Mobiquity

Crowd Counting Demo App Developer’s
Guide

Authors:

Banovic, Nemanja; Benzuijen, Robin; Kamuf, Sophie;
Makarevich, Anton; Roberto, Alessio; Pan, Jieke;

Merryman, John

February 2020 Mobiquity

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Mobiquity

Executive Summary

The Crowd Counting Demo App Developers Guide provides developers and architects a reference to
build and deploy a functional mobile application to count people. What we found exciting about this
project was the opportunity to rapidly build and prove out the concept that mobile tech can be
combined with a combination of cloud and machine learning platforms, to provide a working
machine learning example into the hands of an ordinary mobile user. We decided to share
documentation and source code for components to engage a wider community interested in this body
of work.

The goal is to inspire the development community to learn, extend upon, iterate, and advance the
concepts applied in this mobile application to new use cases of this technology solution. While we are
very proud to present this example, it is in no way intended to be a perfect example; rather, itis a
functional example that can be used and modified by the developer community.

In 2019, Mobiquity designed and engineered a crowd counting mobile application, to prove out the
combined power of mobile, video streaming to Kinesis Video Streams, and the machine learning
capabilities of Amazon SageMaker. The result is a working mobile application, which allows a user to
scan a room and count the number of people, determined by an object detection model, which is
trained to recognize 'heads and shoulders' patterns.

There are multiple use cases for which this combination of technology can be effective. The machine
learning model can be updated and trained to recognize different objects, such as cars or livestock;
however, we encourage development of well-curated and annotated datasets before embarking on a
modified use case with SageMaker.

Here is the fully documented solution, a Developer’s Guide, with private access to source code
repositories for developers to experiment with the technology and build upon this simple working
prototype. Please contact the Mobiquity team for access to technical details regarding source code.

e This Developer’s Guide provides developers a toolkit to rapidly build, learn, and deploy a
mobile application that demonstrates the power of machine learning.

e [t also provides a base for experimentation and adaptation to additional use cases, including
but not limited to fixed IOT cameras, streaming applications, and non-mobile sources for
video.

e The goal of this guide is to inspire innovation, harness public creativity and engineering ideas,
and further the body-knowledge as additional use cases and technical approaches are
identified.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 2

Mobiquity

EXECUTIVE SUMMARY ... rrrrrmesss e s e s rmass s s e s e s rmmsss s s s s s s nmmass s s s s e e s nmmnnnns 2
SOLUTION ARCHITECTURE..... e 6
CLUSTER CREATION ...t s 7
Task Definition and Container CreatioN...........eeeeeieeiiiiiiiiiiiiiiii s s saanes 7
L0 [T T o 1 o T o TP 11
AMAZON SAGEMAKER ... e 23
PO EQUISIEES. cuuiieuiiiiiiieiiiiiiiiiiieiitieiriaseresieteessteesstessetesssressstesseressstessssassssessstesssssssssessssenssssnsssrasssenssssnssssnnss 23
Pre-processing the Dataset......ccccciiiiieiiiiiieiiiiiiiiiieieeerenesrernsseseeaseessesnssessenssssssensssssssnnssssesnssssssensssssssnnsnss 23
Training the Object Detection MOdElcccuuiiiiieiiiiiiiiiirrrcr e e e reneesrennssessensssssssensssssannsssssenssssssannns 27
Creating the Model and ENdPointcccieeeiiiiieiiiiiiiiiiieecireneeeereneseesrensssssesnssesssenssessssnsssssesnsssssennssssssnnssssnen 30
PANORAMA STITCHING ... rrrmss s s e s s s e rnman s s e e s 33
QY Y= Vol N 33
2 N 33
Panoramic IMage StitChINGcceuiiiiiiiiiiiiiiiiirirrsr st re s s s seasseseesssssstenssssssssnssssesnssssssensssssasnnsnns 33
(0o 0 =T = T o RN 34
BUild @Nd REIEASE.......uuuriiiieiiiiiiiiiiiiiiiniiic et aas s e s e s s s s s e e s s e s s ar s e e s s e s s nannes 35
DOCKEr OPENCY CONTAINEY c..uuiiiieeiiiiieneiiireneaeiirnnisitensesssensssssesnssssssnssssssssnsssssenssssssensssssssnnssssssnnsssssensssssssnnsnss 35
[T=T o] o3V OO 35
JVIM CONTIGUIAtION ...ciieiiiiiiieciiieicicrree ettt e e s e s eenesesssenesassennsssssesnssssssensssssesnsssssenssssssssnsssssennssassennsssssannns 36
ANDROIDoiiiiiieieirrrrrre s s rrrnsss s s s s s s s ns s s s s s e e nnnassssss s e e e s nnasssssssesennnnsssssssernnnnn 36
SDK IMPIOVEMENTS ..ceuiiieiiiieniiieiiiiiiieeiirieiiraeiieesteestraesstasssteessrassstassstessstsssstessstessssassssassstenssssssssassssenssssnsssnns 36

Custom StreamCallbACcKScccoiiiiiiiiiiii e 36

SDK crashes because of Memory alloCationcooueeiiiiiiiiiei e 37

UNnsupported COAECS ON SOME UEVICESuuiiieiiieieieeeiieeeeitteesetteeesreeessteeessaaeeessseeesseeessseeeessseeesseeessssesessseesassenennnes 37
AWS KVS SDK INt@EIatioN ...cvuuiiiuiiiiiiiiiiiiiiiiiiiiiiinisiieiiissiesisiesssiesssiessstesssssssstsssstessssssssssssssssssssssssssssssnssssnssssns 37

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 4

Mobiquity

AWS KVS SDK US@BE...cceuuuiiiinuniiiiiuiiiirensiiiiraeisiresussiiessssitiesssssimesssstiesssssstesssssstmssssstomsssssstsssssssssssssssssssssssssnes 38
GENEIAL INFOIMATION «.eeieiiiieece et sttt e s e e st e e sb e e s be e be e s beesaeesabeesaeeenbeesaseenseesaseenseennseenss 38
SErEAMINEG CHENT CIASS ..uviiiiiieeciiiccieee ettt e et e e tee e et e e et e e e e ttee e s bee e e ttaeesssaeaesteeeansaeesssaseantaseassaesssaesastesennsseesnsseaans 39
INItIaliZING NEW STrEaMINGSEIVICE .. .oiiiiiieeiieecee ettt et e et e e et e e et e e e s abe s e e taeesetaeeesabeeeensaeesessseesabeseasseesnneeas 40
SErEAMINEG SEIVICE ClASS ...nuuiiiiie ettt ettt e ettt e e e et e e e e e e e bt e e e e e esatbaeeeeeaabaaeaeeeasssteeeesesstaeesessansaaseaesanssssaeeenaes 41
Creating the NEW KVS CHENT...... ..ttt ettt e ettt e e e et e e e e e s ettt e e e e seaaataeeaeesastaeeaeeeastaseaeseessseeessennsens 41
Workaround for Memory Related SDK Crash..........oi oottt ettt e e eaaeeens 42
Handling STream CallDacKsoooiiiiiiieeee ettt s e st e e s sa e e e s bae e sbaeessabeesnasaeesanneas 43
Starting and STOPPING SErEAMING ...cicuiiiiiii et s e e st e e e s be e e s bteesabaeeesabeeesnneesnsseesns 44

USINE the PRONE CamEra ...c..uiiiieeiiiiiieiiiiieeiiiineeiiiiesesisiiesssisiesssssstesssssssesssssstesssssstesssssssssssssssenssssssensssssssnnssss 46
ReqUEST CamMEra PEIMMISSIONS ...cicieiiiiieeiiitie ittt st et e e st se e st e s e et e sse e s smr e e s e abe e e sseeesanreeseabesesnneesanneesarenenanne 47

L 1S 49

ATCRITECTUNE. .. iieieeeeeiiiiiiiirrriee et e e ereesessese s st e e s e asssssssssssenessnsssssssssssenesssnsssssssssssssassnnnssssssssssssesnnnnsssssssnes 49

SDK IMPIOVEMENTS cuuieiieiiiiiiieiieiiuiiieiieiireiieesiotireiieesiesisestassrestesssassrsttessssssssstesssssssestassssstssstassssssssssassssssasssnnss 50
Y TRy T o T a0 Te otu ToTa T I A2 O RPURRUUUSPRTRSROt 50
H. 26 ENCOUET tiieeie ettt ettt ettt ettt et e sttt e e e bt e e saab e e e sab e e e aabteesaaaeeeaabeeeeabeeesasbeesaabeeeaabaeesanbaeesabaeenbeeennne 50
Encode CMSampleBUffErRET ODJECTooeeiieeeeeee et et e et e e et e e e stre e e e bae e eenbaeesbaeeebaeaennes 50
Create COMPIESSION SESSION ..uiiiiiiiiiiiiiii e ieeecccccc et et et eeeeaaeeesesasse s e aarsbabesatasaeaeaaeaesaeaesaseesesensenanasssssess 50
(DI { T ToINY =T o] o I ad oY o Y=Y d 1=Y USRS 51
Pass Camera Frame 10 S@SSIONu ittt ettt e ettt e e s ettt e e e e s saete e e e s e s abbteeeeseaneeeeseennnneeeeenans 51

