
1 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Crowd Counting Demo App Developer’s
Guide
Authors:

Banovic, Nemanja; Benzuijen, Robin; Kamuf, Sophie;

Makarevich, Anton; Roberto, Alessio; Pan, Jieke;

Merryman, John

February 2020 Mobiquity

2 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Executive Summary
The Crowd Counting Demo App Developers Guide provides developers and architects a reference to

build and deploy a functional mobile application to count people. What we found exciting about this

project was the opportunity to rapidly build and prove out the concept that mobile tech can be

combined with a combination of cloud and machine learning platforms, to provide a working

machine learning example into the hands of an ordinary mobile user. We decided to share

documentation and source code for components to engage a wider community interested in this body

of work.

The goal is to inspire the development community to learn, extend upon, iterate, and advance the

concepts applied in this mobile application to new use cases of this technology solution. While we are

very proud to present this example, it is in no way intended to be a perfect example; rather, it is a

functional example that can be used and modified by the developer community.

In 2019, Mobiquity designed and engineered a crowd counting mobile application, to prove out the

combined power of mobile, video streaming to Kinesis Video Streams, and the machine learning

capabilities of Amazon SageMaker. The result is a working mobile application, which allows a user to

scan a room and count the number of people, determined by an object detection model, which is

trained to recognize 'heads and shoulders' patterns.

There are multiple use cases for which this combination of technology can be effective. The machine

learning model can be updated and trained to recognize different objects, such as cars or livestock;

however, we encourage development of well-curated and annotated datasets before embarking on a

modified use case with SageMaker.

Here is the fully documented solution, a Developer’s Guide, with private access to source code

repositories for developers to experiment with the technology and build upon this simple working

prototype. Please contact the Mobiquity team for access to technical details regarding source code.

• This Developer’s Guide provides developers a toolkit to rapidly build, learn, and deploy a

mobile application that demonstrates the power of machine learning.

• It also provides a base for experimentation and adaptation to additional use cases, including

but not limited to fixed IOT cameras, streaming applications, and non-mobile sources for

video.

• The goal of this guide is to inspire innovation, harness public creativity and engineering ideas,

and further the body-knowledge as additional use cases and technical approaches are

identified.

4 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

EXECUTIVE SUMMARY .. 2

SOLUTION ARCHITECTURE .. 6

CLUSTER CREATION ... 7

Task Definition and Container Creation ... 7

Cluster Creation ... 11

AMAZON SAGEMAKER .. 23

Prerequisites.. 23

Pre-processing the Dataset ... 23

Training the Object Detection Model .. 27

Creating the Model and Endpoint ... 30

PANORAMA STITCHING .. 33

KVS Service .. 33

API .. 33

Panoramic Image Stitching ... 33

Configuration ... 34

Build and Release ... 35

Docker OpenCV Container .. 35

Deploy ... 35

JVM Configuration ... 36

ANDROID .. 36

SDK Improvements .. 36
Custom StreamCallbacks ... 36
SDK crashes because of memory allocation .. 37
Unsupported codecs on some devices .. 37

AWS KVS SDK Integration ... 37

5 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

AWS KVS SDK Usage ... 38
General Information .. 38
Streaming Client Class ... 39
Initializing New StreamingService ... 40
Streaming Service Class ... 41
Creating the New KVS Client .. 41
Workaround for Memory Related SDK Crash... 42
Handling Stream Callbacks .. 43
Starting and Stopping Streaming .. 44

Using the Phone Camera .. 46
Request Camera Permissions .. 47

IOS ... 49

Architecture... 49

SDK Improvements .. 50
Missing functionality.. 50
H.264 Encoder.. 50
Encode CMSampleBufferRef object .. 50
Create Compression Session ... 50
Define Session Properties .. 51
Pass Camera Frame to Session .. 51

Generate Kinesis Frame .. 51

How to Import the AwsKvsSdk framework .. 52
How to Import the Framework .. 52
How to Rebuild and Import the Framework ... 53

How to Use the SDK ... 53
Pass Camera Frame to the Stream .. 54
Stop Streaming .. 54
Fragments Callback .. 55

Phone Camera Stream .. 56

6 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Solution Architecture
The following solution architecture diagram illustrates the AWS pipeline for the KVS Demo App.

The step process allows a user to stream video from the mobile application to Kinesis Video Streams

and then to an ECS instance, which runs a panorama stitching algorithm to compose the video frames

into a single file, which is ultimately processed by a SageMaker object detection model. This model is

trained to recognize ‘head and shoulders’ humans in the stitched panorama and return an estimated

count of humans in the image along with estimated probability.

7 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Cluster Creation

Task Definition and Container Creation

1. In order to create an ECS instance for the KVS cluster, we need to create a task definition,

which we will use in our cluster.

2. We chose EC2 as the instance type. Also, we create the role, which the task will use for

communicating with needed services. We leave the <default> network mode.

8 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

9 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

3. Assign 16 GB of memory and 10 CPUs per task.

4. When adding a container, we specify the container options and the repository, from which

the docker image for that container will be pulled. Port 8080 needs to be mapped as seen on

the image below.

10 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

11 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Cluster Creation

1. After creating a container and a task, we now move to creating a cluster. We choose EC2

again.

12 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

13 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

2. We specify the settings of the EC2 instance and the VPC (a new one may need to be created).

We then select “Create” to complete the creation of the cluster.

14 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

15 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

3. We now create a service, which will run the task that we created previously. We again select

EC2 and specify the task definition that we created.

