Falcon 20 Trials To Examine Fluid Removed From Aircraft During Takeoff With Ice Pellets

Authors
George Balaban

Performance Organization Name and Address
APS Aviation Inc.
634 St-Jacques, 4th Floor
Montreal, Quebec
H3C 1C7
Canada

Sponsoring Agency Name and Address
Transportation Development Centre (TDC)
800 René Lévesque Blvd. West, Suite 600
Montreal, Quebec
H3B 1X9
Canada

Abstract
The objective of this study was to determine the maximum amount of ice pellet contamination that will flow off an anti-iced aircraft at takeoff. To satisfy this objective, simulated takeoff runs were performed with the National Research Council (NRC) Falcon 20 research aircraft at the Ottawa Airport. Nine runs were performed with simulated precipitation rates ranging from 25 g/dm²/h to 167 g/dm²/h. Eight runs were conducted with Type IV anti-icing fluids and one run was completed with an ethylene glycol-based Type I deicing fluid.

The testing was completed by APS and personnel from the NRC. The NRC provided the Falcon 20 aircraft and flight crews and collected the Falcon 20 flight data. APS coordinated and provided support for the Falcon 20 tests. APS personnel recorded all non-flight related test data.

The test wings were treated with de/anti-icing fluids using a one-step operation. Simulated ice pellets were then applied over the test fluid until specified levels of contamination were achieved. Data such as fluid thickness, wing temperatures, and fluid freeze points were recorded. The aircraft was then operated through a simulated takeoff run. The behaviour of the fluid during the takeoff run was documented with high-speed digital still cameras and video cameras.

The contamination present on the wings was almost completely eliminated during the simulated takeoffs. In general, a small film of fluid remained on certain wing surfaces, most notably on the trailing edge of the aircraft. The leading edge was cleared of any contamination during the takeoff run, even at very high precipitation rates. Some contamination was observed on the trailing edge during one run at a very high precipitation rate (136 g/dm²/h). The Type I EG run showed a small amount of ice had adhered to the wing surface at the end of the simulated takeoff.

Further testing is recommended as a result of the observations made during the tests. It is recommended takeoff tests be conducted in natural snow and mixed precipitation as a comparison for the ice pellet tests. It is also recommended tests be conducted in the wind tunnel if feasible.

Key Words
Anti-icing, deicing, deicing liquid, holdover times, precipitation, endurance times, Type I, Type II, Type III, Type IV, aircraft, ground, test, winter

Distribution Statement
Limited number of copies available from the Transportation Development Centre