Generate KiNeSiS Frame......iiiiiuiiiiieeiiiiiiniiiiiieiiiieesiiieessisienssssiesssistmsssssstsssssssssessssssssssssssesssssssssnssssssnsssssses 51

How to Import the AWsKvsSAk framework........cceuuueiiiiiiiiiiiiiiiiiiiiiiiirrrrnn e 52
HOW tO IMPOrt the FramMEWOIK........eiiiiiiiiiieeee ettt sttt e b e et s b e s e e e b e saneeneesaeas 52
How to Rebuild and IMport the FFamMEWOTKc.ueiiiiieieiiiecies ettt see s tee e s e e sre e e e sae e e ssaae e e snbeeeeseeesnnes 53

HOW tO USE the SDKciieeuuiiiiiiiiiiiiiiiiiiiiiiiiiiirsieesisssssisressssssssssssttnsssssssssssssssssssessssssssssssssssssssnssssssssssssnsnns 53
Pass Camera Frame £0 the STrEam ... oottt ettt st e st s e e st e e b e sabeeneenanes 54
] e o I (=110 1oV PSPPI 54
[T g L= o O || oY= Yol RSSOt 55

PhONe Camera StrEam......uuueeiiiiiiiiiieiuneiiiiiiiiiiiesanssssisesssiirenssssssssssssismesssssssssssssssssssssssssssssssssssssssnssssssssssssnsnns 56

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE °

mobiquity

Solution Architecture

The following solution architecture diagram illustrates the AWS pipeline for the KVS Demo App.
The step process allows a user to stream video from the mobile application to Kinesis Video Streams
and then to an ECS instance, which runs a panorama stitching algorithm to compose the video frames
into a single file, which is ultimately processed by a SageMaker object detection model. This model is
trained to recognize ‘head and shoulders’ humans in the stitched panorama and return an estimated
count of humans in the image along with estimated probability.

' 0o |
=
Tl fi > E—
]
'
: Kinesis Video Stream ECS
1 SageMaker
]
: DynamoDB
' 00
oo I8 D
1 g1 >) ©
>
3/
AP| Gateway Lambda
L y

Solution Architecture

App creates video stream and streams the video

App creates video stream name, start and end epoch time stamp

The video stream name, start and end epoch time stamp is create in the DynamoDB
ECS picks up the video stream based on the entry in the DynamoDB

ECS generates the pancrama picture, sends it to SageMaker

ECS gets the result from SageMaker, inserts result in DynamoDB and removes the existing stream name, start and end epoch timestamp to avoid double streaming

Q000000

ECS returns the result back via AP| Gateway

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 6

Mobiquity

Cluster Creation

Task Definition and Container Creation

1. In order to create an ECS instance for the KVS cluster, we need to create a task definition,
which we will use in our cluster.

aWS, Services v Resource Groups *
S—
Amazon ECS
Clusters « Task Definitions
I Task Definitions Task definitions specify the container information for your application, such as how
Repositories

AWS Marketplace Create new Task Definition Create new revision -
Discover software
Status: (ACTIVE) INACTIVE

Subscriptions (£

Task Definition

2. We chose EC2 as the instance type. Also, we create the role, which the task will use for
communicating with needed services. We leave the <default> network mode.

aws Services v Resource Groups ~ %
Step 1: Select launch type compatibility Select launch type compatibility
Select which launch type you want your task definition to be compatible with based on where you want to faunch your task
FARGATE EC2
Pric ¢ on task size
Require mode awsvps
AWS-managed infrastructure, zon EC2 instances Self-managed infrastructure using Amazon EC2 instances
to manage

Reauires S

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

mobiquity

aws

Servi

Create

Step 1

]Slepi:c fig

es v

new Task D

aunch type compatibility

source Groups

Services v

task and
aws
Create new

Task Definition Name*

Requires Compatibilities*

Network Mode

Task execution IAM role

m more

Configure task and container definitions

ontainers are included in your task and how they interact with each other. You can alst

EC2

Task Role[kvs-ecs-sage

v

OTTionaT VAW TOVE THaT Tes

ervices. C

vice Task R

Tan USE 1o make AP

d NAT on

default networking mode,

on Windows

This role s required by tasks to pull container images and publish container logs to Amazon CloudWatch on your behalf. If you do not

have the ecsTaskExecutionRole already

an create one for y

Task execution role l kvs-ecs-sage

source Groups

k Definition

Step 1: Select launch type compatibility

Step 2: C

task and

sp

containers to use. L

Task Definition Name*

Requires Compatibilities”

Task Role

Network Mode

Task execution IAM role

have the ecsTaskExecutionRole alread:

Configure task and container definitions

alners are Included in yo

ask and how they Interact

with each other. You ca

kvs o
EC2
kvs-ecs-sage - <

specify data

al

specify data

This role Is required by tasks to pull container images and publish container logs to Amazon CloudWatch on your behalf. If you do not

Task execution role

e can create one for you.

kvs-ecs-sag

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

mobiquity

Task size (2]

The task size allows you to specify a fixed size for your task. Task size is required for tasks using the Fargate launch type and is optional
for the EC2 launch type. Container level memory settings are optional when task size is set. Task size is not supported for Windows
containers.

Task memory (MiB) 16384

The amount of memory (in MiB) used by the task. It can be expressed as an integer using MiB, for
example 1024, or as a string using GB, for example "1GB’ or *1 gb*

Task CPU (unit) 10240

The number of CPU units used by the task. It can be expressed as an integer using CPU units, for
example 1024, or as a string using vCPUs, for example "1 vCPU' or "1 vcpu'

Task memory maximum allocation for container memory reservation

|VIIIlI

16384 shared of 16384 MiB
Task CPU maximum allocation for containers

|VIIIJ|

10240 shared of 10240 CPU units

Container Definitions (2]
Add container
Container Name lmage Hard/Soft memory... CPU Units Essential
No results

3. Assign 16 GB of memory and 10 CPUs per task.

4. When adding a container, we specify the container options and the repository, from which
the docker image for that container will be pulled. Port 8080 needs to be mapped as seen on
the image below.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

mobiquity

Add container

- Standard

Container name® | kus

Image

‘Custom mage format [regitry-unnamespace Imags 1

Frivate repository authentication”

Memory Limits (MIB)* | Hac st w | 16384

© Add Seft limit

Pon mappings.

8080 8080 fep - o

© Add port mapping

= Advanced container configuration

HEALTHCHECK
Command
Intervar seconais)
Timecut' second(s)
start perica” seconas)
Retries"
ENVIRONMENT
cPU unis.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

mobiquity

ENVIRCNMENT
cPUunirs | 10240 Lid
Essential (5]
Entry point X (]
Command o
Working directory 3 o
SECURITY
Privileged o
ser o
Docker security options o
RESOURCE LIMITS
Ulimits. o
<nane> = o
© Add ulimit
DOCKER LABELS
Key value pairs o

Cluster Creation

1. After creating a container and a task, we now move to creating a cluster. We choose EC2
again.

a\iV/S Services v Resource Groups v *

ECS Clusters

<
Clusters An Amazon ECS cluster is a regional grouping of one or more container instances on which you can run task requests

Task Definitions
For more information, see the ECS documentation

Amazon ECR

o Srgia © Optinto the new ARN and resource ID format

AWS Marke 2iplace Amazon ECS has introduced a new format for ARNs and resource IDs. The ARNSs of tasks, container instan

Discover:sottware Configure ECS ARN setting (7

Create Cluster Get Started

view EECICICTN

Subscriptions (&'

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 11

Mobiquity

QWS Services v Resource Groups v *

Create Cluster

| step 1: select cluster template Select cluster template

The following cluster templates are available to simplify cluster creation. Additional configuration and integrations can be

added later.

