THE DIFFUSER CONSORTIUM Phases I – VII + Phase I, II Stability Consortium Presented at: Friedrichshafen; Seoul; USA May – July, 2016

David Japikse & Sharon E. Wight

The Experts in Turbomachinery

Webinar Procedures

Copyright Statement

The material in this presentation is covered by various patents and copyrights, including copyright © 2016 by Concepts NREC, LLC.

All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means—electronic, mechanical, magnetic, optical, chemical, manual or otherwise—without prior written permission from Concepts NREC, LLC, 217 Billings Farm Road, White River Jct., Vermont 05001, USA.

No license to build, even for research consideration, is given and the same is prohibited except for full consortium sponsors.

Historical Background Parts I - V

- Created Firm Foundation
- Popularization of LSA
- Re-Introduction of Flat-plate (FP) Diffuser
- Observed serious coupling

The Experts in Turbomachinery

Flow Regimes Covered by Diffuser Consortium

Is 80% Cp Achievable?

- Yes if:
 - Flow is given adequate area ratio per streamtube
 - Given <u>healthy inlet conditions</u>
 - Given an optimum flow path and minimum skin friction
 - And it must be stable
- We have reached:
 - Cp = 0.75 for good configurations, and
 - Occasionally hit levels of 0.77 or 0.78, but not reliably
- How much area ratio?
 - Diffuser effectiveness of 0.85 to 0.92 is realistic based on diffuser research
 - C_p of 0.8 is achievable with an AR of about 2.8 to 4.1, which is well within a practical range

Fully Instrumented 60 mm Test Stage (S1, etc.)

Flow Meter

2x Ps

Turbine

1x Tt, In

Notes:

Tt, ex 2x delta Ps $1 \times$ Test rig is precise, well instrumented, and in good operation. 1x Ps, In 2× Tt Shown with 25% hub pinch. All testing is with 0.009 inch clearance, centered to within 0.001 inch. Two different inlets available. Shakedown testing with Original OEM Impeller; 4x Ttcurrent testing with Clean Impeller. 6x Ps 4× Pt 4x Ps 3x Ps 4× Tt 1x Ps 3x Ps 3× Ps 1x Trav Ps $1 \times$ 1x Ps 1x Ps 1x Trav-1x Ps 3x Ps 3× HFP × Ps 1x Trav 13x Ps T, bare 1 3x Ps 4x Rbstrp 1x T, bare Speed Pickup Concepts ? NREC

L2F Data

Figure 26. Distribution of Meridional Velocity at Impeller Exit $(r = 1.1r_2)$

Figure 28. Distributions of Absolute Flow Angle $(r = 1.1r_2)$

Sample Vaneless Diffuser Tests, 120 mm Rig Low Ns Stage

The <u>linear taper vaneless diffuser</u> gave the best performance; rapid pinch diffusers stalled earlier.

LSA, Flat-plate, and Channel Comparison (1)

LSA, Flat-plate, and Channel Comparison (2)

1997 P2 Study: Channel Diffuser

Channel Diffuser Data

Phase V Test Data

Best channel diffuser

🟓 90 mm test rig

Replotted in 2014 vs. circumferential angle

- 1. Which came first?
- 2. Chicken or ...
- Lack sufficient redundant measurements

New Vaneless Diffuser Test Results (Parts VI & VII)

- Clarified pinch anomalies
- Observed strong distortions

The Experts in Turbomachinery

Representative Vaneless Diffuser Results

Performance of three vaneless diffusers with various pinch schedules, 69 mm impeller; for impellers of 2x diameter, add 5 to 7 points of efficiency

Vaneless Diffuser Pressure Rise

50% pinch diffuser shows clear penalties, in spite of some good overall characteristics

25% Rear Pinch Vaneless Diffuser

Figure 28a. Static pressure rise along each side of a vaneless diffuser; the pressures are nearly the same on each side except near the inlet, where gradients may be found across the impeller exit / diffuser inlet of 55% of the impeller static pressure rise

Flow Visualization: 25% Rear Pinch, Near Surge 100 krpm

Shroud inlet flow goes straight into the impeller

Flow visualization shows cover tip leakage in full backflow, but not into the inlet

New Vaned Diffuser Test Results (Parts VI & VII)

