Endurance Times of Fluids Applied with Forced Air Systems

Prepared for
Transportation Development Centre

On behalf of
Civil Aviation
Transport Canada

And

The Federal Aviation Administration
William J. Hughes Technical Center

Prepared by
APS
Aviation Inc.

October 2003
Final Version 1.0
Endurance Times of Fluids Applied with Forced Air Systems

by

Peter Dawson

October 2003
Final Version 1.0
The contents of this report reflect the views of APS Aviation Inc. and not necessarily the official view or opinions of the Transportation Development Centre of Transport Canada.

The Transportation Development Centre does not endorse products or manufacturers. Trade or manufacturers' names appear in this report only because they are essential to its objectives.

DOCUMENT ORIGIN AND APPROVAL RECORD

Prepared by: [Signature] for Peter Dawson
Senior Consultant

Reviewed by: [Signature]
Gilles Nappert, P. Eng.
Director, Quality Assurance

Approved by: [Signature]
John D'Avirro, Eng.
Program Manager

Sept 13th 05

Date

9/9/05

Date

Sept 13/05

Date

Un sommaire français se trouve avant la table des matières.
PREFACE

Under contract to the Transportation Development Centre of Transport Canada and in conjunction with the Federal Aviation Administration, APS Aviation Inc. (APS) has undertaken a research program to advance aircraft ground de/anti-icing technology. The specific objectives of the APS test program are the following:

- To develop holdover time data for all newly qualified de/anti-icing fluids;
- To evaluate the parameters specified in Proposed AS 5485 for frost endurance time tests in a laboratory;
- To evaluate weather data from previous winters to establish a range of conditions suitable for the evaluation of holdover time limits;
- To further evaluate the flow of contaminated fluid from the wing of an aircraft during simulated takeoff runs;
- To compare endurance times in natural snow with those in laboratory snow;
- To compare fluid endurance time, holdover time and protection time;
- To compare snowfall rates obtained using the National Center for Atmospheric Research hotplate with rates obtained using rate pans;
- To further analyse the relationship between snowfall rate and visibility;
- To stimulate the development of Type III fluids;
- To measure endurance times of fluids applied using forced air-assist systems;
- To conduct exploratory research, including measuring temperatures of applied Type IV fluids, measuring the effect of lag time on holdover time, evaluating the effectiveness of fluid coverage, and assessing the impact of taxi time on deicing holdover time; and
- To provide support services to Transport Canada.

The research activities of the program conducted on behalf of Transport Canada during the winter of 2002-03 are documented in thirteen reports. The titles of the reports are as follows:

- TP 14144E Aircraft Ground De/Anti-Icing Fluid Holdover Time Development Program for the 2002-03 Winter;
- TP 14145E Laboratory Test Parameters for Frost Endurance Time Tests;
- TP 14146E Winter Weather Impact on Holdover Time Table Format (1995-2003);
- TP 14147E Aircraft Takeoff Test Program for Winter 2002-03: Testing to Evaluate the Aerodynamic Penalties of Clean or Partially Expended De/Anti-Icing Fluid;
- TP 14148E Endurance Time Testing in Snow: Comparison of Indoor and Outdoor Data for 2002-03;
- TP 14149E Adhesion of Aircraft Anti-Icing Fluids on Aluminum Surfaces;
• TP 14150E Evaluation of a Real-Time Snow Precipitation Gauge for Aircraft Deicing Operations;
• TP 14151E Relationship Between Visibility and Snowfall Intensity;
• TP 14152E A Potential Solution for De/Anti-Icing of Commuter Aircraft;
• TP 14153E Endurance Times of Fluids Applied with Forced Air Systems;
• TP 14154E Aircraft Ground Icing Exploratory Research for the 2002-03 Winter;
• TP 14155E Aircraft Ground Icing Research Support Activities for the 2002-03 Winter; and
• TP 14156E Variance in Endurance Times of De/Anti-icing Fluids.

This report, TP 14153E has the following objective:

• To determine whether the test procedure that examines the use of holdover time guidelines for forced-air assist applications of SAE Type II/IV fluid should include the measurement of endurance times.

To satisfy this objective, participation was sought from operators interested in this use of forced air systems. Operators who volunteered collected samples of fluids sprayed with air-assist and with the conventional method of application. The samples were subsequently measured for viscosity, density and endurance time.

ACKNOWLEDGEMENTS

This research has been funded by Transport Canada with support from the U.S. Federal Aviation Administration, William J. Hughes Technical Center. This program could not have been accomplished without the participation of many organizations. APS would therefore like to thank the Civil Aviation Group and the Transportation Development Centre of Transport Canada, the U.S. Federal Aviation Administration, National Research Council Canada, the Meteorological Service of Canada, and several fluid manufacturers. Special thanks are extended to US Airways Inc., Federal Express, American Eagle Airlines Inc., the National Center for Atmospheric Research, AéroMag 2000, Aéroports de Montreal, Ottawa International Airport Authority, GlobeGround North America, and Dow Chemical Company for provision of personnel and facilities and for their co-operation with the test program. APS would also like to acknowledge the dedication of the research team, whose performance was crucial to the acquisition of hard data. This includes the following people: Alia Alwaid, Stephanie Bendickson, Nicolas Blais, Richard Campbell, Mike Chaput, Sami Chebil, John D’Avirro, Peter Dawson, Caroline Duclos, Miljana Horvat, Luis Lopez, Bob MacCallum, Mark Mayodon, Chris McCormack, Nic Moc, Marco Ruggi, Sherry Silliker, Ben Slater, and Kim Vepsa.

Special thanks are extended to Yagusha Bodnar, Frank Eyre and Barry Myers who, on behalf of the Transportation Development Centre, have participated in, contributed to and provided guidance in the preparation of these documents.
<table>
<thead>
<tr>
<th>1. Title and Subtitle</th>
<th>Endurance Times of Fluids Applied with Forced Air Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Author(s)</td>
<td>Peter Dawson</td>
</tr>
</tbody>
</table>
| **3. Perfroming Organization Name and Address** | APS Aviation Inc.
1100 René Lévesque Blvd. West
Suite 1340
Montreal, Quebec
Canada H3B 4N4 |
| **4. Key Words** | Endurance time, holdover time, forced air system, air-assisted fluid application, deicing, fluid viscosity, spray |
| **5. Publication Date** | October 2003 |
| **6. Type of Publication and Period Covered** | Final |
| **7. Distribution Statement** | Limited number of copies available from the Transportation Development Centre |
| **8. Security Classification (of this publication)** | Unclassified |
| **9. Security Classification (of this page)** | Unclassified |
| **10. No. of Pages** | xx, 44, apps |
| **11. Price** | CDT/TDC 79-005 Rev. 96 v |