Networking only

Resources to be created

Cluster
VPC (optional)

Subnets (optional)

Powered by AWS Fargate

EC2 Windows + Networking
Resources to be created

Cluster
VPC
Subnets

Auto Scaling group with Windows AMI

*Required

EC2 Linux + Networking

Resources to be created

Cluster
VPC
Subnets

Auto Scaling group with Linux AMI

Cancel

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

12

Mobiquity

2. We specify the settings of the EC2 instance and the VPC (a new one may need to be created)
We then select “Create” to complete the creation of the cluster.

a‘ﬁs Services v Resource Groups v *

0]

Create Cluster

D
D

Step 1: Select cluster template Conﬁgure cluster
Step 2: Configure cluster

Cluster name* | kvs

(i]
Create an empty cluster
Instance configuration
Provisioning Model | ® On-Demand Instance
Spot
Leam
more
EC2 instance type* || m5.4xlarge v ‘
Manually enter desired instance type
Number of instances* | 1 i
EC2 Amild* amzn-ami-2018.03.i-amazon-ecs- (1]

optimized [ami-01b70aead4161476b7)

EBS storage (GiB)* 22

Key pair ~ None - unable to SSH v

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 13

mobiquity

Networking

Configure the VPC for your container instances to use. A VPC is an isolated portion of the AWS cloud populated by AWS
objects, such as Amazon EC2 instances. You can choose an existing VPC, or create a new one with this wizard.

VPC | vpc-073bd6a0f273fa29... » o0

L

Check the sfructure for vpc-
073bd6a0f273fa29 (A in the Amazon EC2

console

Subnets

Q

subnet-09eeab8095758c2 @
02

(10.100.0.0/24) - us-west-2

b

assign ipvé on creation: Di
sabled

Select a subnet v

Security group | $g-043b2d635dd79fb0e ... ¥ o0

Rules for sg-043b2d635dd79ib0e(in the EC2
Console

Container instance |IAM role

The Amazon ECS container agent makes calls to the Amazon ECS API actions on your behalf, so container instances that run
the agent require the ecsinstanceRole 1AM policy and role for the service to know that the agent belongs to you. If you do not
have the ecsinstanceRole already, we can create one for you.

Container instance |IAM role ecsinstanceRole v O

Tags

Add key Add value

*Required Cancel Previous

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Mobiquity

Services v Resource Groups ~ *

Launch status

Your container instances are launching, and it may take a few minutes until they are in the running state and ready o access. Usage hours on your new container instances start immediately and continue to accrue until you stop or terminate them

o

ECS status - 3 of 3 complete kvs

@ ECS cluster
ECS Cluster kvs successfully created

© ECS Instance IAM Policy
1AM Policy for the role ecsinstanceRole successfully attached

@ CloudFormation Stack
ClouaFormation stack EC

>2Comainerser

vice-kvs and its resources successfully created

Cluster Resources

Instance type M3 .dxlarge
Desired number of instances 1

Key pair
ECS AMIID am
VPC VR

Subnets

VPC Availability Zones
Security group
Launch configuration

Auto Scaling group

3. We now create a service, which will run the task that we created previously. We again select
EC2 and specify the task definition that we created.

a\VlS Services v Resource Groups v
Amazon E Clusters > kvs
| Clusters ‘
Task Definitions Cluster : kvs

Get a detailed view of the resources on your cluster.

Repositories

AWS ark e Status ACTIVE

Discover software Registered container instances 1

Subscriptions (7 Pending tasks count 0 Fargate, 0 EC2
Running tasks count 0 Fargate, 0 EC2
Active service count 0 Fargate, 0 EC2

Draining service count 0 Fargate, 0 EC2

Services Tasks ECSinstances Metrics Scheduled Tasks = Tags

Update Delete Actions ~

Launch type ALL v | Service type ALL v

Service Name Status Service type

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 15

mobiquity

aw. < Services v

Create Service

| step 1: configure service

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Resource

Configure service

A service lets you specify how many copies of your task definition to run and maintain in a cluster. You can optionally use an Elastic
Load Balancing load balancer to distribute incoming traffic to containers in your service. Amazon ECS maintains that number of tasks
and coordinates task scheduling with the load balancer. You can also optionally use Service Auto Scaling to adjust the number of

tasks in your service.

Launch type

Task Definition

Cluster

Service name

Service type*

Number of tasks

Minimum healthy percent

Maximum percent

FARGATE

kvs

10 (latest)

kvs-ecs-sagemaker

DAEMON

100

200

Enter a value

16

mobiquity

Deployments

Choose a deployment option for the service.

Deployment type* @ Rolling update €@

Blue/green deployment (powered by AWS CodeDeploy) €

This sets AWS CodeDeploy as the deployment controller for the service. A
CodeDeploy application and deployment group are created automatically
with default settings for the service. To change to the rolling update
deployment type after the service has been created, you must re-create the
service and select the "rolling update” deployment type

Task Placement

Lets you customize how tasks are placed on instances within your cluster. Different placement strategies are available to optimize for
availability and efficiency.

Placement Templates 57 gajanced Spread - Edit

This template will spread tasks across availability zones and within the availability zone
spread tasks across instances. Leam more.
Strategy: spread(attribute:ecs.availability-zone), spread(instanceld)

© Tagging requires that you opt in to the new ARN and resource 1D format.
The IAM user/role has not opted in to the new ARN format. Opt-in to the new format to use this feature. Manage your opt-
in settings. (7

*Required Cancel Next step

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

17

mobiquity

4. Continuing with configuring the network, we chose a VPC or create a new one along with
security group, where the service of this cluster will run.

QW,S Services ~ Resource Groups *

Step 1

Configure service

Configure network
| Step 2: Configure network
VPC and security groups

VPC and security groups are configurable

when your task definition uses the awsvpc network mode
Cluster VPC*® | vpc-073bd6a0fb273fa29 (10.100.0 - |
SuBRets’ | o bnet-0seeans09s756c202 o|[®
(10.100.0.0/24) - us-wesi-2b
assign ipvé on creation: Disabled
-
security Qroups” g g43n206350079M0e e
Auto-assign public IP DISABLED * £

Configure security groups
A security group is a set of firewall rules that cont

Assigned security groups C
E

Existing security groups

All existing securily groups for the VPC of this chuster are listed below

rol the traffic for your task. On this page, you can add rules to allow specific irafic to reach your task, or you can choose o use an existing securiy group

Security group ID Name Description Actions
v| 50-0430206 moe kvs-ecs Por 8080 rom anywnere Copy to new
aetaull Qefault VPG secunily group Copy to new

Inbound rules for selected security groups

security group 10 Type Pratocol

59-04302063

HTTP

Port range

80

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

0

[

source

00000

e

18

mobiquity

5. Because a static public IP is needed, we create a network load balancer, which is attached to a
service.

Health check grace period

IT your service's tasks take a while to start and respond to ELB health checks, you can specify a heaith check grace period of up to
7,200 seconds during which the ECS service scheduler will ignore ELB health check status. This grace period can prevent the ECS
service scheduler from marking tasks as unhealthy and stopping them before they have time to come up. This is only valid if your
service is configured to use a load balancer.

Health check grace period = 0 i]

Load balancing

An Elastic Load Balancing load balancer distributes incoming traffic across the tasks running in your service. Choose an existing load
balancer, or create a new one in the Amazon EC2 console.

Load balancer None

*
type Your service will not use a load balancer.

Application Load Balancer

Allows containers to use dynamic host port mapping (multiple tasks allowed per container
instance). Mulitiple services can use the same listener port on a single load balancer with rule-
based routing and paths

® Network Load Balancer

A Network Load Balancer functions at the fourth layer of the Open Systems Interconnection (OSI)
model. After the load balancer receives a request, it selects a target from the target group for the
default rule using a flow hash routing algorithm

Classic Load Balancer

Requires static host port mappings (only one task allowed per container instance); rule-based
routing and paths are not supported

Service |AM role Task definitions that use the awsvpc network mode use the AWSServiceRoleForECS service-linked role,
which is created for you automatically. Learn more.

Load balancer name kvs v s |

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 19

mobiquity

Container to load balance

work_open-cv : 8080 Remove %

Production listener port | create new v 8080 (i)

Production listener protocol TCP

Target group name create new v ecs-kvs-kvs-ecs-sagel Io

Target group protocol TCP €

Targettype ip @

Health check protocol TCP v

Service discovery (optional)

Service discovery uses Amazon Route 53 to create a namespace for your service, which allows it to be discoverable via DNS

Enable service discovery integration

*Required Cancel Previous

aYYS Services v Resource Groups ~ *

Create Service

StepiiConlgueservics Set Auto Scaling (optional)

Step 2: Configure network
Automatically adjust your service’s desired count up and down within a specified range in response to CloudWatch alarms. You can

I Step 3: Set Auto Scaling (optional) modify your Service Auto Scaling configuration at any time to meet the needs of your application

Service Auto Scaling @ Do not adjust the service’s desired
count

Configure Service Auto Scaling to
adjust your service’s desired count

“Required Cancel Previous

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

20

Mobiquity

aws Services Resource

Review
rk

Step 2: Configure n

Cluster
Step 3: Set Auto Scaling (optional

Step 4: Review Launch type
Task Definition
Service name
Service type
Number of tasks

Minimum heaithy percent

Maximum percent

Configure network
VPCid
Subnets
Selected security groups
Auto assign IP
Container Name:
Container Port:
ELB Name:
Target Group:
Heaith check protocol:

Listener Port:

Set Auto Scaling (optional)

Launch
ECS 56

Edit
kvs
EC2
kvs:10
Kvs-ecs-sagemaker
REPLICA
1
100
200
Edit
vpc-073bd6a0m273fa29
subnet-09eeab8095758¢202
$g-043b2d635dd79M0e
DISABLED
work_open-cv
kvs
ecs-kvs-kvs-ecs-sagemaker
TcP
8080
Edit

not configured

Cancel Previous

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

21

Mobiquity

6. After creation of the service, your cluster is fully running with the KVS recognition software.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 22

Mobiquity

Amazon SageMaker

Source: Please contact the Mobiquity team for access to technical details.

