Title and Subtitle

A Sensor for Determining Anti-icing Fluid Failure: Phase II

Author(s)

Stephanie Bendickson

Performing Organization Name and Address

APS Aviation Inc.
634 St. Jacques, 4th Floor
Montreal, Quebec
H3C 1C7
Canada

Sponsoring Agency Name and Address

Transportation Development Centre (TDC)
800 René Lévesque Blvd. West, Suite 600
Montreal, Quebec
H3B 1X9
Canada

Abstract

In recent years, research has been conducted to evaluate the variance in endurance times caused by individual variance in determination of fluid failure. In the winter of 2003-04, testing was conducted with the Intertechnique Ice Detection System (IDES) in an attempt to determine if it could replace the visual determination of fluid failure.

Results of testing in 2003-04 were promising, and it was recommended that if improvements could be made to the Intertechnique system, more tests be conducted in the winter of 2004-05. Intertechnique did make improvements to the system and provided the Wing Ice Detection System (WIDS) for testing in 2004-05.

Tests were conducted with the WIDS in snow, freezing rain, freezing drizzle and freezing fog in various temperatures from 0°C to -16°C. Type I PG, Type II PG, Type IV PG and Type IV EG fluids were tested in various dilutions.

It was found that:
- Compared to the 2003-04 system, the 2004-05 ice detection system had better results in snow but no significant improvement in simulated precipitation conditions;
- The WIDS was better able to replicate visual fluid failure with Type II and Type IV fluids than with Type I fluids, likely due to the mechanisms used to detect fluid failure;
- The WIDS was better able to replicate visual endurance times in snow than in freezing drizzle or freezing rain; and
- No significant relationship was found between the WIDS ability to replicate visual endurance times and Type II/IV fluid dilution or temperature.

Based on the limited number of tests that were conducted, it was concluded that the WIDS is currently not able to replicate a visual determination of failure. Although the Intertechnique ice detection system may be able to replicate visual endurance times in snow with Type II and Type IV fluids, significant resources would be required to get the system to be able to replicate visual endurance times with Type I fluids or in simulated precipitation conditions. It was therefore recommended that resources would be more effective in this area if they went towards training and education programs for test personnel rather than further developing an ice detection system.

Key Words

Deicing, De/Anti-icing Fluids, Holdover Times, Endurance Times, Fluid Failure, Sensors, Ice Detection