16 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

17 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

18 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

4. Continuing with configuring the network, we chose a VPC or create a new one along with

security group, where the service of this cluster will run.

19 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

5. Because a static public IP is needed, we create a network load balancer, which is attached to a

service.

20 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

21 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

22 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

6. After creation of the service, your cluster is fully running with the KVS recognition software.

23 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Amazon SageMaker
Source: Please contact the Mobiquity team for access to technical details.

Prerequisites

Please follow the following instructions to mount an Amazon Elastic File System (EFS) to your

SageMaker notebook:

https://aws.amazon.com/blogs/machine-learning/mount-an-efs-file-system-to-an-amazon-sagemaker-

notebook-with-lifecycle-configurations/

The EFS will allow you to easily share the downloaded data with your team members.

In addition, you will need basic knowledge of SageMaker, such as how to start a notebook instance

and upload files.

1. Login to SageMaker and create a new notebook instance. Dock the previously created EFS to

your instance.

2. Within the notebook instance, upload the two provided Jupyter notebooks: Preprocess-

COCO-dataset.ipynb and SSD-person-detection.ipynb.

Pre-processing the Dataset

The details below explain the pre-processing steps found in the code base.

1. Start the SageMaker session and create an S3 bucket, where you will store the train and

validations sets.

%%time

import sagemaker

from sagemaker import get_execution_role

role = get_execution_role() print(role)

sess = sagemaker.Session()

bucket = 'crowd-

counting' prefix =

'COCO-data'

https://aws.amazon.com/blogs/machine-learning/mount-an-efs-file-system-to-an-amazon-sagemaker-notebook-with-lifecycle-configurations/
https://aws.amazon.com/blogs/machine-learning/mount-an-efs-file-system-to-an-amazon-sagemaker-notebook-with-lifecycle-configurations/

24 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Download the publicly available COCO dataset from 2017. (You can explore the dataset here:

http://cocodataset.org/)

2. Unzip the downloaded dataset and then remove the zip files.

3. Create folders in the EFS to store the data and annotation files.

import os

import urllib.request

#path of efs

path = "/home/ec2-user/efs/"

def download(url):

filename = path + url.split("/")[-1]

if not os.path.exists(filename):

urllib.request.urlretrieve(url, filename)

MSCOCO image and annotation files

download('http://images.cocodataset.org/zips/train2017.zip')

download('http://images.cocodataset.org/zips/val2017.zip')

download('http://images.cocodataset.org/annotations/annotations_

trainval2017.zip')

%%bash

unzip -d ~/efs/ ~/efs/train2017.zip

unzip -d ~/efs/ ~/efs/val2017.zip

unzip -d ~/efs/ ~/efs/annotations_trainval2017.zip

rm ~/efs/train2017.zip ~/efs/val2017.zip

~/efs/annotations_trainval2017.zip

mkdir ~/efs/train_generated ~/efs/val_generated ~/efs/train

~/efs/train_annotation ~/efs/validation

~/efs/validation_annotation ~/efs/test ~/efs/test_annotation

http://cocodataset.org/
http://images.cocodataset.org/zips/train2017.zip%27)
http://images.cocodataset.org/zips/val2017.zip%27)
http://images.cocodataset.org/annotations/annotations_

25 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

4. The COCO dataset contains 80 object categories. Since we are looking to train the model to

count people, we will filter the dataset for images, which include at least one object in the

category “person.” We then clean up the annotation files by removing annotations for the

other object categories.

5. create_dataset('/home/ec2- user/efs/annotations/instances_val2017.json', '/home/ec2-

user/efs/val_generated')

6. create_dataset('/home/ec2- user/efs/annotations/instances_train2017.json', '/home/ec2-

user/efs/train_generated')

import json import logging

def create_dataset(file_name, json_destination): with

open(file_name) as f:

js = json.load(f) images = js['images']

categories = js['categories'] annotations =

js['annotations'] for i in images:

jsonFile = i['file_name']

jsonFile = jsonFile.split('.')[0]+'.json'

line = {}

line['file'] = i['file_name'] line['image_size'] =

[{

'width':int(i['width']),

'height':int(i['height']), 'depth':3

}]

line['annotations'] = [] line['categories'] = []

for j in annotations:

if j['image_id'] == i['id'] and j['category_id']

== 1 and len(j['bbox']) > 0:

line['annotations'].append({

'class_id':int(0),

'left':int(j['bbox'][0]),

'top':int(j['bbox'][1]),

'width':int(j['bbox'][2]),

'height':int(j['bbox'][3])

})

line['categories'].append({ 'class_id':int(0),

'name':'person'

})

if line['annotations']:

with open(os.path.join(json_destination, jsonFile),'w') as p:

json.dump(line,p)

26 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

7. The dataset is then split into a train and validation set.

8. In order to reduce the training time, select the first 20,000 images with class “person” for the

trai set and 2,000 images for the validation set. Then move the training and validation files

to their respective folders on the EFS.

import os

import json

jsons_val = os.listdir('/home/ec2-user/efs/val_generated')

jsons_train = os.listdir('/home/ec2-user/efs/train_generated')

print ('There are {} validation images with annotation files and

class person'.format(len(jsons_val)))

print ('There are {} train images with annotation files and

class person'.format(len(jsons_train)))

import shutil

train_jsons = jsons_train[:20000]

val_jsons = jsons_val

#Moving training files to the training folders

for i in train_jsons:

image_file = '/home/ec2-

user/efs/train2017/'+i.split('.')[0]+'.jpg'

shutil.move(image_file, '/home/ec2-user/efs/train/')

shutil.move('/home/ec2-user/efs/train_generated/'+i,

'/home/ec2-user/efs/train_annotation/')

#Moving certain training files to the validation folders

for i in val_jsons:

image_file = '/home/ec2-

user/efs/val2017/'+i.split('.')[0]+'.jpg'

shutil.move(image_file, '/home/ec2-user/efs/validation/')

shutil.move('/home/ec2-user/efs/val_generated/'+i,

'/home/ec2-user/efs/validation_annotation/')

27 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

9. Upload the train and validation sets to S3.

10. When you are done with this project, you can also choose to remove the folders from EFS.

Training the Object Detection Model

1. Settings. Start a SageMaker session and specify the bucket and prefix, where the train and

validation data are located in S3.

