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Agenda
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1. Maintenance Services

2. Sensitive Health Indicators

3. Remaining Useful Lifetime

4. Global State Characteristics



Schedule Technician

Spare Parts Logistics

Process mining (RC)

Known Pattern (FI)

Fault Detection

Incident log book

Condition Monitoring

Multi causal

failure process

Maintenance Service
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Pierre Tchakoua,

Energies 2014, 7, 2595-2630



Level of Data-Driven Support
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Å Detection

Å Diagnosis

Å Prognosis

Å Mitigation



Prognostics
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Data-Driven Approach
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Compression of original Sensor Space Ĕ relevant 

Information into 2D or 3D Eigenvector Space

Active Phase Separation, potential Outliers



Individual KPI for each Sensor

7

Vibration

BearingTempM1

LoadActual

Power

FanPower

Speed

BearingTempC

BearingTempM2

OilTemp

LoadNominal

OilPressure1

Current

FanSpeed



Delta
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VibrationDeviation

Vibration lowerupper
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lowerupper Temperature
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Linear Model Equation: y = mi xi + b
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Regularisation - Lasso Regression
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Virtual Sensors

Calibration

Fully automatic in-database Learning 

Least Absolute Shrinkage and Selection Operator

Multicollinearity ïInflation of regression coefficients



Remaining Useful Lifetime - Decision Tree
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TemperatureDev< 1.8



Lead Time Interval - Decision Tree
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Shane Butler 2012 Thesis, Ireland, Maynooth
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Evolving Probability Distribution
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Learned Recursively by Kalman or Particle Filter
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System Identification :

ĔState Space Models

Hidden states to

separate pure signal

from fault contribution

(additive / multiplicative )

Guided by typical progress

shape of individual 

fault types



Load Dependency - Fault Growth Curves
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Expected Stress Levels Cases:

Worst Median Baseline Best

Derek Edwards 2010 Annual Conference of the Prognostics and Health Management Society