This report examines the need to include the measurement of endurance times when examining whether holdover time guidelines can be employed for forced air-assist applications of SAE Type II/IV fluid. Samples of fluids sprayed with air-assist and with the conventional method of application were collected. The samples were measured for viscosity, density and endurance time. The air-assist method in which the fluid nozzle was positioned over the forced air nozzle had little effect on the fluid viscosity, level of aeration, or fluid endurance times under the test conditions. The air-assist method in which the fluid was injected into the forced air stream within the air nozzle resulted in a large reduction in fluid viscosity, a high level of aeration, and much-reduced endurance times. It was concluded that measurement of fluid viscosity degradation adequately indicates that fluid endurance time has also been degraded, and that the current test method need not be augmented by including the measurement of actual endurance times for these configurations and fluid.
Transports Canada

FORMULE DE DONNÉES POUR PUBLICATION

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>N° de la publication de Transports Canada</td>
<td>TP 14153E</td>
</tr>
<tr>
<td>2.</td>
<td>N° de l'étude</td>
<td>5241-45</td>
</tr>
<tr>
<td>3.</td>
<td>N° de catalogue du destinataire</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Titre et sous-titre</td>
<td>Endurance Times of Fluids Applied with Forced Air Systems</td>
</tr>
<tr>
<td>5.</td>
<td>Date de la publication</td>
<td>Octobre 2003</td>
</tr>
<tr>
<td>6.</td>
<td>N° de document de l’organisme exécutant</td>
<td>CM1747</td>
</tr>
<tr>
<td>7.</td>
<td>Auteur(s)</td>
<td>Peter Dawson</td>
</tr>
<tr>
<td>8.</td>
<td>N° de dossier - Transports Canada</td>
<td>2450-BP-14</td>
</tr>
<tr>
<td>9.</td>
<td>Nom et adresse de l’organisme exécutant</td>
<td>APS Aviation Inc. 1100, boul. René-Lévesque Ouest Bureau 1340 Montréal (Québec) Canada H3B 4N4</td>
</tr>
<tr>
<td>10.</td>
<td>N° de dossier - TPSGC</td>
<td>MTB-2-00015</td>
</tr>
<tr>
<td>11.</td>
<td>N° de contrat - TPSGC ou Transports Canada</td>
<td>T8200-011557/001/MTB</td>
</tr>
<tr>
<td>12.</td>
<td>Nom et adresse de l’organisme parrain</td>
<td>Centre de développement des transports (CDT) 800, boul. René-Lévesque Ouest Bureau 600 Montréal (Québec) H3B 1X9</td>
</tr>
<tr>
<td>13.</td>
<td>Genre de publication et période visée</td>
<td>Final</td>
</tr>
<tr>
<td>14.</td>
<td>Agent de projet</td>
<td>Barry B. Myers</td>
</tr>
<tr>
<td>15.</td>
<td>Remarques additionnelles (programmes de financement, titres de publications connexes, etc.)</td>
<td>Les rapports de recherche produits au nom de Transports Canada sur les essais réalisés au cours des hivers antérieurs peuvent être obtenus auprès du Centre de développement des transports (CDT). Le programme de la saison hivernale a donné lieu à treize rapports (dont celui-ci). On trouvera dans la préface l’objet de ces rapports.</td>
</tr>
<tr>
<td>16.</td>
<td>Résumé</td>
<td>Le présent rapport examine la nécessité d’inclure la mesure de l’endurance des liquides dans la méthode d’essai conçue pour déterminer si les tableaux des durées d’efficacité peuvent être utilisés pour les liquides de type II ou de type IV de la SAE appliqués à l’aide d’un système à air forcé. Des échantillons de liquides, appliqués avec assistance pneumatique et selon la méthode classique, ont été recueillis et soumis à des essais de viscosité, de densité et d’endurance. La méthode pneumatique selon laquelle la buse à liquide était placée au-dessus de la buse à air forcé a eu peu d’effet sur la viscosité, le niveau d’aération et l’endurance du liquide, dans les conditions d’essai. L’autre méthode pneumatique, selon laquelle le liquide était injecté dans la veine d’air forcé, à l’intérieur même de la buse, a entraîné une baisse importante de la viscosité du liquide, un niveau élevé d’aération et une diminution marquée de l’endurance. Il a été conclu que la mesure de la dégradation de la viscosité du liquide constitue une bonne indication que son endurance s’est aussi dégradée, et qu’il n’est pas nécessaire d’ajouter à la méthode d’essai actuelle la mesure de l’endurance réelle, pour les configurations et les liquides étudiés.</td>
</tr>
<tr>
<td>17.</td>
<td>Mots clés</td>
<td>Endurance, durée d’efficacité, système à air forcé, application pneumatique de liquide, dégivrage, viscosité du liquide, vaporisation</td>
</tr>
<tr>
<td>18.</td>
<td>Diffusion</td>
<td>Le Centre de développement des transports dispose d’un nombre limité d’exemplaires.</td>
</tr>
<tr>
<td>19.</td>
<td>Classification de sécurité (de cette publication)</td>
<td>Non classifiée</td>
</tr>
<tr>
<td>20.</td>
<td>Classification de sécurité (de cette page)</td>
<td>Non classifiée</td>
</tr>
<tr>
<td>21.</td>
<td>Déclassification (date)</td>
<td>—</td>
</tr>
<tr>
<td>22.</td>
<td>Nombre de pages xx, 44, ann.</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Prix</td>
<td>Port et manutention</td>
</tr>
</tbody>
</table>

CDT/TDC 79-005
Rev. 96

vi
EXECUTIVE SUMMARY

Under contract to the Transportation Development Centre (TDC) of Transport Canada (TC), APS Aviation Inc. (APS) has undertaken research activities, co-sponsored by the U.S. Federal Aviation Administration (FAA), to further advance aircraft ground de/anti-icing technology.

This study explores the need to include the measurement of endurance times in the test procedure and examines the use of holdover time (HOT) guidelines for forced air-assist applications of the Society of Automotive Engineers, Inc (SAE) Type II/IV fluid. The study is based on results from endurance time testing on samples of SAE Type II/IV fluids that had been sprayed with the assistance of forced air systems.

Forced Air Systems

In response to deicing operator requests, deicing vehicle manufacturers have incorporated forced air deicing systems. These systems are generally designed to deliver a stream of air either with or without fluid. Both SAE Type I and Type II/Type IV fluids can be delivered with the air-assist capability of various deicing trucks.

Some previous testing was conducted on forced air systems to identify any safety problems that might arise from their use in field operations (see TC report TP 13664E, Safety Issues and Concerns of Forced Air Deicing Systems).