- Repeats
- Improvements
- Core Insights
- Inventions

The Experts in Turbomachinery

Flat-plate Overlay

Flat-plate Diffuser, 2014 & 1990s (1)

Flat-plate Diffuser, 2014 & 1990s (2)

Nom. LSA Diffuser, 2014 & 1990s (1)

Nom. LSA Diffuser, 2014 & 1990s (2)

M4 LSA Diffuser, 2014 & 1990s (1)

M4 LSA Diffuser, 2014 & 1990s (2)

Status: Several LSA and Flat-plate LSA Diffusers

Example performance of three diffusers; add one point of efficiency for a nominal inlet; plus for 2x impeller diameters, add 5 to 7 points of efficiency

Double Divergent Channel Diffuser Tests

Flat-plate Diffuser: Effect of Pinch Schedule

Flat-plate Diffuser Pressure Profiles

Flow-wise Grooved Cover

Patent No. 8,926,276 B2 January 6, 2015

The Experts in Turbomachinery

Consortium Impeller Pitch-wise Averaged Absolute Angle Variations, i = 4°

Blade-to-blade <u>averaged</u> flow angles plotted at various % spanwise locations showing a crossover at 70% meridional distance, a group of angle traces that settle out to a level of about 60°, and two traces that rise to higher angles. Impeller at 4° incidence.

A First Design Effort

First Flow-wise Grooved Cover Tests (1)

Grooved Cover <u>Vaneless</u> Map Enhancement

25% front pinch vaneless diffuser with and without the flow-wise wide-grooved cover

New US & International Patents

Figure 16

CCFG with Ribs and Deep Channels

Patent No. 8,926,276 B2 January 6, 2015

© 2016 Concepts NREC, LLC All rights reserved.
Deep, Wide Grooves

Narrow Groove Configuration

Wide Slot Depth Variation

Narrow/Wide Slot Comparison

Concepts *NREC*

Narrow Slot Depth

50% m & 70% m Slot Starting Location

Concepts ? NREC

Full Vaneless Diffuser Grooves

Full Vaneless Diffuser Slots (1)

Full Vaneless Diffuser Slots (2)

Wide, Shallow Grooves

Grooved Cover: Flat-plate Wide-groove Tests

Principal Groove Lessons

- Tests at 7.5%, 15%, and 25% depth point to 7.5% as being best
- Grooves starting at 50% and at 70% meridional distance work well
- Grooves ending at $R_3 = 1.3$ and R_5 work well
- Grooves aligned with vanes work well
- Narrow grooves work well
- Small efficiency penalties have been found; are gone with best combinations
- Excellent range extension at highest speeds found; no change at lowest speeds
- Grooves seem to reduce data variance and possibly surge line inconsistency

Inlet Distortion Studies

- Truly confirmed distortion existence
- Observed Flow visualization evidence
- Have begun the mathematical foundation
- Continuing on to other rigs

The Experts in Turbomachinery

Front Pinch (25%) Vaneless Distortion

Figure 31. Circumferential pressure variations for a vaneless diffuser test set; the distortions are **NOT** traceable to any rig geometry and are considered to be a natural flow phenomenon

Now, one or two maximum and one or two minimum per line; Min about 60 deg. and max about 270 deg. Distortion <u>NOT</u> caused by the collector!

Red ticks =

outlet ports

collector

(4)

Rear Pinch (25%) Vaneless Distortion

Peak distortions are 1.5 - 1.7 psi, peak to peak, $\frac{1}{2}$ of front pinch case

Concepts NREC

Impeller Exit Pressures: 1.3 Solidity LSA M4 Diffuser

Red ticks = collector outlet ports (4) Blue ticks = diffuser vane leading edges (16)

Now multiple maximum and multiple minimum per line; Min about 60 deg. Amplitude about twice that of the vaneless cases.

New Cover Taps

Sample Results with 9° Spaced Taps

2014 Flat-plate Diffuser: 120,000 rpm

Figure 32b. Circumferential static pressure measurements at impeller tip/diffuser inlet; the sawtooth pattern is just the diffuser vane-to-vane variation. Note, however, the 'sinusoidal' variation in peaks and valleys upon which the saw-tooth is superposed – hence there is no periodicity in the flow at the impeller tip. Each line corresponds to a different flow rate; all at 120,000 rpm.