%%time

train_channel = prefix + '/train'

validation_channel = prefix + '/validation'

train_annotation_channel = prefix + '/train_annotation'

validation_annotation_channel = prefix +

'/validation_annotation'

sess.upload_data(path='/home/ec2-user/efs/train', bucket=bucket,

key_prefix=train_channel)

sess.upload_data(path='/home/ec2-user/efs/validation',

bucket=bucket, key_prefix=validation_channel)

sess.upload_data(path='/home/ec2-user/efs/train_annotation',

bucket=bucket, key_prefix=train_annotation_channel)

sess.upload_data(path='/home/ec2-

user/efs/validation_annotation', bucket=bucket,

key_prefix=validation_annotation_channel)

%%bash

rm -rf ~/efs/train ~/efs/train_annotation ~/efs/validation

~/efs/validation_annotation ~/efs/test ~/efs/test_annotation

28 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

2. Data Location. Specify the output location and the location of the following 4 channels:

• Train data

• Train annotation

• Validation data

• Validation annotation

%%time

import sagemaker

from sagemaker import get_execution_role

role = get_execution_role()

print(role)

sess = sagemaker.Session()

bucket = 'crowd-counting'

prefix = 'COCO-data'

from sagemaker.amazon.amazon_estimator import get_image_uri

training_image = get_image_uri(sess.boto_region_name, 'object-

detection', repo_version="latest")

print (training_image)

s3_train_annotation = 's3://{}/{}'.format(bucket,

train_annotation_channel)

s3_validation_annotation = 's3://{}/{}'.format(bucket,

validation_annotation_channel)

s3_output_location = 's3://{}/{}/model-output'.format(bucket,

prefix)

train_channel = prefix + '/train'

validation_channel = prefix + '/validation'

train_annotation_channel = prefix + '/train_annotation'

validation_annotation_channel = prefix +

'/validation_annotation'

s3_train_data = 's3://{}/{}'.format(bucket, train_channel)

s3_validation_data = 's3://{}/{}'.format(bucket,

validation_channel)

29 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

3. Training. The SageMaker Object Detection algorithm uses a Single Shot multibox Detector

(SSD) framework. Select train_instance_type=‘ml.p3.8xlarge’, which will train the model in

approximately 6hrs. You can choose a smaller or larger instance type depending on your

needs. The larger the instance, the quicker the model will be trained. Please note that larger

instance types also come with more costs. See the pricing page for more details.

4. Hyperparameters. We changed the following default hyperparameters:

• num_classes=1 → we are training on 1 category (person) and not on 80 object categories

• num_training_samples=20000 → we are training on 20,000 images

If you are interested in tuning the remaining hyperparameters, please refer to this guide:

https://docs.aws.amazon.com/sagemaker/latest/dg/object-detection-api-config.html

od_model = sagemaker.estimator.Estimator(

training_image,

role,

train_instance_count=1,

train_instance_type='ml.p3.8xlarge',

train_volume_size = 50,

train_max_run = 360000,

input_mode = 'File',

output_path=s3_output_location,

sagemaker_session=sess)

od_model.set_hyperparameters(base_network='resnet-50',

use_pretrained_model=1,

num_classes=1,

mini_batch_size=64,

epochs=140,

learning_rate=0.002,

lr_scheduler_step='80',

lr_scheduler_factor=0.1,

optimizer='sgd',

momentum=0.9,

weight_decay=0.0005,

overlap_threshold=0.5,

nms_threshold=0.45,

image_shape=512,

label_width=600,

num_training_samples=20000)

https://docs.aws.amazon.com/sagemaker/latest/dg/object-detection-api-config.html

30 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

5. Specify the data to be used for training.

6. You can now go ahead and train the model. This will take around 6 hours with the provided

settings.

Creating the Model and Endpoint

1. You can find the trained model under Training → Training jobs.

2. Select the training job, then Actions → “Create model”

od_model.fit(inputs=data_channels, logs=True, job_name='od-coco-

20000-05112018-v2')

train_data = sagemaker.session.s3_input(s3_train_data,

distribution='FullyReplicated', content_type='image/jpeg',

s3_data_type='S3Prefix')

validation_data = sagemaker.session.s3_input(s3_validation_data,

distribution='FullyReplicated',content_type='image/jpeg',

s3_data_type='S3Prefix')

train_annotation =

sagemaker.session.s3_input(s3_train_annotation,

distribution='FullyReplicated',content_type='image/jpeg',

s3_data_type='S3Prefix')

validation_annotation =

sagemaker.session.s3_input(s3_validation_annotation,

distribution='FullyReplicated',content_type='image/jpeg',

s3_data_type='S3Prefix')

data_channels = {'train': train_data, 'validation':

validation_data, 'train_annotation': train_annotation,

'validation_annotation':validation_annotation}

31 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

3. Provide a model name but leave all other settings on default. Then press “Create model” at

the bottom.