Test Procedures for Forced Air-Assist Fluid Applications

At the 2001 annual meeting of the SAE G-12 Aircraft Ground Deicing Equipment Subcommittee, a need was identified for an official process whereby operators could test the use of forced air-assist in certain deicing applications and, based on successful outcomes, request approval from regulatory authorities to use the forced air deicing systems in operator deicing programs. A Forced Air Working Group was established to develop test procedures.

The subcommittee requested the cooperation and assistance of TDC and the FAA Technical Centre to develop an official test procedure and to define an approval process for selected applications of forced air systems. The two authorities agreed to the request and assigned APS to work with the Forced Air Working Group.

Of the various potential applications, the working group gave priority to developing a test procedure to learn whether HOT guidelines can be used when
Type II or Type IV fluid is either sprayed over or injected into the forced air stream. A test procedure, intended for use by interested operators, and an approval process were developed.

The examination of whether Type I fluid, when sprayed over or injected into forced air, can be used as the first step when followed by a second-step application of Type II or Type IV fluid was given second priority. A test procedure for this application was also developed. This procedure is intended for use by operators to develop an understanding of the implications of using forced air in conjunction with Type I fluid for first-step deicing, and to decide whether the procedure should be implemented in their operation. Approval of regulatory authorities is not required for this decision.

Development of test procedures/approval processes for other potential uses of forced air systems has not yet been requested.

Approval to Use Holdover Time Guidelines for Air-Assist Type II or Type IV Fluid Application

The main operator interest in this use of forced air systems lies in the possibility of achieving an increased spray distance and improved distribution of Type II or Type IV fluids over the aircraft wing.

Forced air-assist for the Type II/IV fluid application can be provided in either of two ways:

a) The fluid nozzle can be placed above the forced air nozzle so that the fluid is carried on top of the air stream; or

b) The fluid nozzle can be placed to inject fluid directly into the air stream so that the fluid is mixed with and carried within the air stream.

Test and Approval Process

The approval process requires that each combination of forced air deicing truck and Type II/IV fluid brand that interests an operator be tested individually.

Fluid is sprayed on aircraft wings, in dry conditions, using both the air-assist and conventional methods. Fluid samples are taken from the wing surface and viscosity and density are measured. The appearance of the fluid layer on the wing is assessed for consistency, and the thickness of the fluid layer is measured.
If the operator is satisfied, the results are submitted to the FAA and to TC with a request to use published HOT times for the specific combination of a forced air system and a fluid.

The test and approval process is founded on the principle that, if the quality of the fluid layer applied with forced air is equivalent to that of fluid applied with conventional nozzles, and if the fluid viscosity is not degraded below the fluid manufacturer’s stated lowest on-wing viscosity, then the fluid application is suitable for the use of HOT guidelines.

FAA Request to Examine Fluid Endurance Times for Forced Air-Assist Applications

In November 2002, the FAA requested an examination of endurance times for Type II/IV fluids applied with forced air. The goal of this supplementary check was to see whether some aspect of the forced air-assist application not examined by the test procedure could degrade endurance times.

To find out, samples of fluids applied with forced air-assist were obtained from field operators, and tested for viscosity and fluid endurance. Operators known to have tested or to have a potential interest in using forced air-assist Type II or Type IV fluid application were contacted. Two operators, FedEx and US Airways, volunteered to participate by providing fluid samples.

Conclusions

It was concluded that:

a) The forced air-assist method in which the fluid nozzle is placed over or beside the forced air nozzle has little effect on the fluid viscosity, level of aeration or fluid endurance times under the test conditions for the forced air system and fluid brand tested;

b) The forced air-assist method in which the fluid is injected into the forced air stream within the air nozzle is unacceptable, as it results in a large reduction in fluid viscosity, a high level of aeration, and reduced endurance times;

c) The measurement of fluid viscosity degradation provides an adequate indication that fluid endurance time also has been degraded, and that the current test method need not be augmented by measuring actual endurance times for these configurations and fluid; and
d) The test/approval process should be modified as follows:

- Test data submitted to the FAA and TC for approval to employ HOT guidelines need include only the fluid viscosity test results (from air-assist and conventional applications, and from the truck tank), along with detailed information identifying the specific forced air system and fluid tested;

- Fluid viscosity should be measured at the test site immediately following fluid spray;

- Test fluid must be sprayed on an actual wing surface, not a substitute surface; and

- Operators can use test procedure data on the thickness and appearance of the fluid layer on the wing, to decide whether this method of application is acceptable in their deicing operation.
À la demande du Centre de développement des transports (CDT) de Transports Canada (TC), APS Aviation Inc. (APS) a entrepris un programme de recherche, coparrainé par la Federal Aviation Administration (FAA) des États-Unis, visant à faire progresser la technologie du dégivrage et de la protection contre le givre des avions au sol.

La présente étude se penche sur la nécessité d’inclure la mesure de l’endurance des liquides dans la méthode d’essai visant à vérifier la validité des tableaux des durées d’efficacité dans le cas où un liquide de type II ou de type IV de la SAE est appliqué à l’aide d’un système à air forcé. L’étude est fondée sur les résultats d’essais d’endurance réalisés sur des échantillons de liquides de type II et de type IV de la SAE (Society of Automotive Engineers, Inc), qui avaient été vaporisés à l’aide de systèmes à air forcé.

Systèmes à air forcé

En réponse à des demandes de responsables du dégivrage, les constructeurs de véhicules de dégivrage ont monté des systèmes à air forcé sur leurs véhicules. Ces systèmes sont généralement conçus pour souffler de l’air ou un mélange d’air et de liquide. Les systèmes à air forcé que l’on trouve sur divers modèles de camions de dégivrage conviennent à l’application des liquides de type I et de types II/IV de la SAE.

Des essais avaient déjà été menés sur des systèmes à air forcé, afin de déterminer les risques que pourrait représenter l’utilisation de ces systèmes en service réel (voir le rapport TP 13664E de TC, Safety Issues and Concerns of Forced Air Deicing Systems).

Méthode d’essai pour l’application pneumatique de liquides

À sa réunion annuelle de 2001, le sous-comité G-12 de la SAE sur les systèmes de dégivrage au sol a reconnu la nécessité d’établir un processus formel pour donner aux exploitants de services de dégivrage la possibilité d’utiliser, à l’essai, un système à air forcé dans certaines applications de dégivrage, et pour demander ensuite, forts de résultats concluants, l’autorisation des organismes de réglementation d’utiliser ces systèmes dans leurs programmes de dégivrage. Un groupe de travail sur les systèmes à air forcé a été mis sur pied, avec le mandat d’élaborer une méthode d’essai.