360° Diffuser Inlet Pressure Measurements, FP LSA

14 Diffuser Vanes; 14 pressure maxima at each flow rate; two cyclic maxima

360° Diffuser Inlet Pressure Measurements, Channel

15 diffuser vanes; 13 – 15 maxima; two passages without a maxima

© 2016 Concepts NREC, LLC All rights reserved.

Concepts?NREC

Pressure Distortion at Various Locations

Collector distortion: +- 0.075 psi; near diffuser exit: +- 0.09 psi; diffuser inlet: +- 1.7 psi Note: maxima locations do not line up for the three radial locations studied

© 2016 Concepts NREC, LLC All rights reserved.

Concepts?NREC

36 P₂ Tap Data for the 25% Front Pinch Diffuser, Shroud Side

Figure 6. Circumferential pressure traces for the 25% front pinch vaneless diffuser at seven increments of time, each taken 5 minutes apart; front side – 135,000 rpm

Hub Side Data

Figure 7. Seven circumferential pressure traces for the 25% front pinch vaneless diffuser at seven increments of time, each taken 5 minutes apart; rear (hub) side - 135,000 rpm

Composite P2 Data Sets; 25% Shroud

25% Front Pinch Vaneless, 135,000 rpm

Three Harmonic Representation

Figure 12. Measured pressure versus circumferential location compared to sinusoidal model; 14-vane flat-plate diffuser

Single Pitch Modeling

Figure 13. Measured pressure versus pitchwise location compared to sinusoidal model; 14-vane flat-plate diffuser

Phase Shift

Figure 14. Effective phase shift of the diffuser vane pressure field at impeller discharge

Cover Oil Traces with a 12-vane Diffuser

Harmonic Analysis - DD

2016-Double Divergence Diffuser, Mod 1, Imperller #2, 60mm rig

Harmonic Analysis – M4 FP

2016-FP M4 1.0 Solidity, Impeller #2, 60mm rig

New Impeller Design

- Phase VII work requires the use of a new impeller to test out the applicability of diffusers from earlier phases of work
- 2. It is the explicit intent to be able to continue to use the existing best diffusers so as to give a coherent technology base
- 3. <u>Expectation</u>: show more of the impeller/diffuser interaction effects

The Experts in Turbomachinery

New and Old Impeller Designs

New Impeller Loadings

Concepts NREC

New and Old Absolute Flow Angles

Concepts *NREC*

Acceptable Steady Stress and Eigenvalues

Vane Tests with New Impeller

- 1. Will the best available diffusers still perform the same or similar?
- 2. Will any new performance gains be found?
- 3. Will any flow process be clarified?

The Experts in Turbomachinery
High-performance Diffusers

DD Vanes with New Impeller Is Good

Performance of the double divergent diffuser with new and old impellers; n.b. different inlet ducts used.

© 2016 Concepts NREC, LLC All rights reserved.

Nominal LSA Diffuser

Performance of the LSA-1.3S diffuser with new and old impellers % work input for the LSA-1.3S diffuser with new and old impellers; n.b. different inlet ducts used.

Flat-plate Diffuser, M4

Improvement for the Flat-plate Diffuser is the best of all three; n.b. different inlet ducts used.

© 2016 Concepts NREC, LLC All rights reserved.

Flat-plate and New Impeller Are Tops!

Summary

- Vaned diffusers are good to very high pressure ratios; vaneless diffusers have a range advantage from the choke side below pr = 2.5
- Circumferential diffuser inlet distortion definitely exists; energy content is unknown
- The LSA, flat-plate, double & tangential divergent channel, and conical diffuser all show top performance, and many with low vane numbers (12 to 17 vanes)
- The LSA & flat-plate show wide range & good efficiency
- The flow-wise grooved cover improved the surge margin nicely for the front pinch vaneless diffuser at both 25% and 50% pinch levels; it also increased range with a vane diffuser
- The alternative impeller gives similar performance to the old impeller tests for the LSA and DD diffusers but markedly improved performance for the FP diffuser; the role of CFD here is in question
- The FP diffuser might form the basis of an excellent start for a Super Diffuser
- There are multiple means for better range and efficiency

Super Diffusers

Super Diffuser: A diffuser that distinctly stands out from the state-of-the-art (SOA) best practices by one or more of the following attributes:

- 1) A stage efficiency that is about 3 points* higher than SOA due to new diffuser attributes
- 2) A stage pressure characteristic that gives good pressure rise at low flow and extends the stable operating range by 10% or more
- 3) A stage that reduces vibration and / or noise by a distinct margin
- 4) A stage that does several of the above

* For new work, this will also require >80% Cp recovery for large stages and > than 77% Cp recovery for small stages in a useful flow range.