4. You can find the created model under Inference → Models. Select the model and press

“Create endpoint.”

5. Provide a name for the endpoint and select “Create a new endpoint configuration.”

32 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

6. At the bottom, you can then press “Create endpoint configuration.”

7. You can find the created endpoint under Inference → Endpoints.

33 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Panorama Stitching

KVS Service

The KVS Service is an OpenCV docker instance containing a Java SpringBoot application, which

returns a SageMaker headcount prediction from a panoramic image by processing a Kinesis Video

Stream. The video stream is created by the user (via the mobile app). The details of the video stream

(name and fragments) are sent to the KVS Service via Rest API.

API

http://server.com:8080/info (GET)

Health check endpoint.

http://server,com:8080/processFragments (POST)

Panoramic Image Stitching

The panoramic image is created by stitching frames using regular intervals from the video stream.

The stitching is done by OpenCV.

{

"streamName": "myStream",

"fragments": [

"001",

"002",

"003",

"004"

]

}

http://server.com:8080/info

34 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

A stream can have many fragments and each fragment can contain many images. For example, in case

the service needs to process 20 fragments and each fragment contains 25 frames the total frames to be

processed would be 500 (20*25). In order to speed up the process an equal interval is used assuming

the user has a steady velocity when recording to the stream (when moving the device). The interval

is calculated by determining the number of fragments and the number of images to use. Both

numbers can be configured because higher numbers will impact performance.

Configuration

The AWS role is provided by the deployment solution, by using the

DefaultAWSCredentialsProviderChain. The region is provided in the configuration.

The role used by the container must have access to the following resources (refer to configuration):

• SageMaker

• Kinesis-Video-Stream

Aws Region

aws.region=us-west-2

Accuracy settings (max amount calculated by

interval). aws.maxFragmentsToProcess=10

aws.maxFramesToStitch=10

SageMaker aws.sageMakerContentType=application/x-image

aws.sageMakerEndPoint=SSD-20k-endpoint2018-11-

07-16-02-54 aws.predictionThreshold=0.2

Threads to do parallel stitching.

aws.stitchThreads=50

aws.fragmentThreads=2

aws.sageMakerThreads=50

Maximum image size (SageMaker max image size). The

service will resize the panoramic image to avoid

sending larger images. aws.maxImageSize=6144000

Build version (to show when using the info endpoint).

aws.version=unset

35 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

All application specific configurations can be overridden by using Java startup parameters. For

example:

Build and Release

Building the application requires Java (8 or higher) and Maven (3). Navigate to the root of the project

and execute:

Docker OpenCV Container

OpenCV needs to be available on the docker instance to be able to create a panoramic image. The

docker instance needs to be built and makes sure that the required installation is done. To build the

docker instance, navigate to the work directory from the root, and then execute the init.sh script.

Note: If you still have containers running execute: docker-compose stop/ps/rm

Deploy

When a docker container is built it can be uploaded to the AWS registry to be used. To deploy the

container into the registry you need to login first. The command below only works when setting

correct credentials and having the AWS cli installed (Please do not set AWS key and secret key in the

profile or as environmental values).

This command will produce a login to push the docker instance which needs to be copied and

executed again. If you get a failure when executing, please remove the following part from the

provided command:

The login is valid for 12 hours.

mvn clean install

aws ecr get-login

cd work

./init.sh

docker-compose build

docker-compose up open-cv

-e none

-Daws.version=1.0.1 -Daws.predictionThreshold=0.195

36 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Now the docker instance can be deployed. First it needs to be tagged and then it can be uploaded to

the registry.

JVM Configuration

Please note that OpenCV and reading streams are CPU and memory intensive. The docker instance

needs to be configured according the specifications of the server. Java memory can be increased by

specifying a JAVA_OPTS environmental variable, i.e:

Android
Source: Please contact the Mobiquity team for access to technical details.

SDK Improvements

Missing Functionality

The original Android producer SDK code base included in the AWS Android SDK is missing the

ability to set a custom implementation of `StreamCallbacks`. It is therefore not possible to get

notifications about stream fragments, which have been uploaded to KVS.

It also has several known restrictions and bugs, such as:

• The available memory calculation produces wrong result on some devices and causes crashes

during heap allocation

• H.264 encoders used on some Android models seem to not be supported

Custom StreamCallbacks

To make changes to the Android SDK we forked the repo and made the following changes:

docker tag work_open-cv 473293451041.dkr.ecr.us-west-

2.amazonaws.com/kvs-service-repo:latest

docker push 473293451041.dkr.ecr.us-west-2.amazonaws.com/kvs-

service-repo:latest

JAVA_OPTS="$JAVA_OPTS -Xmx6144m -Xms4096m -Dfile.encoding=UTF-8

-XX:+UseParNewGC -XX:+UseConcMarkSweepGC -

XX:+CMSParallelRemarkEnabled"

37 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

• Put additional argument for StreamCallback in `createKinesisVideoClient` method

of`KinesisVideoAndroidClientFactory` as shown on the following changelog:

• Pass streamCallbacks as optional parameter to the `AndroidKinesisVideoClient` constructor:

• In base `NativeKinesisVideoClient` we checked the passed streamCallbacks parameter. If it

equals null, then the default implementation is used

SDK crashes because of memory allocation

• We did not fix this issue on the SDK side, instead we used alternative overload of

• `createKinesisVideoClient` passing custom DeviceInfo with fixed memory size. This is

covered in the SDK integration section of this documentation.

