

Refineries.

Oxygen for the Claus process.

Background

Most refineries operate at least one Claus unit for desulfurization of gas streams rich in H_2S . Not seldom, gas from a sour water stripper (SWS) unit, containing considerable amounts of ammonia (NH_3), is admixed into this feed. If this feed component is not effectively destroyed in the Claus furnace, it tends to build up solidified ammonia salts in colder areas within the process gas path. Especially in the long run, these deposits can cause plugging and corrosion – which in turn considerably jeopardize a reliable Claus operation.

Gas application

O2 enrichment for Claus process stabilization

Effects of O₂ enrichment

The addition of oxygen into the combustion air leads to an increased O_2 content in the gas stream. This so-called O_2 enrichment – among other benefits – allows for operation with a significantly increased H_2S capacity. It also increases the temperature in the first Claus step, a furnace. This allows for a more effective destruction of NH_3 within this thermal section, thus contributing to the long-term stabilization of the Claus operation.

Situation on site in 2003

In order to comply with regulations which were to become valid in 2005, one customer was looking for an environmentally friendly way of SWS gas treatment. There were basically two options to deal with the task:

- 1. Erection of a new process unit treating SWS gas for separation and subsequent destruction of NH_3 (a high-investment measure)
- 2. Utilization of the existing Claus unit by adding SWS gas into the corresponding feed stream

In view of the notorious effects of ammonia salt deposits, $O_{\rm 2}$ enrichment appeared to be the most cost-effective method of $\rm NH_3$ removal.

Measures since 2003

In the summer of 2003, tests with O_2 enrichment were performed at the Claus unit to confirm the expected effects. The test results gained in close cooperation with Messer clearly confirmed that NH_3 destruction within the Claus furnace is substantially more effective when additional oxygen is being used than with routine air-only operation.

As a consequence, it was soon decided to use the Claus unit for SWS gas processing and to implement the supporting O_2 enrichment technology as a flexible minor-investment solution.

Claus capacity (air-only mode)

5 tons/day of elemental sulfur

Tail gas treatment applied downstream of the Claus unit

Catalytic hydrogenation and H₂S scrubber ("SCOT-like")

H₂S in the feed stream

Approx. 90 volume percent

NH₃ in the feed stream

A few percent, due to SWS gas processing

Main purpose of O₂ application

Optimization of $\ensuremath{\mathsf{NH}}_{\ensuremath{\mathsf{3}}}$ destruction for enhanced reliability of Claus operation

O₂ content of the O₂-enriched combustion air

26–28 volume percent

O₂ trials in coop. with Messer

08/2003 (duration: 4 days)

Contributions to the O₂ trials

Messer provided substantial support by services (e.g. calculations and NH_3 determination) and hardware such as the appropriate measurement and control device (OXYBOOSTTM flow control skid) for O₂ dosing. Please note: No third party had to be involved in the trial execution.

Start-up

Routine operation with O₂ since 04/2005

Mode of O₂ supply

Liquid oxygen (LOX) to tank/vaporizer system

Messer Americas

200 Somerset Corporate Blvd Suite 7000 Bridgewater, NJ 08807 Phone: 1-800-755-9277 sales@messer-us.com www.messer-us.com

Part of the Messer World

OXYBOOST™ is a trademark of Messer Industries USA, Inc. Copyright 2019 Messer North America, Inc. All rights reserved.