Prerequisites

Please follow the following instructions to mount an Amazon Elastic File System (EFS) to your

SageMaker notebook:

The EFS will allow you to easily share the downloaded data with your team members.

In addition, you will need basic knowledge of SageMaker, such as how to start a notebook instance
and upload files.

1. Login to SageMaker and create a new notebook instance. Dock the previously created EFS to
your instance.

2. Within the notebook instance, upload the two provided Jupyter notebooks: Preprocess-
COCO-dataset.ipynb and SSD-person-detection.ipynb.

Pre-processing the Dataset
The details below explain the pre-processing steps found in the code base.

1. Start the SageMaker session and create an S3 bucket, where you will store the train and
validations sets.

%%time
import sagemaker
from sagemaker import get execution role

role = get execution role() print(role)
sess = sagemaker.Session ()

bucket = 'crowd-
counting' prefix =
'COCO-data'

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 23

https://aws.amazon.com/blogs/machine-learning/mount-an-efs-file-system-to-an-amazon-sagemaker-notebook-with-lifecycle-configurations/
https://aws.amazon.com/blogs/machine-learning/mount-an-efs-file-system-to-an-amazon-sagemaker-notebook-with-lifecycle-configurations/

Mobiquity

Download the publicly available COCO dataset from 2017. (You can explore the dataset here:

http://cocodataset.org/)

import os
import urllib.request

#path of efs
path = "/home/ec2-user/efs/"

def download (url) :

filename = path + url.split("/")[-1]
if not os.path.exists (filename) :
urllib.request.urlretrieve (url, filename)

MSCOCO image and annotation files
download ('http://images.cocodataset.org/zips/train2017.zip")
download ('http://images.cocodataset.org/zips/val2017.zip")

download ('http://images.cocodataset.org/annotations/annotations

trainval2017.zip'")

2. Unzip the downloaded dataset and then remove the zip files.

%%bash

unzip -d ~/efs/ ~/efs/train2017.zip

unzip -d ~/efs/ ~/efs/val2017.zip

unzip -d ~/efs/ ~/efs/annotations trainval2017.zip

rm ~/efs/train2017.zip ~/efs/val2017.zip
~/efs/annotations trainval2017.zip

3. Create folders in the EFS to store the data and annotation files.

mkdir ~/efs/train generated ~/efs/val generated ~/efs/train
~/efs/train annotation ~/efs/validation
~/efs/validation annotation ~/efs/test ~/efs/test annotation

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

24

http://cocodataset.org/
http://images.cocodataset.org/zips/train2017.zip%27)
http://images.cocodataset.org/zips/val2017.zip%27)
http://images.cocodataset.org/annotations/annotations_

Mobiquity

4. The COCO dataset contains 80 object categories. Since we are looking to train the model to
count people, we will filter the dataset for images, which include at least one object in the
category “person.” We then clean up the annotation files by removing annotations for the
other object categories.

import json import logging
def create dataset (file name, Jjson destination): with
open(file_ﬁame) as f: B

js = json.load(f) images = js|['images']
categories = js['categories'] annotations =
Js['annotations'] for i in images:

jsonFile = i['file name']

jsonFile = jsonFile.split('.')[0]+'.json'

line = {}

line['file'] = i['file name'] line['image size'] =

[{

'width':int (1 ['width']),
'height':int (i['height']), 'depth':3
]

line['annotations'] = [] line['categories'] = []
for j in annotations:
if j['image id'] == i['id'] and j['category id']

== 1 and len(j['bbox']) > 0:
line['annotations'] .append ({
'class id':int (0),
"left':int (j['bbox'] [0]),
"top':int (j['bbox'] [1]
'width':int (j ["'bbox'] [
'height':int (j ['bbox"']

]
)
21),

[31)

H)

line['categories'].append({ 'class id':int (0),
'name': 'person'

)

if line['annotations']:
with open (os.path.join(json destination, jsonFile), 'w') as p:
Jjson.dump (line, p)

5. create_dataset('/home/ec2- user/efs/annotations/instances_val2017.json', '/home/ec2-
user/efs/val_generated')

6. create_dataset('/home/ec2- user/efs/annotations/instances_train2017.json', '/home/ec2-
user/efs/train_generated')

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 25

Mobiquity

7. The dataset is then split into a train and validation set.

import os

import json

jsons val = os.listdir ('/home/ec2-user/efs/val generated')
jsons train = os.listdir('/home/ec2-user/efs/train generated')

print ('There are {} validation images with annotation files and
class person'.format (len(jsons val)))
print ('There are {} train images with annotation files and

class person'.format (len(jsons train)))

8. In order to reduce the training time, select the first 20,000 images with class “person” for the
trai set and 2,000 images for the validation set. Then move the training and validation files
to their respective folders on the EFS.

import shutil

train jsons = jsons train[:20000]
val jsons = jsons val

#Moving training files to the training folders
for 1 in train jsons:
image file = '/home/ec2-
user/efs/train2017/"+i.split('.") [0]+"'.Jpg"
shutil.move (image file, '/home/ec2-user/efs/train/"')
shutil.move ('/home/ec2-user/efs/train generated/'+i,
'/home/ec2-user/efs/train annotation/"')

#Moving certain training files to the validation folders
for 1 in val jsons:
image file = '/home/ec2-
user/efs/val2017/"+i.split('.") [0]+"'.Jpg’
shutil.move (image file, '/home/ec2-user/efs/validation/"')
shutil.move ('/home/ec2-user/efs/val generated/'+i,
'/home/ec2-user/efs/validation annotation/")

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 26

Mobiquity

9. Upload the train and validation sets to S3.

$%time

train channel = prefix + '/train'

validation channel = prefix + '/validation'

train annotation channel = prefix + '/train annotation'
validation annotation channel = prefix +

'/validation annotation'

sess.upload data(path='/home/ec2-user/efs/train', bucket=bucket,
key prefix=train channel)

sess.upload data(path='/home/ec2-user/efs/validation',
bucket=bucket, key prefix=validation channel)

sess.upload data(path='/home/ec2-user/efs/train annotation’,
bucket=bucket, key prefix=train annotation channel)

sess.upload data(path='/home/ec2-

user/efs/validation annotation', bucket=bucket,

key prefix=validation annotation channel)

10. When you are done with this project, you can also choose to remove the folders from EFS.
%%bash

rm -rf ~/efs/train ~/efs/train annotation ~/efs/validation
~/efs/validation annotation ~/efs/test ~/efs/test annotation

Training the Object Detection Model

1. Settings. Start a SageMaker session and specify the bucket and prefix, where the train and
validation data are located in S3.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

27

Mobiquity

s%time
import sagemaker
from sagemaker import get execution role

role = get execution role()
print (role)
sess = sagemaker.Session ()

bucket = 'crowd-counting'
prefix = 'COCO-data'

from sagemaker.amazon.amazon estimator import get image uri

2. Data Location. Specify the output location and the location of the following 4 channels:
e Train data
e Train annotation
e Validation data

e Validation annotation

train channel = prefix + '/train'

validation channel = prefix + '/validation'
train annotation channel = prefix + '/train annotation'
validation annotation channel = prefix +

'/validation annotation'

s3 _train data = 's3://{}/{}"'.format (bucket, train channel)
s3 validation data = 's3://{}/{}'.format (bucket,
validation channel)

s3_train annotation = 's3://{}/{}'.format (bucket,
train annotation channel)
s3 _validation annotation = 's3://{}/{}'.format (bucket,

validation annotation channel)

s3_output location = 's3://{}/{}/model-output'.format (bucket,
prefix)