The Experts in Turbomachinery

Conical Diffusers: The First Super Diffuser

PIPE DIPFUSER ENTRY (showing swallow-tail vane leading edges)

Although superior differential performance was not well-defined historically, the dominant application of this diffuser to aircraft engines was based on its exemplary performance characteristics and can well be considered the first super diffuser.

Not this! (Blackburn ca. 1990)

Floating vanes were promising, but did not offer super performance

Not this! (Japikse, US 5,730,580 1998)

Maybe? (Swiatek, et al. 2011/2013)

Partial vanes are promising; super performance is unsure at this point US 8,602,728 B2

History: Abdelhamid (ca. 1987)

This concept has rarely been tried, but might be combined with other vane types; super performance is unsure at this point

Super Diffuser Potential...

New Vaneless Diffuser? Maybe....

Future Work

Is there a basis to exceed Cp = 0.80, and perhaps introduce a new super diffuser?

The Experts in Turbomachinery

Basic Diffuser Types and Design Variables

Vaneless Diffusers					Low Solidity Airfoil (LSA) Diffusers										Channel Diffusers								
Inlet coupling	r ₃ /r ₂ pinch point	b ₃ /b ₂	r ₅ /r ₂	Grooves	Inlet coupling	r ₃ /r ₂	r ₄ /r ₂	r ₅ /r ₂	AOA _D (°)	CL	σ	Z _d	Shape	Grooves	Inlet coupling	r ₃ /r ₂	r ₅ /r ₂	20	$\theta_{\rm A}$	L/W	AS ₄	Z _d	Grooves
Classical Pre-1990s Design				Classical Pre-1990s Design										Classical Pre-1990s Design									
N/A	1.2 - 1.4	0.8 – 0.5	1.6 – 2.2*	No	N/A	1.15	1.25	*	6.5° per NACA	0.4 - 0.8	0.9 - 1.0	Dependent	LSA - airfoil	No	N/A	1.06 - 1.12	*	7 – 8°	n/a	16 – 18	0.6 – 1.5	Dependent	No
1990s Consortia, Phases I – V					1990s Consortia, Phases I – V										1990s Consortia, Phases I – V								
N/A	1.3 - 1.8	0.8 – 0.5	1.6 – 2.2*	No	N/A	1.05 – 1.2	1.2 – 1.3	*	-4 to 4	0.4 - 0.8	0.9 - 1.3	Dependent	LSA or FP LSA	No	N/A	1.02 – 1.08	*	5 – 8°	ca 2º	10 - 14	0.6 – 2	Dependent	No
2013 – 2016 Consortium, Phase VI, Phase VIIa				2013 – 2016 Consortium, Phase VI, Phase VIIa									2013 – 2016 Consortium, Phase VI, Phase VII										
Yes, 0.7 – 1.8 ?	1.8	0.8 – 0.5	1.6 – 2.2*	Likely use	First priority	0.7 – 1.05	1.2 - 1.3	*	-4 to 4	0.4 - 1	0.9 - 1.5	First order choice?	Consider FP first	Likely use	First priority	0.7 - 1.06	*	5 – 7º	< 7º	10 - 14	0.6 – 2	First order choice?	Likely use
2016 – Consortium, Phase VIIb, Phase VIII					2016 – Consortium, Phase VIIb, Phase VIII									2016 – Consortium, Phase VIIb, Phase VIII									
Super Diffusers					Super Diffusers										Super Diffusers								
Yes, 0.7 – 1.8 ?	1.8	0.8 - 0.5	1.6 - 2.2*	Use	First priority	0.7 – 1.05	1.2 - 1.3	*	-4 to 4	-	0.9 – 1.5	1st choice – low distortion	FP Variant	Use	First priority	0.7 - 1.06	*	5 – 7º	< 7º	10 - 14	0.6 - 2	FP Variant? Conical?	Use

* maximum r5 is usually desired, but practical size limits often interfere. The final portions of most diffusers still provide useful pressure rise.