Unsupported codecs on some devices

Even though some of our test devices were affected by this issue, resolving it was not in the scope of

this project.

AWS KVS SDK Integration

In order to add an AWS SDK component to an Android project, a corresponding line in the module’s

build.gradle file needs to be included. For example, to add AWS KVS SDK, the gradle command

should look like this:

38 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

But since we utilized our own modified SDK version, we could not use this process. Instead we

followed the following steps to add our own compiled aar file to the project:

1. Copy `aws-android-sdk-kinesisvideo-debug.aar` to the `app/libs/` folder of the Android

project;

2. Add libs folder to the path, where the system is going to look for dependencies by including

the following in the module’s build.gradle file:

3. Add a reference to the dependencies section of the aar file itself:

4. The KVS SDK still has dependencies related to the core AWS SDK, but we did not modify it

and still used the default version:

AWS KVS SDK Usage

General Information

The app has been developed with the Model-View-ViewModel design pattern in mind and used

Dagger for injecting all the required dependency implementations in the ViewModels.

All the functionality to access KVS and stream video is wrapped in the StreamingService class. We

create a new instance of it for every streaming session, meaning we also create a new instance of all

the underlying KVS from the SDK.

StreamingService is hosted by the StreamingClient. StreamingClient is a singleton class responsible

for asynchronous creation and stopping of new StreamingService instances.

implementation ("com.amazonaws:aws-android-sdk-

kinesisvideo:$aws_version")

repositories {

flatDir {

dirs 'libs'

}

}

implementation (name:'aws-android-sdk-kinesisvideo-debug',

ext:'aar')

implementation ("com.amazonaws:aws-android-sdk-

auth- core:$aws_version")

39 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Streaming Client Class

StreamingClient class is very simple and used to only hold and mange StreamingService instances:

class StreamingClient(private val context: Context)

{ var service: StreamingService? = null

fun free(){

if

(service!=null

){

service?.free(

) service =

null

}

}

fun initialize() {

service = StreamingService(context)

}

var hasCameraAccess: Boolean = false

}

40 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Initializing New StreamingService

StreamingService could be initialized from within the StreamingClient class. In our case we pass

StreamingClient as a dependency to the DemoOneViewModel (the home view model for the demo)

and use the following function:

The method contains two asynchronous jobs: first it checks for internet connection and if a

connection is available, it initializes a new instance of StreamingService. During initialization we first

call the streamingClient.free() method to stop the current instance and free resources. Both the

FreeStream() method and the new native KVS client created in the KVS SDK can take some time and

block the running thread, so we run everything asynchronously using Kotlin coroutines to not block

the UI. In the meantime, we show a “One moment…” text and disable the “Try it button” to let the

user know that something is happening in the background.

fun initKvsClient() = launch

{

changeTryItState(fals

e)

val checkJob = async(Dispatchers.IO) {

connectionChecker.isInternetAvailable

()

}

if (!checkJob.await()){

navigator.showDialo

g(

stringsProvider.getString(R.string.alert_noconnection_title),

stringsProvider.getString(R.string.alert_noconnection_message

))

return@launch

}

val job = async(Dispatchers.IO)

{ streamingClient.free()

}

job.await()

streamingClient.initialize

() changeTryItState(true)

}

}

41 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Note: Checking for an internet connection is very important because the KVS SDK will crash when it

tries to access the KVS API without an internet connection.

Streaming Service Class

The StreamingService class wraps all the functionality of the KVS SDK, allowing to create a new

native KvsClient, open new stream, start and stop streaming from the device.

Creating the New KVS Client

The native KVS Client is the key component of the StreaminService as it manages streams and

handles all the underlying communication with the KVS SDK. We use the

`KinesisVideoAndroidClientFactory` class of the SDK to create a new instance of the kvsClient.

Every instance of StreamingService wraps its own instance of kvsClient and creates it during

initialization:

Where configuration – is an instance of ‘KinesisVideoClientConfiguration’ and contains information

about user credentials and the Amazon environment:

private val kvsClient =

KinesisVideoAndroidClientFactory.createKinesisVideoClient(contex

t,

configuration,

defaultDeviceInfo(),

log,

executor,

kvsStreamCallbacks)

private val configuration =

KinesisVideoClientConfiguration.builder()

.withRegion(region.getName())

.withCredentialsProvider(kinesisVideoCredentialsProvider)

.withLogChannel(outputChannel)

.withStorageCallbacks(DefaultStorageCallbacks())

.build()

42 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Where kinesisVideoCredentialsProvider is an instance of `AwsCredentialsProvider`. We use the

simplest version in the app accepting access and secret keys:

Workaround for Memory Related SDK Crash

As mentioned earlier, in order to avoid SDK crashes related to wrong memory calculation, we have to

use overload of KinesisVideoAndroidClientFactory.createKinesisVideoClient() accepting device info

parameter where we can provide our own value for memory allocation:

private fun defaultDeviceInfo(): DeviceInfo

{ return DeviceInfo(

DEVICE_VERSIO

N,

DEVICE_NAME,

defaultStorageInfo(

), STREAMS_COUNT,

defaultDeviceTags())

}

private fun defaultStorageInfo(): StorageInfo

{ return StorageInfo(0,

StorageInfo.DeviceStorageType.DEVICE_STORAGE_TYPE_IN_ME

M, defaultMemorySize(),

SPILL_RATIO_90_PERCENT,

STORAGE_PATH)