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

28

Mobiquity

3. Training. The SageMaker Object Detection algorithm uses a Single Shot multibox Detector
(SSD) framework. Select train_instance_type="ml.p3.8xlarge’, which will train the model in
approximately 6hrs. You can choose a smaller or larger instance type depending on your
needs. The larger the instance, the quicker the model will be trained. Please note that larger
instance types also come with more costs. See the pricing page for more details.

od model = sagemaker.estimator.Estimator (
training image,
role,

train instance count=1,
train instance type='ml.p3.8xlarge'’,

train volume size = 50,
train max run = 360000,
input mode = 'File',

output path=s3 output location,
sagemaker session=sess)

4. Hyperparameters. We changed the following default hyperparameters:
e num_classes=1 — we are training on 1 category (person) and not on 80 object categories

e num_training samples=20000 — we are training on 20,000 images

If you are interested in tuning the remaining hyperparameters, please refer to this guide:

od model.set hyperparameters (base network='resnet-50"',
use pretrained model=1,
num classes=1,
mini batch size=64,
epochs=140,
learning rate=0.002,
lr scheduler step='80",
lr scheduler factor=0.1,
optimizer="sgd',
momentum=0.9,
weight decay=0.0005,
overlap threshold=0.5,
nms_ threshold=0.45,
image shape=512,
label width=600,
num training samples=20000)

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 29

https://docs.aws.amazon.com/sagemaker/latest/dg/object-detection-api-config.html

Mobiquity

5. Specify the data to be used for training.

train data = sagemaker.session.s3 input(s3 train data,
distribution='FullyReplicated', content type='image/jpeg',
s3 data type='S3Prefix')

validation data = sagemaker.session.s3 input (s3 validation data,
distribution='FullyReplicated', content type='image/jpeg’,
s3 data type='S3Prefix')

train annotation =
sagemaker.session.s3 input(s3 train annotation,
distribution='FullyReplicated',6 content type='image/jpeg',
s3 data type='S3Prefix')

validation annotation =
sagemaker.session.s3 input (s3 validation annotation,
distribution='FullyReplicated',6 content type='image/jpeg’',
s3 data type='S3Prefix')

6. You can now go ahead and train the model. This will take around 6 hours with the provided
settings.

od model.fit (inputs=data channels, logs=True, Jjob name='od-coco-
20000-05112018-v2")
Creating the Model and Endpoint
1. You can find the trained model under Training — Training jobs.

2. Select the training job, then Actions — “Create model”

Amazon SageMaker

Training jobs

1 Search training jobs
Create model

Create model package

Status v

Name v Creation time

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 30

mobiquity

3. Provide a model name but leave all other settings on default. Then press “Create model” at
the bottom.

Create model

To deploy a model to Amazon SageMaker, first create the model by providing the location of the model artifacts and
inference code. See Deploying a Model on Amazon SageMaker Hosting Services [4 Learn more about the API [

Model settings
Model name
Maximum of 63 alphanumeric characters. Can include hyphens (-), but not spaces. Must be unique within

your account in an AWS Reglon

4. You can find the created model under Inference — Models. Select the model and press
“Create endpoint.”

Amazon SageMaker Models

Models

Create endpoint ‘) Create endpoint configuration | Actions ¥ Im

Q, Search models 1 = D o)
Creation
Name v ARN .
time v

5. Provide a name for the endpoint and select “Create a new endpoint configuration.”

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 31

mobiquity

Endpoint

Endpoint name
Your application uses this name to access this endpoint.

Maximum of 63 alphanumeric characters. Can include hyphens (-), but not spaces. Must be unique within your

account in an AWS Region,

Attach endpoint configuration

Use an existing endpoint configuration
Use an existing endpoint configuration or clone an
endpoint configuration.

© Create a new endpoint configuration
Add models and configure the instance and initial weight
for each model.

6. At the bottom, you can then press “Create endpoint configuration.”

7. You can find the created endpoint under Inference — Endpoints.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

32

mobiquity

Panorama Stitching

KVS Service

The KVS Service is an OpenCV docker instance containing a Java SpringBoot application, which
returns a SageMaker headcount prediction from a panoramic image by processing a Kinesis Video
Stream. The video stream is created by the user (via the mobile app). The details of the video stream
(name and fragments) are sent to the KVS Service via Rest API.

KVS
Kvs Service AWS
dnterface» [63) «nterface» anterfaces | (@) enterfaces @ _ «nterfaces Q
KvsController . KvsService KinesisStreamService StitchService OpenCsvService SageMakerService e
App Kinesis Video Stream SageMaker
| POST) processFragments, | i '] : ! ¢
i processHeadCountRequest(\ | ')
String streamName,) 1 . ' H i
List<String> fragments) | ! ' ' ! !
etimagesFromstream0_ | | | E E
E ; 0 : n
T T T v
| \ i |
1 ' ' |
createStitchedFiles) | ‘ i i i
stitch0 i E '
i i
- i
doHeadCountRequest(H |
: L :
‘ | l'_l
y '
It
| T I ' \ I i '
b | I ' ' I | '
J . L L s s L | |
App KvsController ’ (@) «nterface» @ dnterface» @) cinterfaces |\ [(F) «interfaces @ «nterfaces Kinesis Video Stream SageMaker
KvsService KinesisStreamService StitchService OpenCsvService SageMakerService Q Q

API

http://server.com:8080/info (GET)

Health check endpoint.

http://server,com:8080/processFragments (POST)

{

"streamName": "myStream",
"fragments": [
"OOl"’
"002"’
"003"’
"004"
]
}

Panoramic Image Stitching

The panoramic image is created by stitching frames using regular intervals from the video stream.
The stitching is done by OpenCV.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

http://server.com:8080/info

Mobiquity

A stream can have many fragments and each fragment can contain many images. For example, in case
the service needs to process 20 fragments and each fragment contains 25 frames the total frames to be
processed would be 500 (20*25). In order to speed up the process an equal interval is used assuming
the user has a steady velocity when recording to the stream (when moving the device). The interval
is calculated by determining the number of fragments and the number of images to use. Both
numbers can be configured because higher numbers will impact performance.

Configuration

The AWS role is provided by the deployment solution, by using the
DefaultAWSCredentialsProviderChain. The region is provided in the configuration.

The role used by the container must have access to the following resources (refer to configuration):
e SageMaker

e Kinesis-Video-Stream

Aws Region
aws.region=us-west-2

Accuracy settings (max amount calculated by
interval). aws.maxFragmentsToProcess=10
aws .maxFramesToStitch=10

SageMaker aws.sageMakerContentType=application/x-image
aws .sageMakerEndPoint=SSD-20k-endpoint2018-11-
07-16-02-54 aws.predictionThreshold=0.2

Threads to do parallel stitching.
aws.stitchThreads=50
aws.fragmentThreads=2

aws .sageMakerThreads=50

Maximum image size (SageMaker max image size). The
service will resize the panoramic image to avoid
sending larger images. aws.maxImageSize=6144000

Build version (to show when using the info endpoint).
aws.version=unset

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 34

Mobiquity

All application specific configurations can be overridden by using Java startup parameters. For
example:

-Daws.version=1.0.1 -Daws.predictionThreshold=0.195

Build and Release

Building the application requires Java (8 or higher) and Maven (3). Navigate to the root of the project
and execute:

mvn clean install

Docker OpenCV Container

OpenCV needs to be available on the docker instance to be able to create a panoramic image. The
docker instance needs to be built and makes sure that the required installation is done. To build the
docker instance, navigate to the work directory from the root, and then execute the init.sh script.

cd work

./init.sh

docker-compose build
docker-compose up open-cv

Note: If you still have containers running execute: docker-compose stop/ps/rm

Deploy

When a docker container is built it can be uploaded to the AWS registry to be used. To deploy the
container into the registry you need to login first. The command below only works when setting
correct credentials and having the AWS cli installed (Please do not set AWS key and secret key in the
profile or as environmental values).

aws ecr get-login

This command will produce a login to push the docker instance which needs to be copied and
executed again. If you get a failure when executing, please remove the following part from the
provided command:

—€ none

The login is valid for 12 hours.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 35

Mobiquity

Now the docker instance can be deployed. First it needs to be tagged and then it can be uploaded to
the registry.

docker tag work open-cv 473293451041.dkr.ecr.us-west-
2 .amazonaws.com/kvs-service-repo:latest

docker push 473293451041.dkr.ecr.us-west-2.amazonaws.com/kvs—
service-repo:latest

JVM Configuration

Please note that OpenCV and reading streams are CPU and memory intensive. The docker instance
needs to be configured according the specifications of the server. Java memory can be increased by
specifying a JAVA_OPTS environmental variable, i.e:

JAVA OPTS="SJAVA OPTS -Xmx6144m -Xms4096m -Dfile.encoding=UTF-8
—XX:+UseParNewGC -XX:+UseConcMarkSweepGC -
XX:+CMSParallelRemarkEnabled"

Android

Source: Please contact the Mobiquity team for access to technical details.