- 1 May break diffuser design into an inlet, an exit and an intermediate segment
- 2 Much has been learned about the inlet segment
- 3 Little is yet know about controlling the exit segment
- 4 The intermediate segment could become clear as the exit segment is clarified
- 5 The final diffuser may not look much like the common diffuser classes

Future Diffuser Designs

- 1. <u>Impeller exit diffuser inlet is probably the most important area for</u> <u>diffuser design</u>
- 2. All other design parameters may come second
- 3. Vane count is wide open as a variable, and likely important
- 4. Reasonable chance of a standardized design, perhaps a flat-plate variant
- 5. Much more work is needed to learn the complete physics of impeller exit distortion; role for L2F investigations
- 6. Some major rebuilding of CFD may be needed!
- 7. Strong probability of using Flow-wise Grooved Covers as part of future designs, whether vaneless or vaned !!

Steps to the Consortium *Super Diffuser*

- Biased passage: variable stagger case; variable height
- 2. Offset partial height vanes, biased vanes, groupings
- 3. Conformal variants (14, 11, 7 vane count same shape and same LE location)
- 4. Exit diffuser vanes
- 5. Flow-wise grooves; biased flow passages
- 6. Leading edge shapes

Patents

- 1. A large family of patents is evolving
- 2. This family gives deep protection to consortium members
- 3. Ultimately, it will be a *serious stumbling block* to non-sponsors

The Experts in Turbomachinery

Concepts NREC Advanced Diffuser Consortium						
SponsoringCompany		Sponsorship				
GE Aviation - Lynn Fan & Compressors		Enterprise License				
GE Global Research		Enterprise License				
GE Oil & Gas (AC Compressor)		Enterprise License				
GE Oil & Gas (Nuovo Pignone)		Enterprise License				
GE Transportation Systems		Enterprise License				
Hangzhou Hangyang Turbomachinery		Divisional				
Honeywell Transportation Systems - Turbo Technology		Divisional				
Hyundai Heavy Industries Co., Ltd.		Divisional				
IHI Corporation - Yokohama		Divisional				
Ingersoll Rand Italiana S.p.A		Divisional *				
IR Climate Solutions (Trane)		Divisional *				
IR Cameron Compression Systems		Divisional *				
LG Electronics		Divisional				
MAN Diesel &Turbo - Augsburg		Divisional *				
MAN Diesel &Turbo - Oberhausen		(in process)*				
MAN Diesel &Turbo - (third division TBD)		(in process)*				
Samsung Techwin America		Divisional				
Shenyang Blower		Divisional				
Siemens (Dresser-Rand)		Divisional				
Siemens (Rolls Royce Energy Systems)		Divisional				
Siemens Oil & Gas (KK&K)		Divisional				
Solar Turbines, Inc.		Divisional				
Sulzer Pumps Ltd - Winterthur		Divisional				
	Total	19				

* to be converted to Enterprise License

Avoid the Penalties!! (We Will Help)

Participation with full penalty costs – rates announced about 1.5 years ago based on 1975 consortia criteria

Concepts ? NREC

New Approach

- Current members continue at \$15,000 per year; receive patent licenses as issued (multiple patents in process).
- New members also welcome at \$15,000 per year, starting now. Patent licenses will be granted after choosing the full (8 phases) sponsorship payment.
- Past (early phase) sponsors who are not current: some discounts may still be available, so it may be better to catch up now rather than to wait. Just ask.
- Offer is open until September 15, 2016. After that date, all past discounts are closed out. Patents will be *strictly* enforced.

Closure

- The Diffuser Consortium series is on schedule
- Strong evidence of coupling is now clear
- Strong pressure asymmetries exist at the diffuser inlet
- Flow-wise grooves work very well and have more potential
- Biased passages are being explored
- Continued increases in stage efficiency and range have been shown: a) 0.78 and 0.74 at low and high speeds for the <u>small</u> impeller, ca. 1994, vs. b)
 0.81+ and 0.77+ at low and high speeds in 2016. Low vane numbers used.
- Further advances expected soon on larger scale rigs (now running)
- Outline exists to pursue new super diffusers
- This an excellent time for new companies to join in the consortium effort!!