}

private fun defaultMemorySize(): Long

{ return MAX_STORAGE_SIZE_MEGS

}

private val credentialsProvider =

AwsBasicCredentialsProvider(BasicAWSCredentials("<your-access-

key>","<your-secret-key>"))

private val region = Regions.US_WEST_2

43 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Handling Stream Callbacks

To handle stream callbacks and collect information such as fragments ids and timestamps we created

a custom implementation of the StreamCallbacks interface:

Every time we receive AckReceived event we add fragments information to the corresponding

collection and return it on stop streaming request.

class KvsStreamCallbacks: StreamCallbacks {

private var fragments: MutableList<KinesisVideoFragmentAck>

= mutableListOf()

private val tag = "KvsStreamCallbacks"

private var isRecording = false

private var startTimestamp = Long.MAX_VALUE

fun startFragmentsRecording(currentTimestamp: Long) {

startTimestamp = currentTimestamp

fragments = mutableListOf()

isRecording = true

}

fun stopRecording(): List<String>{

isRecording = false

fragments.sortBy { f -> f.timestamp }

return fragments

.map { f -> f.sequenceNumber }.distinct()

}

override fun fragmentAckReceived(fragmentInfo:

KinesisVideoFragmentAck) {

Log.i(tag, "receive fragment type:

${fragmentInfo.ackType}, fragment:

${fragmentInfo.sequenceNumber}")

if (isRecording &&

fragmentInfo.timestamp > startTimestamp &&

fragmentInfo.ackType.intType ==

FragmentAckType.FRAGMENT_ACK_TYPE_PERSISTED) {

fragments.add(fragmentInfo)

}

}

…

44 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Starting and Stopping Streaming

StreamingService has corresponding public methods to start and stop streaming and start recording

fragments, which we can call from the StreamingViewModel:

fun startStreaming(previewTexture: SurfaceTexture) = try {

cameraMediaSource!!.setPreviewSurfaces(Surface(previe

wTexture)) cameraMediaSource!!.start()

} catch (e: KinesisVideoException) {

Log.e("KvsService.Start",

"unable to start

streaming

")

e)

}

throw RuntimeException("unable to start streaming",

fun startfragmentsRecording(timeStamp: Long){

kvsStreamCallbacks.startFragmentsRecording(

timeStamp)

}

fun stopStreamingAndGetFragments():

Capture? { try {

cameraMediaSource!!.s

top()

kvsClient.stopAllMedi

aSources() return

Capture(kvsStreamCallbacks.stopRecording(),streamName)

} catch (e: Exception) {

Log.e("KvsService.Stop", "unable to stop

streaming",

e)

return null

}

}

45 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

From the ViewModel we call start streaming as soon as StreamingView is loaded (it is the only way to

have camera preview working with current the SDK implementation) and call start recording

fragments when the user presses the button and starts actual streaming. We use a reactive based timer

to stop streaming after 10 seconds:

fun startTimer(){

isTipsVisible = false

streamingClient.service?.startfragmentsRecording(Syste

m.currentT imeMillis()-activationTime)

timeValue.set("00 :

$RECORD_TIME")

disposeBag.add(Observabl

e

.interval(1,1,TimeUnit.SECONDS)

.take(RECORD_TIME.toLong())

.observeOn(AndroidSchedulers.mainThread())

.subscribe {

timeValue.set("00 : 0${RECORD_TIME -

(it+1)}

")

if (it == (RECORD_TIME-

1).toLong()) {

stopStreaming()

}

})

}

private fun

stopStreaming(

){ val capture

=

streamingClient.service?.stopStreamingAndGetFragme

nts()

captureService.setRecentCapture(capture)

navigator.startFragment(AppFragments.Posts

can,false,

true)

}

46 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Using the Phone Camera

We use the default implementation of AndroidCameraSource from the SDK passing all the required

camera parameters to CameraMediaSourceConfiguration:

val cameraConfig = getCameras(kvsClient)[0] val

alltypes = getSupportedMimeTypes()

val mimeType = alltypes[0]

mediaSourceConfiguration =

AndroidCameraMediaSourceConfiguration(

AndroidCameraMediaSourceConfiguration.builder()

.withCameraId(cameraConfig.cameraId)

.withEncodingMimeType(mimeType.mimeType

)

.withHorizontalResolution(videoResolution.width)

.withVerticalResolution(videoResolution.height)

.withCameraFacing(cameraConfig.cameraFacing)

.withIsEncoderHardwareAccelerated(cameraConfig.isEndco

derHardwar eAccelerated)

.withFrameRate(videoFramerate)

.withRetentionPeriodInHours(retentionPeriod)

.withEncodingBitRate(videoBitrate)

.withCameraOrientation(cameraConfig.cameraOrientation)

.withNalAdaptationFlags(StreamInfo.NalAdaptationFlags.

NAL_ADAPTA TION_ANNEXB_CPD_AND_FRAME_NALS)

.withIsAbsoluteTimecode(false))

cameraMediaSource = kvsClient

.createMediaSource(streamName,

47 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

mediaSourceConfiguration)

Request Camera Permissions

Starting with Android 6.0 we have to explicitly request camera permission from the user to allow its

usage by the application. We do this in the home demo.

48 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Note: The viewModel.setCameraPermission(true) parameters allows ViewModel to be aware of the

user’s choice and to not allow KVS initialization if permission is denied.

49 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

iOS
Source: Please contact the Mobiquity team for access to technical details.