SDK Improvements

Missing Functionali

The original Android producer SDK code base included in the AWS Android SDK is missing the
ability to set a custom implementation of *StreamCallbacks". It is therefore not possible to get
notifications about stream fragments, which have been uploaded to KVS.

It also has several known restrictions and bugs, such as:

e The available memory calculation produces wrong result on some devices and causes crashes
during heap allocation

e H.264 encoders used on some Android models seem to not be supported

Custom StreamCallbacks

To make changes to the Android SDK we forked the repo and made the following changes:

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 36

Mobiquity

e Put additional argument for StreamCallback in " createKinesisVideoClient' method

of* KinesisVideoAndroidClientFactory' as shown on the following changelog:

public static KinesisVideoClient createKinesisVideoClient(final @onNull Context context,
final @onNull AwWSCredentialsProvider credentialsProvider)
final @onNull AwSCredentialsProvider credentialsProvider, final StreamCallbacks streamCallbacks)
throws KinesisVideoException {
return createKinesisVideoClient(context, Regions.DEFAULT_REGION, credentialsProvider);
return createKinesisVideoClient(context, Regions.DEFAULT_REGION, credentialsProvider, streamCallbacks);

e Pass streamCallbacks as optional parameter to the * AndroidKinesisVideoClient" constructor:

@NonNull final Context context,
@NonNull final KinesisVideoClientConfiguration configuration,
@NonNull final KinesisVideoServiceClient serviceClient,
@onNull final ScheduledExecutorService executor) {
@onNull final ScheduledExecutorService executor,
final StreamCallbacks streamCallbacks) {
super(log,

configuration,

serviceClient,

executor);

executor,

streamCallbacks);

e In base 'NativeKinesisVideoClient® we checked the passed streamCallbacks parameter. If it
equals null, then the default implementation is used

e We did not fix this issue on the SDK side, instead we used alternative overload of

e “createKinesisVideoClient" passing custom Devicelnfo with fixed memory size. This is
covered in the SDK integration section of this documentation.

Unsupported codecs on some devices

Even though some of our test devices were affected by this issue, resolving it was not in the scope of
this project.

AWS KVS SDK Integration

In order to add an AWS SDK component to an Android project, a corresponding line in the module’s
build.gradle file needs to be included. For example, to add AWS KVS SDK, the gradle command
should look like this:

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 37

Mobiquity

implementation ("com.amazonaws:aws-android-sdk-
kinesisvideo:Saws version")

But since we utilized our own modified SDK version, we could not use this process. Instead we
followed the following steps to add our own compiled aar file to the project:

1. Copy 'aws-android-sdk-kinesisvideo-debug.aar" to the “app/libs/* folder of the Android
project;

2. Add libs folder to the path, where the system is going to look for dependencies by including
the following in the module’s build.gradle file:

repositories {
flatDir {
dirs 'libs'

}

3. Add a reference to the dependencies section of the aar file itself:

implementation (name:'aws-android-sdk-kinesisvideo-debug',
ext:'aar')

4. The KVS SDK still has dependencies related to the core AWS SDK, but we did not modify it
and still used the default version:

implementation ("com.amazonaws:aws-android-sdk-
auth- core:Saws version")

AWS KVS SDK Usage
General Information

The app has been developed with the Model-View-ViewModel design pattern in mind and used
Dagger for injecting all the required dependency implementations in the ViewModels.

All the functionality to access KVS and stream video is wrapped in the StreamingService class. We
create a new instance of it for every streaming session, meaning we also create a new instance of all
the underlying KVS from the SDK.

StreamingService is hosted by the StreamingClient. StreamingClient is a singleton class responsible
for asynchronous creation and stopping of new StreamingService instances.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Mobiquity

g o Client C1

StreamingClient class is very simple and used to only hold and mange StreamingService instances:

class StreamingClient (private val context:
{ var service: StreamingService? = null
fun free () {
if
(service!=null
) {
service?. free
) service =
null
}
}
fun initialize () {
service = StreamingService (context)
}
var hasCameraAccess: Boolean = false

Context)

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

39

Mobiquity

Initializing New StreamingService

StreamingService could be initialized from within the StreamingClient class. In our case we pass
StreamingClient as a dependency to the DemoOneViewModel (the home view model for the demo)
and use the following function:

fun initKvsClient () = launch

{
changeTryItState (fals

e)

val checkJob = async (Dispatchers.IO) {
connectionChecker.isInternetAvailable

()
}

if (!checkJob.await ()) {
navigator.showDialo

g (
stringsProvider.getString (R.string.alert noconnection title),

stringsProvider.getString(R.string.alert noconnection message

))

return@launch

}

val job = async (Dispatchers.IO)
{ streamingClient.free()

}

Jjob.await ()
streamingClient.initialize
() changeTrylItState (true)

The method contains two asynchronous jobs: first it checks for internet connection and if a
connection is available, it initializes a new instance of StreamingService. During initialization we first
call the streamingClient.free() method to stop the current instance and free resources. Both the
FreeStream() method and the new native KVS client created in the KVS SDK can take some time and
block the running thread, so we run everything asynchronously using Kotlin coroutines to not block
the UL In the meantime, we show a “One moment...” text and disable the “Try it button” to let the
user know that something is happening in the background.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 40

Mobiquity

Note: Checking for an internet connection is very important because the KVS SDK will crash when it
tries to access the KVS API without an internet connection.

treaming Service Cl

The StreamingService class wraps all the functionality of the KVS SDK, allowing to create a new
native KvsClient, open new stream, start and stop streaming from the device.

reating the New KVS Cli

The native KVS Client is the key component of the StreaminService as it manages streams and
handles all the underlying communication with the KVS SDK. We use the
*KinesisVideoAndroidClientFactory" class of the SDK to create a new instance of the kvsClient.

Every instance of StreamingService wraps its own instance of kvsClient and creates it during
initialization:

private val kvsClient =
KinesisVideoAndroidClientFactory.createKinesisVideoClient (contex
t,

configuration,

defaultDevicelInfol(),

log,

executor,

kvsStreamCallbacks)

Where configuration — is an instance of ‘KinesisVideoClientConfiguration’ and contains information
about user credentials and the Amazon environment:

private val configuration =
KinesisVideoClientConfiguration.builder ()
.withRegion (region.getName ())

.withCredentialsProvider (kinesisVideoCredentialsProvider)
.withLogChannel (outputChannel)
.withStorageCallbacks (DefaultStorageCallbacks ())
.build ()

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 41

Mobiquity

Where kinesisVideoCredentialsProvider is an instance of ‘' AwsCredentialsProvider'. We use the
simplest version in the app accepting access and secret keys:

private val credentialsProvider =
AwsBasicCredentialsProvider (BasicAWSCredentials ("<your-access-—
key>", "<your-secret-key>"))

private val region = Regions.US WEST 2

Workaround for Memory Related SDK Crash

As mentioned earlier, in order to avoid SDK crashes related to wrong memory calculation, we have to
use overload of KinesisVideoAndroidClientFactory.createKinesisVideoClient() accepting device info
parameter where we can provide our own value for memory allocation:

private fun defaultDeviceInfo(): DevicelInfo

{ return DevicelInfo (
DEVICE VERSTO
N,
DEVICE NAME,
defaultStoragelInfo (
), STREAMS COUNT,
defaultDeviceTags())

private fun defaultStorageInfo(): Storagelnfo
{ return StoragelInfo (0,

StoragelInfo.DeviceStorageType.DEVICE STORAGE TYPE IN ME
M, defaultMemorySize (),
SPILL RATIO 90 PERCENT,
STORAGE PATH)
}

private fun defaultMemorySize (): Long

{ return MAX STORAGE SIZE MEGS

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 42

Mobiquity

Handling Stream Callbacks

To handle stream callbacks and collect information such as fragments ids and timestamps we created
a custom implementation of the StreamCallbacks interface:

class KvsStreamCallbacks: StreamCallbacks {
private var fragments: Mutablelist<KinesisVideoFragmentAck>

= mutableListOf ()
private val tag = "KvsStreamCallbacks"
private var isRecording = false

private var startTimestamp = Long.MAX VALUE

fun startFragmentsRecording (currentTimestamp: Long) {
startTimestamp = currentTimestamp
fragments = mutableListOf ()
isRecording = true

fun stopRecording(): List<String>{
isRecording = false
fragments.sortBy { f -> f.timestamp }
return fragments