Le sous-comité a demandé au CDT et au centre technique de la FAA de collaborer à l’élaboration d’une méthode d’essai formelle et à l’instauration d’un
processus d’approbation, pour certaines applications se prêtant à l’utilisation de systèmes à air forcé. Le CDT et la FAA ont accepté de collaborer, chargeant APS de coopérer avec le groupe de travail sur les systèmes à air forcé.

Parmi les multiples utilisations potentielles des systèmes à air forcé, le groupe de travail a choisi de s’intéresser en priorité aux liquides de type II ou de type IV vaporisés au-dessus de la veine d’air ou injectés dans celle-ci. Il a donc élaboré une méthode d’essai et un processus d’approbation, à l’intention des exploitants intéressés.

La deuxième priorité du groupe de travail était de déterminer si un liquide de type I, vaporisé au-dessus de la veine d’air ou injecté dans celle-ci, peut être utilisé pour la première étape d’une procédure de dégivrage en deux étapes, dont la deuxième consiste à appliquer un liquide de type II ou de type IV. Il a aussi élaboré une méthode d’essai pour cette application. Par cette méthode, les responsables du dégivrage devraient être en mesure de cerner les effets de l’utilisation d’air forcé avec un liquide de type I à la première étape d’une procédure de dégivrage en deux étapes, et de décider s’ils devraient mettre en oeuvre cette procédure. Cette décision n’est pas sujette à l’approbation des organismes de réglementation.

Personne n’a encore demandé que des méthodes d’essai/processus d’approbation soient élaborés pour d’autres utilisations potentielles des systèmes à air forcé.

Autorisation d’utiliser les lignes directrices sur les durées d’efficacité dans les cas d’application pneumatique d’un liquide de type II ou de type IV

La principale raison pour laquelle les exploitants de services de dégivrage s’intéressent aux systèmes à air forcé est qu’ils permettent de vaporiser plus loin et de mieux répartir les liquides de type II ou de type IV sur la surface de l’aile.

L’application pneumatique de liquides de type II ou de type IV peut prendre deux formes :

a) la buse à liquide est placée au-dessus de la buse à air forcé, et le liquide voyage au-dessus de la veine d’air;

b) la buse à liquide est placée de façon à injecter le liquide directement dans la veine d’air : le liquide se mélangé à la veine d’air, et il voyage à l’intérieur de celle-ci.
Processus d’essai et d’approbation

Le processus d’approbation exige que chaque combinaison de camion de dégivrage à air forcé et marque de liquide de type II ou de type IV susceptible d’intéresser l’exploitant soit mise à l’essai individuellement.

Si l’exploitant juge les résultats satisfaisants, il soumet ceux-ci à la FAA et à TC, avec une demande d’utiliser les durées d’efficacité publiées, pour la combinaison spécifique de système à air forcé et de liquide.

Le processus d’essai et d’approbation est fondé sur le principe selon lequel, si la qualité de la couche de liquide appliquée à l’aide d’un système à air forcé est équivalente à celle d’un liquide appliqué avec des buses classiques, et si la viscosité du liquide n’est pas diminuée au point de ne plus respecter la viscosité minimale sur l’aile établie par le fabricant du liquide, alors le mode d’application du liquide permet l’utilisation des lignes directrices sur les durées d’efficacité.

Demande de la FAA d’examiner l’endurance de liquides appliqués avec assistance pneumatique

En novembre 2002, la FAA a demandé que l’on examine l’endurance des liquides de type II ou de type IV appliqués avec assistance pneumatique. Le but de cette vérification supplémentaire était de voir si une variante de l’application pneumatique, non couverte par la méthode d’essai, pouvait réduire l’endurance.

Pour répondre à cette question, des échantillons de liquides appliqués par la méthode pneumatique ont été obtenus d’exploitants de services de dégivrage, et soumis à des essais de viscosité et d’endurance. Les exploitants reconnus pour avoir essayé l’application de liquides de type II ou de type IV à l’aide de systèmes à air forcé, ou pour être intéressés à utiliser de tels systèmes, ont été contactés. Deux exploitants, FedEx et US Airways, ont accepté de fournir des échantillons de liquides.

Conclusions

Il a été conclu ce qui suit :
a) la méthode à air forcé dans laquelle la buse de vaporisation du liquide est placée au-dessus ou à côté de la buse à air forcé a peu d’effet sur la viscosité, le niveau d’aération et l’endurance du liquide, dans les conditions d’essai (système à air forcé et marque de liquide);

b) la méthode à air forcé dans laquelle le liquide est injecté dans la veine d’air à l’intérieur même de la buse à air est inacceptable, car elle entraîne une diminution importante de la viscosité du liquide, un niveau élevé d’aération et une diminution de l’endurance;

c) la mesure de la dégradation de la viscosité du liquide est une bonne indication que l’endurance du liquide s’est aussi dégradée, et qu’il n’est pas nécessaire d’intégrer à la méthode d’essai actuelle une mesure de l’endurance réelle pour ces configurations et ces liquides;

d) la méthode d’essai/approbation devrait être modifiée comme suit :

- les données d’essai soumises à la FAA et à TC pour l’obtention de l’autorisation d’utiliser les lignes directrices sur les durées d’efficacité doivent comprendre uniquement les résultats d’essais de viscosité des liquides (appliqués selon une méthode pneumatique et selon la méthode classique, et puisés dans la citerne du camion), assortis d’information détaillée concernant le système à air forcé utilisé et le liquide essayés;

- la viscosité du liquide doit être mesurée au site d’essai immédiatement après la vaporisation du liquide;

- le liquide d’essai doit être vaporisé sur une surface d’aile en vraie grandeur, et non sur une surface de substitution;

- les exploitants peuvent utiliser les données de la méthode d’essai concernant l’épaisseur et l’apparence de la couche de liquide sur l’aile, pour décider si cette méthode d’application est acceptable pour leurs programmes de dégivrage.
CONTENTS

1. INTRODUCTION ..1
 1.1 Background ..1
 1.2 Development of Test Methods for Forced Air-Assist Fluid Applications........2
 1.3 Approval to Use Holdover Time Guidelines for Forced Air-Assist Type II or Type IV Fluid Application ...2
 1.3.1 Test and Approval Process ..3
 1.3.2 FAA Request to Examine Fluid Endurance Times for Forced Air-Assist Applications 4

2. METHODOLOGY ...7
 2.1 Collecting Fluid Samples ...7
 2.1.1 Forced Air Systems and Fluid Nozzles Used to Collect Fluid Samples7
 2.1.2 FedEx Fluid Collection ..9
 2.1.3 US Airways Fluid Collection ...10
 2.2 Fluid Sample Test Procedure ...10
 2.2.1 Test Sites and Personnel ..10
 2.2.2 Test Procedures ...11
 2.2.3 Test Plans ...11

