**Title and Subtitle**

Exploratory Wind Tunnel Aerodynamic Research, Winter 2012-13

**Author(s)**

Marco Rugi, David Youssef and Victoria Zoitakis

**Performing Organization Name and Address**

APS Aviation Inc.
6700 Cote-de-Liesse, Suite 105
Montreal, Quebec
H4T 2B5
Canada

**Sponsoring Agency Name and Address**

Transportation Development Centre
Transport Canada
330 Sparks St., 26th Floor
Ottawa, Ontario K1A 0N5
Canada

**Supplementary Notes**

Several research reports for testing de/anti-icing technologies were produced for previous winters on behalf of Transport Canada. These are available from the Transportation Development Centre (TDC). Several reports were produced as part of this winter’s research program. Their subject matter is outlined in the preface. The work described in this report was, in part, co-sponsored by the Federal Aviation Administration (FAA).

**Abstract**

This objective was met by conducting a series of full-scale tests using the NRC open circuit wind tunnel to examine the flow-off properties of anti-icing fluids contaminated with various forms of simulated freezing precipitation to investigate several recent industry operational concerns; this work was completed in conjunction with the ice pellet research being conducted at the NRC PIWT.

- **EVALUATION OF AN AIRFOIL PERFORMANCE MONITOR**: The testing conducted provided Marinvent with a platform for evaluating the APM unit, the details of which remain internal to Marinvent. Initial observations saw fluid get into the pressure probes of the APM unit; however the extent of the effects should be further investigated by the manufacturer. Future testing should be done with a wireless unit to minimize aerodynamic effects of passing wires over the wing.

- **AERODYNAMIC TESTING OF ICE PHOBIC COATINGS**: A broader test plan was developed and conducted during the winter of 2012-13 to investigate some additional areas to gain some new insight into the potential applications of these coatings for aircraft operations, and to continue the research to include newly developed coating formulations. As part of this test plan, it was recommended that testing continue to investigate the effects of these coatings on de/anti-icing fluids from a HOT and aerodynamic perspective.

- **EFFECT OF FLUID VISCOSITY ON AERODYNAMIC FLUID-FLOW OFF PERFORMANCE**: In general, the lift losses with mid-production fluid were slightly higher as compared to the LOWV fluid results; these results seem more prominent in the case of fluid and contamination as compared to fluid only.