.map { £ -> f.sequenceNumber }.distinct ()

override fun fragmentAckReceived (fragmentInfo:
KinesisVideoFragmentAck) {

Log.1(tag, "receive fragment type:
S{fragmentInfo.ackType}, fragment:
S{fragmentInfo.sequenceNumber}")

if (isRecording &&

fragmentInfo.timestamp > startTimestamp &&
fragmentInfo.ackType.intType ==
FragmentAckType.FRAGMENT ACK TYPE PERSISTED) ({
fragments.add (fragmentInfo)
}

Every time we receive AckReceived event we add fragments information to the corresponding
collection and return it on stop streaming request.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 43

Mobiquity

Starting and Stopping Streaming

StreamingService has corresponding public methods to start and stop streaming and start recording
fragments, which we can call from the StreamingViewModel:

fun startStreaming (previewTexture: SurfaceTexture) = try {
cameraMediaSource!!.setPreviewSurfaces (Surface (previe
wTexture)) cameraMediaSource!!.start ()

} catch (e: KinesisVideoException) {
Log.e ("KvsService.Start",
"unable to start
streaming

")

throw RuntimeException ("unable to start streaming",

e)

fun startfragmentsRecording (timeStamp: Long) {
kvsStreamCallbacks.startFragmentsRecording (
timeStamp)

fun stopStreamingAndGetFragments () :
Capture? { try {

cameraMediaSource!!.s
top ()
kvsClient.stopAllMedi
aSources () return

Capture (kvsStreamCallbacks.stopRecording (), streamName)
} catch (e: Exception) {
Log.e ("KvsService.Stop", "unable to stop
streaming",

return null

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

44

Mobiquity

From the ViewModel we call start streaming as soon as StreamingView is loaded (it is the only way to
have camera preview working with current the SDK implementation) and call start recording
fragments when the user presses the button and starts actual streaming. We use a reactive based timer
to stop streaming after 10 seconds:

fun startTimer () {
isTipsVisible = false

streamingClient.service?.startfragmentsRecording (Syste
m.currentT imeMillis () —activationTime)
timeValue.set ("00
$RECORD_TIME")
disposeBag.add (Observabl
e
.interval (1,1, TimeUnit.SECONDS)
.take (RECORD TIME.toLong())
.observeOn(AHdroidSchedulers.mainThread())
.subscribe {
timeValue.set ("00 : 0S${RECORD TIME -

(1t+1)}
")
if (it == (RECORD TIME-
1) .toLong ()) {
stopStreaming ()

private fun
stopStreaming (
) { val capture

streamingClient.service?.stopStreamingAndGetFragme
nts ()
captureService.setRecentCapture (capture)
navigator.startFragment (AppFragments.Posts
can, false,

true)

}

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 45

Mobiquity

Using the Phone Camera

We use the default implementation of AndroidCameraSource from the SDK passing all the required

camera parameters to CameraMediaSourceConfiguration:

val cameraConfig = getCameras (kvsClient) [0] wval

alltypes = getSupportedMimeTypes ()

val mimeType = alltypes[0]

mediaSourceConfiguration =
AndroidCameraMediaSourceConfiguration (

AndroidCameraMediaSourceConfiguration.builder ()

.withCamerald (cameraConfig.camerald)

.withEncodingMimeType (mimeType.mimeType

)

.withHorizontalResolution (videoResolution.width)

.withVerticalResolution (videoResolution.height)

.withCameraFacing (cameraConfig.cameraFacing)

.withIsEncoderHardwareAccelerated (cameraConfig.isEndco
derHardwar eAccelerated)
.withFrameRate (videoFramerate)

.withRetentionPeriodInHours (retentionPeriod)
.withEncodingBitRate (videoBitrate)

.withCameraOrientation (cameraConfig.cameraOrientation)

.withNalAdaptationFlags (StreamInfo.NalAdaptationFlags.
NAL ADAPTA TION ANNEXB CPD AND FRAME NALS)
.withIsAbsoluteTimecode (false))
cameraMediaSource = kvsClient
.createMediaSource (streamName,

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

46

Mobiquity

mediaSourceConfiguration)

K . Permissi

Starting with Android 6.0 we have to explicitly request camera permission from the user to allow its

usage by the application. We do this in the home demo.

activity:private fun requestPermissions () {
val permissions =
mutableListOf<String>() if
(ContextCompat.checkSelfPerm

ission (this,
Manifest.permission.CA
MERA) !=
PackageManager.PERMISS
ION_GRANTED) {
permissions.add (Manifest.permission.CAMERA)
} else {

viewModel.setCameraPermission (true)

}

if
(permissions.isNotEmpty ()
) {
ActivityCompat.requestPer
missions (this,
permissions.toTypedArray (),
PERMISSIONS)

}

override fun
onRequestPermissionsResult (requestCode: Int,
permissions: Array<String>, grantResults:
IntArray) {
if (requestCode ==
PERMISSIONS) ({
for ((index,
permission) in
permissions.withIndex ()) {
when (permission) {
Manifest.permi
ssion.CAMERA-
>{
A F
(grantResults[index] !=
PackageManager .PERMISSION GRANTED) {
viewModel.setCameraPermission (false)

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

47

Mobiquity

Note: The viewModel.setCameraPermission(true) parameters allows ViewModel to be aware of the
user’s choice and to not allow KVS initialization if permission is denied.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

48

Mobiquity

iI0S

Source: Please contact the Mobiquity team for access to technical details.

Architecture

< d
Camera phone frames > < Kinesis stream > ~l _“_

AWS i0S SDK
iOS Application
iOS application AWS iOS SDK
AVCaptureSession Video frame———————»| H264 encoder Kinesis stream—)‘il_a_ ‘|

EEn
A
A
o
\

Fragment ACK (<

-
ap

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 49

Mobiquity

SDK Improvements

Missing functionali

The original C++ open source code provided by AWS does not include:
1. iOS native H.264 encoder

2. Native interface (an application written in Swift or Objective-C can’t call C++ functions
directly)

H.264 Encoder

Kinesis Video Stream supports only streams, which are H.264 encoded. Since it is not possible to have
a multi-platform encoder, it is necessary to create a native encoder for each platform.

The new SDK project is located in the folder AwsKvsSdk inside the application folder. All the encode
logic is defined inside the KVSStream.mm file.

#import <Foundation/Foundation.h>
#import <AVFoundation/AVFoundation.h>

@interface KVSStream : NSObject

- (void)encodeSampleBuffer: (CMSampleBufferRef) sampleBuffer;
- (void) stop;

We imported the AVFoundation framework in order to convert the frames from the camera phone.
These phone camera frames are defined in the AVFoundation to have the type CMSampleBufferRef.

We imported another iOS native framework through the implementation of the VideoToolboxclass,
because the native functionality to encode a video to H.264 can be found in this framework.

Encode CMSampleBufferRef object

While the encode process is long and complex, the comments in the code base will guide you, so here
we only describe the main steps.

Inside the encodeSampleBufferfunction we define the property of the H.264 compression session and
then pass the frame received from the camera phone to the compress logic.

Create Compression Session

size t width = CVPixelBufferGetWidth (imageBuffer);
size t height = CVPixelBufferGetHeight (imageBuffer);

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE 20

Mobiquity

VTCompressionSessionCreate (NULL, (int)width, (int)height,
kCMVideoCodecType H264, NULL, NULL, NULL, OutputCallback,
NULL, &session);

Define Session Properties

VTSessionSetProperty (session,

kVTCompressionPropertyKey RealTime, kCFBooleanTrue);
VTSessionSetProperty (session,

kVTCompressionPropertyKey AllowFrameReordering,
kCFBooleanFalse) ;

VTSessionSetProperty (session,

kVTCompressionPropertyKey ProfilelLevel,
kVTProfileLevel H264 High AutoLevel);

VTSessionSetProperty (session,

kVTCompressionPropertyKey H264EntropyMode, kCFBooleanTrue);

Pass Camera Frame to Session

VTCompressionSessionkEncodeFrame (session, imageBuffer,
presentationTimestamp, kCMTimeInvalid, NULL, NULL, NULL);
VTCompressionSessionkEndPass (session, 0, NULL);

Generate Kinesis Frame

VideoToolbox calls a call back function when a new H.264 frame is compressed. This property is
passed to the VideoToolbox when you create a new compression session.

void OutputCallback (void *outputCallbackRefCon,
void *sourceFrameRefCon,
OSStatus status,
VTEncodeInfoFlags infoFlags,
CMSampleBufferRef sampleBuffer)

The complex logic inside this function analyses the H.264 frame and extracts all the information
necessary to create the proper Frame, which will be sent to the Kinesis stream.