3. DESCRIPTION AND PROCESSING OF DATA ..25
 3.1 Viscosity and Density Measurement Data ...25
 3.2 Fluid Endurance Data ..25

4. ANALYSIS AND OBSERVATIONS .. 29
 4.1 Fluid Viscosity .. 29
 4.1.1 Fluid Viscosity of Samples in “As Received” Condition29
 4.1.2 Fluid Viscosity Reduction over Time ..29
 4.2 Fluid Density ..31
 4.3 Fluid Endurance Times ...33
 4.3.1 Fluid Endurance Times in Natural Snow ..33
 4.3.2 Fluid Endurance Times in Artificial Precipitation35
 4.3.3 Effect of Reduced Viscosity on Fluid Endurance Times35

5. CONCLUSIONS ...39

6. RECOMMENDATIONS .. 41

REFERENCES ...43

LIST OF APPENDICES

A Test Program – Forced Air Systems Type II/Type IV Fluid Applied Over or Injected Into the Forced Air Stream
B Transportation Development Centre Work Statement Excerpt Aircraft & Anti-icing Fluid Winter Testing 2002-03
C Experimental Program – Endurance Times for SAE Type II/IV Fluids when Applied with Forced Air-Assist
This page intentionally left blank.
LIST OF FIGURES

Figure 2.1: SAE Type II/IV Fluid Sample Data Form ... 8
Figure 2.2: Test Plan for FedEx Fluid Samples .. 12
Figure 2.3: Test Plan for US Airways Fluid Samples ... 13
Figure 4.1: Fluid Sample Viscosity when Received, FedEx and US Airways 30
Figure 4.2: Fluid Sample Viscosity when Received Relative to Conventional Application 30
Figure 4.3: Fluid Sample Viscosity Reduction After Two Months 32
Figure 4.4: Fluid Sample Density when Received, FedEx and US Airways 32
Figure 4.5: Fluid Sample Density when Received Relative to Conventional Application 33
Figure 4.6: Forced Air Tests – Endurance Times in Snow .. 34
Figure 4.7: Forced Air Tests – Endurance Times in Snow – Relative to Conventional Nozzle Endurance Times .. 34
Figure 4.8: Forced Air Tests – Endurance Times in Freezing Precipitation 36
Figure 4.9: Forced Air Tests – Endurance Times in Freezing Precipitation – Relative to Conventional Nozzle Endurance Times ... 36
Figure 4.10: Viscosity vs. Endurance Time for Different Weather Conditions, US Airways Tests .. 37

LIST OF TABLES

Table 3.1: Fluid Sample Viscosity and Density ... 26
Table 3.2: Endurance Times for Type IV Fluid Applied with Forced Air 27
Table 3.3: Endurance Times for Forced Air Applications Compared to Conventional Nozzle ... 28

LIST OF PHOTOS

Photo 1.1: Typical Application Type II/IV Over Forced Air .. 5
Photo 2.1: Fluid Nozzles Used by FedEx .. 15
Photo 2.2: Detail of Fluid Injection Nozzle used by FedEx ... 15
Photo 2.3: FedEx Forced Air Configuration ... 17
Photo 2.4: Fluid Nozzle Used by US Airways ... 17
Photo 2.5: US Airways – Forced Air Configuration – View 1 .. 19
Photo 2.6: US Airways – Forced Air Configuration – View 2 ... 19
Photo 2.7: Fluid Containers Labelled for Test Control .. 21
Photo 2.8: APS Test Site at Dorval Airport ... 21
Photo 2.9: Outdoor View of National Research Council Canada Facility 23
Photo 2.10: Brookfield Digital Viscometer Model DV-I + .. 23
This page intentionally left blank.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>APS Aviation Inc.</td>
</tr>
<tr>
<td>CEF</td>
<td>Climatic Engineering Facility</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>HOT</td>
<td>Holdover Time</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council Canada</td>
</tr>
<tr>
<td>OAT</td>
<td>Outside Air Temperature</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers, Inc.</td>
</tr>
<tr>
<td>TC</td>
<td>Transport Canada</td>
</tr>
<tr>
<td>TDC</td>
<td>Transportation Development Centre</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
1. INTRODUCTION

Under contract to the Transportation Development Centre (TDC) of Transport Canada (TC), APS Aviation Inc. (APS) has undertaken research activities, co-sponsored by the U.S. Federal Aviation Administration (FAA), to further advance aircraft ground de/anti-icing technology.

1.1 Background

In response to deicing operator requests, deicing vehicle manufacturers have incorporated forced air deicing systems.

Operators are interested in forced air as an alternative approach to deicing, and foresee various ways of using forced air systems in the deicing process:

a) Forced air alone to remove most snow from aircraft surfaces before conventional heated fluid deicing;

b) Forced air with Type II or Type IV fluid either sprayed over or injected into the air stream in a way that allows the use of holdover time (HOT) guidelines;

c) Forced air with Type I fluid either sprayed over or injected into the air stream in a way that allows it to be used as the first step followed by an approved application of Type II or Type IV fluid as the second step;

d) Forced air with Type I fluid either sprayed over or injected into the air stream in a way that allows it to be used as the first step followed by Type I fluid application in the second step;

e) Forced air with Type I fluid either sprayed over or injected into the air stream in a one-step de/anti-icing process that allows the use of the HOT guidelines;

f) Forced air with Type I fluid either sprayed over or injected into the air stream to remove frost in a non-active condition; and

g) Forced air alone to deice an aircraft during non-active precipitation.

Forced air systems are generally designed to deliver a stream of air, either with or without fluid. Both Type I and Type II/IV fluids can be delivered with the air-assist capability of various deicing trucks.

Some previous testing was conducted on forced air systems to identify any safety problems that might arise from their use in field operations. This examination was reported in TC report TP 13664E, Safety Issues and Concerns of Forced Air Deicing Systems (1).
1.2 Development of Test Methods for Forced Air-Assist Fluid Applications

At the 2001 annual meeting of the Society of Automotive Engineers (SAE) G-12 Aircraft Ground Deicing Equipment Subcommittee, a need was identified for an official process whereby operators could test the use of the forced air-assist in certain deicing applications and, based on successful outcomes, request approval from authorities to use the forced air deicing systems in operator deicing programs.

A Forced Air Working Group was formed to work on this project on behalf of the Aircraft Ground Deicing Equipment Subcommittee.

The subcommittee requested the cooperation and assistance of TDC and the FAA Technical Centre to develop an official test procedure and to define an approval process for selected applications of forced air systems. The two authorities agreed to the request and assigned APS to work with the Forced Air Working Group.