Architecture

50 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

SDK Improvements

Missing functionality

The original C++ open source code provided by AWS does not include:

1. iOS native H.264 encoder

2. Native interface (an application written in Swift or Objective-C can’t call C++ functions

directly)

H.264 Encoder

Kinesis Video Stream supports only streams, which are H.264 encoded. Since it is not possible to have

a multi-platform encoder, it is necessary to create a native encoder for each platform.

The new SDK project is located in the folder AwsKvsSdk inside the application folder. All the encode

logic is defined inside the KVSStream.mm file.

We imported the AVFoundation framework in order to convert the frames from the camera phone.

These phone camera frames are defined in the AVFoundation to have the type CMSampleBufferRef.

We imported another iOS native framework through the implementation of the VideoToolboxclass,

because the native functionality to encode a video to H.264 can be found in this framework.

Encode CMSampleBufferRef object

While the encode process is long and complex, the comments in the code base will guide you, so here

we only describe the main steps.

Inside the encodeSampleBufferfunction we define the property of the H.264 compression session and

then pass the frame received from the camera phone to the compress logic.

Create Compression Session

size_t width = CVPixelBufferGetWidth(imageBuffer);

size_t height = CVPixelBufferGetHeight(imageBuffer);

#import <Foundation/Foundation.h>

#import <AVFoundation/AVFoundation.h>

@interface KVSStream : NSObject

-(void)encodeSampleBuffer:(CMSampleBufferRef) sampleBuffer;

-(void)stop;

@end

51 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Define Session Properties

Pass Camera Frame to Session

Generate Kinesis Frame

VideoToolbox calls a call back function when a new H.264 frame is compressed. This property is

passed to the VideoToolbox when you create a new compression session.

The complex logic inside this function analyses the H.264 frame and extracts all the information

necessary to create the proper Frame, which will be sent to the Kinesis stream.

VTCompressionSessionCreate(NULL, (int)width, (int)height,

kCMVideoCodecType_H264, NULL, NULL, NULL, OutputCallback,

NULL, &session);

VTSessionSetProperty(session,

kVTCompressionPropertyKey_RealTime, kCFBooleanTrue);

VTSessionSetProperty(session,

kVTCompressionPropertyKey_AllowFrameReordering,

kCFBooleanFalse);

VTSessionSetProperty(session,

kVTCompressionPropertyKey_ProfileLevel,

kVTProfileLevel_H264_High_AutoLevel);

VTSessionSetProperty(session,

kVTCompressionPropertyKey_H264EntropyMode, kCFBooleanTrue);

VTCompressionSessionEncodeFrame(session, imageBuffer,

presentationTimestamp, kCMTimeInvalid, NULL, NULL, NULL);

VTCompressionSessionEndPass(session, 0, NULL);

void OutputCallback(void *outputCallbackRefCon,

void *sourceFrameRefCon,

OSStatus status,

VTEncodeInfoFlags infoFlags,

CMSampleBufferRef sampleBuffer)

UINT64 timestamp = 0;

Frame frame;

timestamp =

std::chrono::duration_cast<std::chrono::nanoseconds>(

std::chrono::system_clock::now().time_since_epoch()).count() /

DEFAULT_TIME_UNIT_IN_NANOS;

52 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

How to Import the AwsKvsSdk framework

At the moment, the process of building and adding this framework to a Xcode project is quite

uncommon. This is due to its dependency on five external libraries, which are mandatory for the

SDK. These libraries are compiled only for the ARM64 platform right now, not for x86, and they are

also not conforming to bitcode.

This results in two limitations:

1. We need to use the Archive process to create a final framework, which conforms to bitcode.

2. We can run an application that uses the AwsKvsSdk only on a physical device.

How to Import the Framework

Steps to use this library inside a new project:

1. Create a folder called Frameworks inside your project and copy the AwsKvsSdk.framework

into it.

2. Open Xcode and add the folder you just created to the project.

3. Check that the AwsKvsSdk.framework is also in the Linked Frameworks, Libraries and

Embedded Binaries inside the General section of your project.

4. In your target’s Build phases, add a New Copy files phase.

5. In Destination select Frameworks.

frame.decodingTs = timestamp;

frame.presentationTs = timestamp;

frame.duration = 50000;

frame.index = frameIndex;

frame.flags = (isKeyFrame) ? FRAME_FLAG_KEY_FRAME :

FRAME_FLAG_NONE;

frame.size =size;

frame.frameData = bytes;

if (nativeKvsStream->putFrame(frame) == false) {

LOG_ERROR("putFrame failed")

} else {

frameIndex++;

}

53 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

6. Click on the + sign and select AwsKvsSdk.framework.

How to Rebuild and Import the Framework

If you need to improve the SDK codebase, these are the steps to follow to build a new

AwsKvsSdk.framework:

1. Select the AwsKvsSdk schema and a Generic iOS device

2. From Product menu run Archive

3. Copy AwsKvsSdk.framework from the folder

UsersyourusernameLibraryDeveloperXcodeDerivedDataAwsKvsSdk-

BuildIntermediates.noindexArchiveIntermediatesAwsKvsSdkIntermediateBuildFilesPat

hUni nstalledProductsiphoneos* and follow the steps of the previous section.