UINT64 timestamp = 0;
Frame frame;

timestamp =
std::chrono::duration cast<std::chrono::nanoseconds> (
std::chrono::system clock::now () .time since epoch()) .count () /

DEFAULT TIME UNIT IN NANOS;

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Mobiquity

frame.decodingTs = timestamp;
frame.presentationTs = timestamp;

frame.duration = 50000;

frame.index = frameIndex;

frame.flags = (isKeyFrame) ? FRAME FLAG KEY FRAME
FRAME FLAG NONE;

frame.size =size;

frame.frameData = bytes;

if (nativeKvsStream->putFrame (frame) == false) {
LOG ERROR ("putFrame failed")

} else {
frameIndex++;

}

How to Import the AwsKvsSdk framework

At the moment, the process of building and adding this framework to a Xcode project is quite
uncommon. This is due to its dependency on five external libraries, which are mandatory for the
SDK. These libraries are compiled only for the ARM64 platform right now, not for x86, and they are
also not conforming to bitcode.

This results in two limitations:
1. We need to use the Archive process to create a final framework, which conforms to bitcode.

2. We can run an application that uses the AwsKvsSdk only on a physical device.

How to Import the Framework

Steps to use this library inside a new project:

1. Create a folder called Frameworks inside your project and copy the AwsKvsSdk.framework
into it.

2. Open Xcode and add the folder you just created to the project.

3. Check that the AwsKvsSdk.framework is also in the Linked Frameworks, Libraries and
Embedded Binaries inside the General section of your project.

4. Inyour target’s Build phases, add a New Copy files phase.

5. In Destination select Frameworks.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE o2

Mobiquity

6. Click on the + sign and select AwsKvsSdk.framework.
How to Rebuild and Import the Framework

If you need to improve the SDK codebase, these are the steps to follow to build a new
AwsKvsSdk.framework:

1. Select the AwsKvsSdk schema and a Generic iOS device
2. From Product menu run Archive
3. Copy AwsKvsSdk.framework from the folder

UsersyourusernameLibraryDeveloperXcodeDerivedDataAwsKvsSdk-
BuildIntermediates.noindexArchivelntermediatesAwsKvsSdkIntermediateBuildFilesPat
hUni nstalledProductsiphoneos* and follow the steps of the previous section.

How to Use the SDK
Four Features of the SDK:
1. Create or re-open a Kinesis video stream
2. Get frames from the phone camera
3. Stop the stream
4. Get the information of the fragments streamed

In our demo we created a specific service class as the unique point of interaction with the SDK,
AwsKvsService.swift. This is the interface:

protocol AwsKvsServiceProtocol ({
var streamCreated: Observable<Bool> { get }

func createStream/()
func get (stream: CMSampleBuffer)
func stopKVSStream ()

Create a Stream

1. Create a KVSCredentials instance with your AWS access and private keys, as well as a
KVSVideoClientConfiguration object

2. Create a KVSVideoClient object

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE o3

Mobiquity
3. Create a stream with a specific name and retention hours

// 1

let kvsCredentials = KVSCredentials("access key", and:
"secret key")

let kvsClientConfiguration =
KVSVideoClientConfiguration (kvsCredentials)

// 2

self.kvsVideoClient = KVSVideoClient (kvsClientConfiguration)
// 3

self.kvsStream = self.kvsVideoClient?.createStream(with:

self.streamName, retentionHours: 24)

If the stream was created beforehand, the createStream function re-opens the exiting one. Because
these operations are synchronous, it’s better to encapsulate them inside a background thread.

Pass Camera Frame to the Stream

After the Kinesis stream is created, the application can start to pass the frames to the SDK:

func get (stream: CMSampleBuffer) {
kvsStream?.encode (stream)

}

The CMSampleBuffer comes from the application service AVFoundationService.swift every time
AVCaptureVideoDataOutputSampleBufferDelegate is called:

extension AVFoundationService:
AVCaptureVideoDataOutputSampleBufferDelegate {
func captureOutput (output: AVCaptureOutput,
didOutput sampleBuffer: CMSampleBuffer,
from connection: AVCaptureConnection) {

onSampleComplete (sampleBuffer)

When the user ends the stream, or the application enters into the background, the application must
stop the Kinesis stream.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

Mobiquity

1. Call the stop stream SDK function
2. Call the free buffer SDK function

func stopKVSStream() {
// 1
kvsStream?.stop ()

/]2

kvsVideoClient?.freeStream ()

The call to freeStream() is important since it prevents the SDK from sending all the frames from its
buffer after the stop stream function is called. This would cause the application Ul to slow down or
become blocked. The drawback is that the frames in the SDK buffer are lost.

Fragments Callback

The application needs to store the sent fragments in order to understand where the last user record
inside the Kinesis stream is located.

Fragment information is shared from the SDK through a callback broadcast using the
NotificationCenter. The name of the notification is fragmentAckReceived

static let fragmentAck =
Notification.Name (“fragmentAckReceived”)

Every time this notification is sent, the application needs to store the information inside it.
Everything is managed by AwsKvsService.swift:

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

55

Mobiquity

notificationCenter.addObserver (self,

selector:
#selector (self.fragmentAck (notification:)),
name: .fragmentAck,

object: nil)

@objc func fragmentAck (notification: Notification) {
guard let userInfo = notification.userInfo,
let number = userInfo[KVSAppConstants.fragmentNumber]
as? String,
let timestampMillisec =
userInfo [KVSAppConstants.fragmentTimestamp] as? Int else {
return

}

fragments.append (Fragment (number: number, timestamp:
timestampMillisec))

}

struct Fragment: Codable ({
let number: String
let timestamp: Int

Phone Camera Stream

All the logic to retrieve the frames from the phone camera is inside the service
AVFoundationService.swift and is based on the native standard framework AVCaptureSession

Main function:

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

56

Mobiquity

func setupService (with view: UlIView,

configuration: DeviceConfiguration?,
onSampleComplete: (@escaping
SampleBufferComplete) throws

e View is the view where we want to show the images from the phone camera

e Configuration is a simple structure used to define the camera frames per second (fps)

e onSampleComplete is the callback, which is called whenever a frame is ready

Setup of the camera:

1. Define the type of output to be used with the AVCaptureSession. In our case, we use
AVCaptureVideoDataOutput, because we need a video format output.

2. Create the AVCaptureVideoPreviewLayer to show the camera output to the user.

3. Define the input we want to use with the AVCaptureSession.

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

57

Mobiquity

func setupService(with view: UIView,
configuration: DeviceConfiguration? = nil,

onSampleComplete: QRescaping
SampleBufferComplete) throws {

self.onSampleComplete = onSampleComplete

notificationCenter.addObserver (self,
selector:

#selector (self.applicationDidEnterBackground),
name :

.applicationDidEnterBackground,
object: nil)

1F lef @ent = eentilguraitlem |
self.configuration = conf

}

g
videcoDataOutput = createCaptureVideoDataOutput ()

/* To receive samples in their device native format, set
this property to nil */
videoDataOQutput?.videoSettings = nil

/]2

previewLayer = createPreviewLayer (to: view)

// 3

try setupDevice ()

#MOBIQUITY/AWS/CROWDCOUNTINGDEMOAPPDEVELOPERSGUIDE

58

	Executive Summary
	Solution Architecture
	Cluster Creation
	Task Definition and Container Creation
	Cluster Creation

	Amazon SageMaker
	Prerequisites
	Pre-processing the Dataset
	Training the Object Detection Model
	Creating the Model and Endpoint

	Panorama Stitching
	KVS Service
	API
	Configuration
	# Aws Region aws.region=us-west-2

	Build and Release
	Docker OpenCV Container
	Deploy
	JVM Configuration

	Android
	SDK Improvements
	Custom StreamCallbacks
	SDK crashes because of memory allocation
	Unsupported codecs on some devices

	AWS KVS SDK Integration
	AWS KVS SDK Usage
	General Information
	Streaming Client Class
	Initializing New StreamingService
	Streaming Service Class
	Creating the New KVS Client
	Workaround for Memory Related SDK Crash
	Handling Stream Callbacks
	Starting and Stopping Streaming
	fun startTimer(){

	Using the Phone Camera
	val cameraConfig = getCameras(kvsClient)[0] val alltypes = getSupportedMimeTypes()
	Request Camera Permissions

	iOS
	Architecture
	SDK Improvements
	Missing functionality
	H.264 Encoder
	Encode CMSampleBufferRef object
	Create Compression Session
	Define Session Properties
	Pass Camera Frame to Session

	Generate Kinesis Frame
	How to Import the AwsKvsSdk framework
	How to Import the Framework
	How to Rebuild and Import the Framework

	How to Use the SDK
	Pass Camera Frame to the Stream
	Stop Streaming
	Fragments Callback

	Phone Camera Stream