Of the various potential applications, the working group gave priority to developing a test procedure to learn whether HOT guidelines can be used when Type II or Type IV fluid is either sprayed over or injected into the forced air stream. A test procedure, intended for use by interested operators, and an approval process were developed. The test procedure was reported in TC report TP 13999E, Support Activities Related to Deicing Research for the 2001-02 Winter (2), and is included as Appendix A.

The examination of whether Type I fluid, when sprayed over or injected into forced air, can be used as the first-step when followed by a second-step application of Type II or Type IV fluid was given second priority. A test procedure for this application was also developed. The goal is for operators to understand the implications of using forced air in conjunction with Type I fluid for first-step deicing, and to decide whether the procedure should be implemented. This decision does not require the approval of regulatory authorities.

Development of test procedures/approval processes for other potential uses of forced air systems has not yet been requested.

1.3 Approval to Use Holdover Time Guidelines for Forced Air-Assist Type II or Type IV Fluid Application

The main reason that operators are interested in this application of the forced air system lies in the possibility of achieving an increased spray distance and
improved distribution of Type II or Type IV fluids over the aircraft wing. Photo 1.1 shows a typical configuration for an air-assist fluid application. In this photo, the air nozzle is the lower and larger pipe projecting forward from the operators cab. The Type II/IV fluid nozzle is placed on top of the air nozzle. Fluid is being sprayed over the air stream. The manufacturer has already found the best point of intersection of the two streams through testing, so the fluid stream converges with the air stream at about 1/3 of the distance from nozzle to wing.

The test procedure’s goal was to provide an official process for examining whether SAE HOT guidelines can be used when SAE Type II or IV fluid is applied with the assistance of forced air.

Forced air-assist can be provided to Type II/IV fluid application in either of two ways:

a) The fluid nozzle is placed above the forced air nozzle, so that the fluid is carried on top of the air stream; or

b) The fluid nozzle is placed to inject fluid directly into the air stream, so that the fluid is mixed with and carried within the air stream.

1.3.1 Test and Approval Process

A standard test procedure, approved by the FAA, TC, and the Forced Air Working Group, was developed in October 2001. It intended for use by any operator interested in obtaining approval for SAE HOT guidelines when SAE Type II or IV fluid is applied with the assistance of forced air. The approval process requires that each combination of forced air deicing truck and Type II/IV fluid brand that interests an operator be tested individually. Below is a brief description of the approved test procedure (included in Appendix A):

a) Before testing, the operator develops forced air-assist spray techniques that satisfy the operator’s goal, and verifies that forced air systems are operating within manufacturer specifications;

b) The operator then schedules a test session and invites observers from the FAA Technical Center and TDC;

c) The operator conducts tests on aircraft wings, examining results of fluid applications using both forced air-assist and conventional methods. Test conditions include spraying into the wind, and at the very least some tests are conducted with an outside air temperature (OAT) below freezing. Factors measured include:
1. INTRODUCTION

- Fluid viscosity;
- Fluid density;
- Fluid thickness; and
- Graded appearance of fluid layer:
 - Rridged;
 - Patchy in colour;
 - Extent of aeration; and
 - Contaminated appearance.

d) If satisfied with the test results, the operator then submits the completed data forms and declaration of equipment conformity to FAA/TC, requesting approval to use HOT guidelines for that specific truck/fluid combination; and
e) FAA/TC approval depends on submitted results and applies solely to that specific truck/fluid combination.

The test and approval process is based on the principle that, if the quality of the fluid layer applied with forced air-assist is equivalent to that of fluid applied with conventional nozzles, and if the fluid viscosity is not degraded below the fluid manufacturer’s stated lowest on-wing viscosity, then the fluid application is suitable for the use of HOT guidelines.

1.3.2 FAA Request to Examine Fluid Endurance Times for Forced Air-Assist Applications

In November 2002, the FAA requested an examination of endurance times for Type II/IV fluids applied with forced air-assist. The goal of this supplementary check was to see whether some aspect of the forced air-assist application not examined by the test procedure could degrade endurance times.

To find out, participation was sought from operators interested in this use of forced air systems. Operators who volunteered collected samples of fluids sprayed with forced air-assist and with the conventional method of application. The samples were subsequently measured for viscosity, density and endurance time.

This goal is reflected in the objectives outlined in the TDC work statement. An excerpt from the work statement is provided in Appendix B. Provision of support to the test activities as identified in the work statement depended on operator initiative. Support to the SAE Ground Equipment Subcommittee was provided at the annual subcommittee meeting.
1. INTRODUCTION

Photo 1.1: Typical Application Type II/IV Over Forced Air
This page intentionally left blank.
2. METHODOLOGY

The test procedure is included as Appendix C. It consisted first of collecting fluid samples from field operators, and then testing them. These activities are described in this section.

2.1 Collecting Fluid Samples

Operators known to have tested or to have a potential interest in using forced air-assist Type II or Type IV fluid application were contacted and their participation sought in collecting and submitting fluid samples. Two operators, FedEx and US Airways, volunteered to participate.

Fluid collection data forms were provided to participants for completion, as shown in Figure 2.1. These are included in Appendix C.

Samples of fluid sprayed with forced air-assist and sprayed with conventional nozzles were requested. A quantity of 10 L was requested for each type of spray application, to enable several endurance tests to be conducted in both natural snow conditions outdoors and in freezing precipitation in the laboratory.

As well, a sample of unsprayed fluid from the truck tank was requested to serve as a base case for reference.

2.1.1 Forced Air Systems and Fluid Nozzles Used to Collect Fluid Samples

Both US Airways and FedEx used FMC LMD deicing vehicles. The installed forced air systems were identical, although the fluid nozzles were different. The manufacturer reported value for the system forced air pressure was 13 psi (90 kPa) and for the forced air flow rate, 100 lb/min (45 kg/min).

2.1.1.1 FedEx

Photo 2.1 shows a variety of nozzles available for use with the FMC forced air system, but points out the nozzle used by FedEx for anti-icing fluid carried by the air stream. This was a Task Force Tips #BER-HT 120HV nozzle rated at 20 to 25 gal/min (75 to 95 L/min) at 50 psi (345 kPa). The spray pattern is adjustable, from solid-stream to fan-shape, and is adjusted remotely via the fluid nozzle control box shown in the photo.

