

# Refineries.

Oxygen for the Claus process.



#### **Gas application**

O2 enrichment for intensification of Claus processing

# Background

Most oil refineries operate one or more Claus units for desulphurisation of gas streams rich in  $H_2S$  and in many cases containing considerable amounts of ammonia (NH<sub>3</sub>) as well. Mainly due to legal regulations regarding the reduction of sulphur content in fuels, the amount of  $H_2S$  as well as NH<sub>3</sub> to be removed is increasing and often Claus units are becoming bottlenecks for the whole refinery.

# Effects of O<sub>2</sub> enrichment

By enrichment of combustion air with  $O_2$ , a Claus unit's capacity in sulphur recovery can be increased significantly. A second beneficial effect is the fact that this raises the

temperature within the Claus furnace, which in turn contributes to the stabilisation of the process, e.g. by more efficient destruction of  $NH_3$ .

#### Situation on site in 2005

The three Claus units operated at one customer's refinery covered a total capacity of 180 tons of sulphur per day. Mainly due to  $NH_3$  in the Claus feed, long-term stability of Claus operation was limited. In addition, a feedstock with higher  $H_2S$  could be expected for the future and additional use of  $O_2$  appeared to be the measure of choice to tackle both challenges simultaneously.

#### **Trials and measures**

 $O_2$  enrichment installations at Claus units (including the determination of  $NH_3$  destruction effectiveness) were performed. The results clearly confirmed the expected

effects; i.e. a considerable improvement of  $NH_3$  destruction in the furnace and a sufficient capacity increase can be realized by this flexible, minor-investment solution.

A long-term trial lasting more than a year was started in summer 2006. It led to a permanent implementation of  $O_2$  enrichment.

# Number of Claus units operated with $O_2$ enrichment

2 out of 3

# Capacities (air-only mode)

50 tons of sulphur per day/plant

#### H<sub>2</sub>S in feed streams

> 80 vol.-%

#### NH<sub>3</sub> in feed streams

A few percent (due to SWS gas processing)

# Installed tailgas treatment

Selective H<sub>2</sub>S oxidation "Superclaus"



Tailored OXYBOOST™ oxygen injector equipment implemented in the Claus unit's process air pipe

#### Main purpose of O<sub>2</sub> application

Optimized  $NH_3$  destruction and capacity increase (up to approx. 30%)

Maximum  $O_2$  content in  $O_2\text{-enriched}$  process air 28 vol.-%

# O<sub>2</sub> trials in cooperation with Messer

From 2005 to 2007

#### Start-up

Routine operation with is O<sub>2</sub> enrichment since 2007

# Hardware

Messer's O<sub>2</sub> dosing system including a control system (OXYBOOST<sup>™</sup> flow control skid) and injector (OXYBOOST oxygen injector) for application of gaseous oxygen

#### Mode of O<sub>2</sub> supply

Liquid oxygen (LOX) via tank/vaporizer system



Gaseous oxygen (GOX) supply train



#### **Messer Americas**

200 Somerset Corporate Blvd Suite 7000 Bridgewater, NJ 08807 Phone: 1-800-755-9277 sales@messer-us.com www.messer-us.com

Part of the **Messer** World

OXYBOOST™ is a trademark of Messer Industries USA, Inc. Copyright 2019 Messer North America, Inc. All rights reserved.

twitter.com

in

linkedin.com

facebook.com