How to Use the SDK

Four Features of the SDK:

1. Create or re-open a Kinesis video stream

2. Get frames from the phone camera

3. Stop the stream

4. Get the information of the fragments streamed

In our demo we created a specific service class as the unique point of interaction with the SDK,

AwsKvsService.swift. This is the interface:

Create a Stream

1. Create a KVSCredentials instance with your AWS access and private keys, as well as a

KVSVideoClientConfiguration object

2. Create a KVSVideoClient object

protocol AwsKvsServiceProtocol {

var streamCreated: Observable<Bool> { get }

func createStream()

func get(stream: CMSampleBuffer)

func stopKVSStream()

}

54 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

3. Create a stream with a specific name and retention hours

If the stream was created beforehand, the createStream function re-opens the exiting one. Because

these operations are synchronous, it’s better to encapsulate them inside a background thread.

Pass Camera Frame to the Stream

After the Kinesis stream is created, the application can start to pass the frames to the SDK:

The CMSampleBuffer comes from the application service AVFoundationService.swift every time

AVCaptureVideoDataOutputSampleBufferDelegate is called:

Stop Streaming

When the user ends the stream, or the application enters into the background, the application must

stop the Kinesis stream.

// 1

let kvsCredentials = KVSCredentials("access_key", and:

"secret_key")

let kvsClientConfiguration =

KVSVideoClientConfiguration(kvsCredentials)

// 2

self.kvsVideoClient = KVSVideoClient(kvsClientConfiguration)

// 3

self.kvsStream = self.kvsVideoClient?.createStream(with:

self.streamName, retentionHours: 24)

func get(stream: CMSampleBuffer) {

kvsStream?.encode(stream)

}

extension AVFoundationService:

AVCaptureVideoDataOutputSampleBufferDelegate {

func captureOutput(_ output: AVCaptureOutput,

didOutput sampleBuffer: CMSampleBuffer,

from connection: AVCaptureConnection) {

onSampleComplete(sampleBuffer)

}

}

55 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

1. Call the stop stream SDK function

2. Call the free buffer SDK function

The call to freeStream() is important since it prevents the SDK from sending all the frames from its

buffer after the stop stream function is called. This would cause the application UI to slow down or

become blocked. The drawback is that the frames in the SDK buffer are lost.

Fragments Callback

The application needs to store the sent fragments in order to understand where the last user record

inside the Kinesis stream is located.

Fragment information is shared from the SDK through a callback broadcast using the

NotificationCenter. The name of the notification is fragmentAckReceived

Every time this notification is sent, the application needs to store the information inside it.

Everything is managed by AwsKvsService.swift:

func stopKVSStream() {

// 1

kvsStream?.stop()

// 2

kvsVideoClient?.freeStream()

...

}

static let fragmentAck =

Notification.Name(“fragmentAckReceived”)

56 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Phone Camera Stream

All the logic to retrieve the frames from the phone camera is inside the service

AVFoundationService.swift and is based on the native standard framework AVCaptureSession

Main function:

notificationCenter.addObserver(self,

selector:

#selector(self.fragmentAck(notification:)),

name: .fragmentAck,

object: nil)

@objc func fragmentAck(notification: Notification) {

guard let userInfo = notification.userInfo,

let number = userInfo[KVSAppConstants.fragmentNumber]

as? String,

let timestampMillisec =

userInfo[KVSAppConstants.fragmentTimestamp] as? Int else {

return

}

fragments.append(Fragment(number: number, timestamp:

timestampMillisec))

}

struct Fragment: Codable {

let number: String

let timestamp: Int

}

57 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

• View is the view where we want to show the images from the phone camera

• Configuration is a simple structure used to define the camera frames per second (fps)

• onSampleComplete is the callback, which is called whenever a frame is ready

Setup of the camera:

1. Define the type of output to be used with the AVCaptureSession. In our case, we use

AVCaptureVideoDataOutput, because we need a video format output.

2. Create the AVCaptureVideoPreviewLayer to show the camera output to the user.

3. Define the input we want to use with the AVCaptureSession.

func setupService(with view: UIView,

configuration: DeviceConfiguration?,

onSampleComplete: @escaping

SampleBufferComplete) throws

58 #MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

	Executive Summary
	Solution Architecture
	Cluster Creation
	Task Definition and Container Creation
	Cluster Creation

	Amazon SageMaker
	Prerequisites
	Pre-processing the Dataset
	Training the Object Detection Model
	Creating the Model and Endpoint

	Panorama Stitching
	KVS Service
	API
	Configuration
	# Aws Region aws.region=us-west-2

	Build and Release
	Docker OpenCV Container
	Deploy
	JVM Configuration

	Android
	SDK Improvements
	Custom StreamCallbacks
	SDK crashes because of memory allocation
	Unsupported codecs on some devices

	AWS KVS SDK Integration
	AWS KVS SDK Usage
	General Information
	Streaming Client Class
	Initializing New StreamingService
	Streaming Service Class
	Creating the New KVS Client
	Workaround for Memory Related SDK Crash
	Handling Stream Callbacks
	Starting and Stopping Streaming
	fun startTimer(){

	Using the Phone Camera
	val cameraConfig = getCameras(kvsClient)[0] val alltypes = getSupportedMimeTypes()
	Request Camera Permissions

	iOS
	Architecture
	SDK Improvements
	Missing functionality
	H.264 Encoder
	Encode CMSampleBufferRef object
	Create Compression Session
	Define Session Properties
	Pass Camera Frame to Session

	Generate Kinesis Frame
	How to Import the AwsKvsSdk framework
	How to Import the Framework
	How to Rebuild and Import the Framework

	How to Use the SDK
	Pass Camera Frame to the Stream
	Stop Streaming
	Fragments Callback

	Phone Camera Stream