Photo 2.2 shows the nozzle used by FedEx for injecting fluid directly into the air stream. It produces a flow rate variable from 0 to 15 gal/min (0 to 57 L/min). This nozzle can be used to inject either deicing or anti-icing fluid.
2. METHODOLOGY

SAMPLES APPLIED WITH FORCED AIR ASSIST AND CONVENTIONAL SPRAY
(please complete this form and submit it with the fluid samples)

Operator: _______________________________________
Location: _______________________________________
Fluid: ___
Manufacturer/Name/Concentration

Truck: ___ Serial Number _______________________
Manufacturer/Type
Air Compressor: __
Manufacturer/Type

Fluid Nozzle:
Forced Air System _________________________ Conventional _________________________
Manufacturer/Type Manufacturer/Type

Type Of Forced Air Assist Application: ☐ Over Air Stream ☐ Injected In Air Stream

Description Of Fluid Sample

When Was The Fluid Sample Sprayed? Date: _____/_____/_____ Time: _____:_____ (day/month/year)
Quantity Of Sprayed Fluid Supplied (Approximately 5 L each requested):
Air-Assist Spray Sample: ___________
Conventional Nozzle Spray Sample: ___________
Quantity Of Fluid Sample Taken From Truck Tank (1 L is sufficient): ___________
Describe How The Sample Was Collected (was it sprayed onto the wing, onto a plastic sheet on
the ground, into a container, etc.):
__
__
__
__

SHIPPING INSTRUCTIONS:
Please ship to the following address, and advise by e-mail (pdawson@adga.ca) that the samples
have been sent. There should be some mention on the packing slip of the contents of the
shipment (and possibly state that there is no commercial value to the samples).

SHIPPING ADDRESS:
APS Aviation Inc.
1100 René Lévesque Ouest, Suite 1340
Montréal (Québec) CANADA H3B 4N4
Phone: 514 878-4388

AFFILIATED CUSTOM BROKER:
Charles Higgerty Limited
Phone: 514 636-3926

Figure 2.1: SAE Type II/IV Fluid Sample Data Form
2. METHODOLOGY

Photo 2.3 shows the actual configuration of the air and fluid nozzles on the FedEx deicing truck. The fluid nozzle was mounted beside the air nozzle, as opposed to above it. FedEx plans to change this configuration by mounting the fluid nozzle above the air nozzle thus conforming to manufacturers recommendations and to the practice of other operators.

2.1.1.2 US Airways

Photo 2.4 shows the variety of nozzles available for use with the FMC forced air system, but here points out the nozzle used by US Airways for anti-icing fluid carried by the air stream. This is a straight pipe nozzle, produced by FMC, and rated at 20 to 25 gal/min (75 to 95 L/min) at 50 psi (345 kPa). Its spray pattern is fixed as a solid stream.

Photos 2.5 and 2.6 show the actual nozzle configuration on the US Airways deicing truck. The Type IV nozzle is the narrow pipe mounted at the 1 o’clock position on the forced air nozzle, to the right (as seen from the front) and slightly behind the larger, adjustable Type I nozzle.

2.1.2 FedEx Fluid Collection

The original FedEx plan for collecting fluid was to drape plastic over an aircraft wing, spray the fluid and by carefully folding the plastic, lift samples directly from the wing. However, as it was snowing when the team arrived in Rochester, the operation was moved inside a warehouse. Inside air temperature was about 7ºC (45ºF), but the deicing vehicle, along with the fluid in its tanks, was cold-soaked at -8ºC (17ºF).

A catch basin was constructed of wooden beams laid in a square on the concrete floor and overlaid with plastic sheeting.

The deicing vehicle was placed so that the operator and spray nozzle were at a distance from and at an angle to the catch-basin target typical of an actual operation. The fluid was sprayed onto the plastic, and then collected into sterile sample containers. New plastic sheeting was installed for each fluid sample collected. Each sample bottle was numbered and labelled to indicate the type of application.

FedEx collected samples for several variations on the fluid application method:
2. METHODOLOGY

a) Fluid sprayed from a conventional Type IV fluid nozzle;
b) Fluid sprayed beside the air stream – air stream at full airflow;
c) Fluid sprayed beside the air stream – air stream at 1/2 airflow;
d) Fluid injected into the air stream – air stream at full airflow;
e) Fluid injected into the air stream – air stream at 1/2 airflow; and
f) Fluid injected into the air stream – air stream at 1/3 airflow.

As well, a fluid sample was taken from the truck tank.

The fluid was 100 percent strength in all cases.

2.1.3 US Airways Fluid Collection

US Airways collected fluid samples on February 12, 2003, at Boston’s Logan International Airport.

Samples were collected for two variations on the fluid application method:

a) Fluid sprayed from a conventional Type IV fluid nozzle; and
b) Fluid sprayed over the air stream with the air stream at full airflow.

As well, a fluid sample was taken from the truck tank.

2.2 Fluid Sample Test Procedure

2.2.1 Test Sites and Personnel

When APS received the fluid samples, the fluid containers were inventoried and labelled for test control (Photo 2.7). As it happened, operators used the same SAE Type IV Fluid brand, Lyondell/Clariant Safewing MP IV 2001. The fluid was applied at full strength as delivered from the manufacturer.

An APS technician measured viscosity and density.

Two APS technicians conducted endurance tests.

Tests in natural snow outdoors were conducted at the APS test site at Montreal International Airport in Dorval (Photo 2.8).

Endurance times in selected conditions of freezing precipitation were measured at the National Research Council Canada (NRC) Climatic Engineering Facility (CEF) in Ottawa (Photo 2.9).
2. METHODOLOGY

2.2.2 Test Procedures

2.2.2.1 Measuring fluid sample viscosity

The viscosity of the received samples was measured using a Brookfield Digital Viscometer Model DV-I + (Photo 2.10) in accordance with fluid manufacturers’ guidelines. Both the centrifuged fluid and the fluid in an “as received” condition were measured.

The viscometer, along with other APS measurement instruments and test equipment, is calibrated/verified on an annual basis. This calibration is carried out according to a calibration plan based on approved ISO 9001 standards and developed internally by APS.

2.2.2.2 Measuring fluid sample density

Fluid density was measured to gauge the extent of aeration of the various samples. Density was calculated using the weight of a fixed volume of each fluid sample. Both centrifuged fluid and fluid in the “as received” condition were measured.

2.2.2.3 Measuring fluid endurance

Endurance times were measured in natural snow and in artificial freezing precipitation. Standard SAE Type II/IV test methodology was followed, using standard test equipment.

