible and dynamically recon-
figurable via plugins. Let’s break that down a bit.

VPP moves the packet processing workload out of kernel space and into user space. User space is where programs
and libraries (that the OS uses to interact with the kernel, e.g., software that performs input/output, manipulates file
system objects, application software, etc.) reside. As a result, there is much more ‘elbow room’ to manage

cache-based instruction sets.

First, VPP gathers all packets from

the device’s network IO layer and e VECTOR
groups them into a ‘vector’:

It then processes that vector of packets ¢

through a packet processing graph:

DPDK: Data Plane Development Kit 1‘

GRE: Generic Routing Encapsulation

®1

ETH: Ethernet 1 \ PACKET
{ PROCESSING
ARP: Address Resolution Protocol GRAPH
IP4: Internet Protocol (Version) 4 x
IP6: Internet Protocol (Version) 6 IP6
Look

L v/)
Here is the key performance breakthrough. Rather than processing each packet through the entire processing graph,
and then fetching the second packet and processing it through the entire graph, VPP fully processes the vector of
packets through the first graph node before moving on to the next graph node. The first packet in the vector ‘warms
up’ the instruction cache, so remaining packets can be processed extremely fast - sharply reducing the cost of pro-
cessing each subsequent packet in the vector. This leads to 1) very high performance for processing a single packet,
and 2) statistically reliable performance in processing a large number of packets over time. Additionally, VPP will
often prefetch what it knows to be the next packet(s), ensuring that the CPU doesn't stall while the next packet is
fetched from RAM. As a result, throughput is high and latency is consistently low.

Let’s go back to our performance example above - where we
explained a number of systems will be required to fill a 10 Gbps
pipe with 64-byte packets using kernel processing. And since —— —

10 Gbps is relatively pedestrian these days, let’s kick it up a U;T:';'ggi)ps T magm'{ﬂﬂifgi o T
notch. Suppose you need 100 Gbps networking. VPP makes

that achievable in software. 100 Gbps is a 10X jump over 10
Gbps, so we now heed to process between 8 and 148 Mpps - Catastrophic Recoverable
depending on packet frame size. If the packet frames are
large, we can forward 100Gbps - on a single core. If packets
are tiny, we can process 100 Gbps on 10 cores. Normal inter-

SINGLE PACKET PROCESSING VECTOR PACKET PROCESSING
IN KERNEL IN USER SPACE

System Crash Reslience System Crash Resilience

. R . . Programmability Programmability
net traffic is a mix, so we’ll practically land somewhere in be- -
tween. Either way, this leads to a dramatic reduction in CapEx Not-advised due to risk b ol e e e
of system instability or crashes to write external applications that

and OpEx relative to kernel processing. programmatically control VPP

While VPP makes software-based packet processing extremely

Development Leverage Development Leverage
attractive, there are still times when hardware acceleration is e -
A A Hardware, Kernel, and
appropriate. Fortunately, the graph node architecture allows T deployment agnostic (bare metal,
hardware acceleration to be easily inserted. As an example, VM, container)

computationally intensive traffic processing applications like
hardware cryptographic acceleration - which helps offload the
performance demands of securing and routing Internet traffic -
can appear as just another graph node.

PROGRAMMABILITY / EXTENSIBILITY

By now you may be wondering how to put VPP to work for your specific purposes. Since a processing graph can
be made to perform virtually any networking or security function at high speed, how do you bend it to your will?
Good news. VPP easily lends itself to external programmability and extensibility.

VPP is equipped with a high-performance, low-level API. The APl works via a shared memory message bus.
Messages are passed along the bus as specified by a simple IDL (Interface Definition Language) used to create
C and Java client libraries - making it straightforward to write external VPP control applications.

Further, FD.io is openly agnostic to any flavor of high-level API required for remote programmability. Apply any
management agent you like, and then tap VPP functionality represented in YANG models via NETCONF and
RESTCONF.

By extension, if VPP is remotely programmable via a RESTful API, it can certainly be integrated with 3rd party
configuration management tools like Ansible, Chef, Puppet, or SaltStack.

Further, VPP is made extensible and dynamically reconfigurable via plugins.

FD.io is a collection of projects and libraries chartered to enable flexible, programmable and composable services
on generic hardware platforms. VPP, of course, figures prominently into the mix. It runs in user space on multiple
architectures including x86, ARM, and PowerPC architectures on both x86 servers and embedded devices.

As shown in the diagram below, VPP (represented in each of the three deployment models by the FD.io logo) is
truly hardware, kernel, and deployment (bare metal, VM, container) agnostic:

APPLICATIONS

FIREWALL LOAD BALANCER UCPE/VCPE ISD-WAN!
CARRIER GRADE NAT ROUTER [IPSEC GATEWAY NGFW.

NETWORK FUNCTION VIRTUALIZATION

Fully
Integrated

Network
Function HYPERVISOR

Infrastructure HOST MACHINE Infrastructure VIRTUAL INFRASTRUCTURE

OpensStack & KVM Integration Kub. Integration

FD.io turbocharges IT infrastructure and app performance and management at scale.
Deployment agnostic to bare metal, VM, or container

PRODUCTIZATION

VPP is the wave of the future for all secure networking packet processing needs. Its packet processing power,
programmability, manageability, and deployment flexibility make it essential for consideration by any organization
looking for secure networking performance and scale. But VPP is an open source project, not a product. Open
source projects have the advantage of community-driven development creativity and time-to-market. But
development projects must still be productized in order to meet the demands of real-world deployment. That
requires rigorous software integration, testing, packaging, distribution, and support. The expertise, investment,
and effort required to effectively productize an open source project - let alone one experiencing rapid advance-
ments - is not for the faint of heart.

Productizing open source secure networking projects into enterprise and service-provider ready solutions is
Netgate’s expertise. And TNSR is the answer to VPP productization.

To learn more about|Open Source click here |and|TNSR click here.

http://info.netgate.com/open-source
https://www.netgate.com/products/tnsr/

	VPP Simplified Page 1
	VPP Simplified Page 2
	VPP Simplified Page 3
	VPP Simplified Page 4