2.2.3 Test Plans

Figure 2.2 shows test plans for the fluid samples received from FedEx and Figure 2.3 shows the fluid samples received from US Airways.
Lyondell Safewing MP IV 2001 Type IV Fluid

<table>
<thead>
<tr>
<th>Fluid Sample Bottle Numbers</th>
<th>Fluid Application Type</th>
<th>Fluid Flow Rate (L/min)</th>
<th>Density and Viscosity Tests</th>
<th>Endurance Test #(^s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tank</td>
<td></td>
<td>APS Office</td>
<td>APS Site</td>
</tr>
<tr>
<td>2-10</td>
<td>Conventional nozzle</td>
<td>83</td>
<td>Natural Snow*</td>
<td>ZD -3°C 13 g/dm(^2)/h</td>
</tr>
<tr>
<td>11-19</td>
<td>Over air, full airflow</td>
<td>83</td>
<td></td>
<td>ZD -10°C 13 g/dm(^2)/h</td>
</tr>
<tr>
<td>20-28</td>
<td>Injected, ½ airflow</td>
<td>45</td>
<td></td>
<td>ZR -3°C 25 g/dm(^2)/h</td>
</tr>
<tr>
<td>29-37</td>
<td>Over air, ½ airflow</td>
<td>83</td>
<td></td>
<td>ZR -10°C 25 g/dm(^2)/h</td>
</tr>
<tr>
<td>38-46</td>
<td>Injected, full airflow</td>
<td>45</td>
<td></td>
<td>Fog -25°C 5 g/dm(^2)/h</td>
</tr>
<tr>
<td>47-50</td>
<td>Injected, 1/3 airflow</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Natural Snow: Run #1: Test 51, 3, 12, 21, 30, 39, and 48 simultaneously
Run #2: Test 4, 13, 22, 31, 40 and 49 simultaneously
Run #3: Test 5, 14, 23, 32, and 41 simultaneously

Figure 2.2: Test Plan for FedEx Fluid Samples
Lyondell Safewing MP IV 2001 Type IV Fluid

<table>
<thead>
<tr>
<th>Fluid Sample Bottle Numbers</th>
<th>Fluid Application Type</th>
<th>Fluid Flow Rate (L/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Tank</td>
<td>75 - 95</td>
</tr>
<tr>
<td>U2-U11</td>
<td>Conventional nozzle</td>
<td>75 - 95</td>
</tr>
<tr>
<td>U12-U21</td>
<td>Over air, full airflow</td>
<td>75 - 95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Location</th>
<th>APS Office</th>
<th>APS Site</th>
<th>NRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Snow*</td>
<td>ZD -3ºC 13 g/dm²/h</td>
<td>ZD -10ºC 13 g/dm²/h</td>
<td>ZR -3ºC 25 g/dm²/h</td>
</tr>
<tr>
<td>Natural Snow*</td>
<td>ZR -10ºC 25 g/dm²/h</td>
<td>Fog -25ºC 5 g/dm²/h</td>
<td></td>
</tr>
</tbody>
</table>

*Natural Snow:
 - Run #1: Test U3 and U13 simultaneously
 - Run #2: Test U4 and U14 simultaneously
 - Run #3: Test U5 and U15 simultaneously
 - Run #4: Test U6 and U16 simultaneously

Figure 2.3: Test Plan for US Airways Fluid Samples
This page intentionally left blank.
2. METHODOLOGY

Photo 2.1: Fluid Nozzles Used by FedEx
(shown with a variety of nozzles available for FMC forced air system)

Photo 2.2: Detail of Fluid Injection Nozzle used by FedEx
(shown with a variety of nozzles available for FMC forced air system)
This page intentionally left blank.
2. METHODOLOGY

Photo 2.3: FedEx Forced Air Configuration

Anti-ice Delivery Nozzle

Photo 2.4: Fluid Nozzle Used by US Airways
(shown with a variety of nozzles available for FMC forced air system)

US Airways
Anti-Ice Delivery Nozzle
(75 - 95 L/min @ 345 kPa)

Forced Air Delivery Nozzle
2. METHODOLOGY

Photo 2.5: US Airways - Forced Air Configuration - View 1

Photo 2.6: US Airways - Forced Air Configuration - View 2
2. METHODOLOGY

Photo 2.7: Fluid Containers Labelled for Test Control

Photo 2.8: APS Test Site at Dorval Airport
This page intentionally left blank.
2. METHODOLOGY

Photo 2.9: Outdoor View of National Research Council Canada Facility

Photo 2.10: Brookfield Digital Viscometer Model DV-I +
This page intentionally left blank.
3. DESCRIPTION AND PROCESSING OF DATA

3.1 Viscosity and Density Measurement Data

Table 3.1 shows results of viscosity and density measurement. In Section 4, bar charts based on this data are provided and the results discussed. Values in the columns labelled standardized are percentages of the absolute value reported for the conventional nozzle. US Airways data is compared to the US Airways conventional nozzle value, and FedEx data is compared to the FedEx conventional nozzle value.

3.2 Fluid Endurance Data

Table 3.2 shows the endurance times measured for various precipitation conditions tested. Four test runs in natural snow were conducted, with ambient temperatures and precipitation rates as shown. Tests in artificial freezing precipitation were conducted as planned, and the test temperatures and precipitation rates are shown. The table also reports values for fluid sample viscosity measured when the fluid samples were received.

Table 3.3 presents endurance times for forced air-assist and injected fluid application samples normalized against the conventional fluid application sample. It can be quickly seen that times from the forced air-assist samples are similar to those from the conventional application, whereas times from the injected samples are much lower. This table also compares sample fluid viscosities with the conventional application sample and with the tank sample. The comparison is similar to that of endurance times.

Bar charts based on this data are provided and results discussed in Chapter 4.

The production range for the Clariant Type IV 2001 fluid is typically between 20,000 mPa.s to 30,000 mPa.s.
Table 3.1: Fluid Sample Viscosity and Density

<table>
<thead>
<tr>
<th>Sample</th>
<th>Viscosity When Received (mPa.s)</th>
<th>Percentage of Conventional Nozzle (%)</th>
<th>Viscosity of Fluid After Two Months (Centrifuged) (mPa.s)</th>
<th>Percentage of Conventional Nozzle (%)</th>
<th>Density When Received (kg/m³)</th>
<th>Percentage of Conventional Nozzle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Centrifuged</td>
<td>Centrifuged</td>
<td>Centrifuged</td>
<td>Not Centrifuged</td>
<td>Centrifuged</td>
<td>Not Centrifuged</td>
</tr>
<tr>
<td>Tank (U)</td>
<td>31,000</td>
<td>30,600</td>
<td>105%</td>
<td>27,200</td>
<td>93%</td>
<td>1,008</td>
</tr>
<tr>
<td>Conventional Nozzle (U)</td>
<td>30,400</td>
<td>29,200</td>
<td>100%</td>
<td>26,800</td>
<td>92%</td>
<td>950</td>
</tr>
<tr>
<td>Air Assist (U)</td>
<td>28,400</td>
<td>26,600</td>
<td>91%</td>
<td>23,000</td>
<td>79%</td>
<td>939</td>
</tr>
<tr>
<td>Tank (F)</td>
<td>32,600</td>
<td>29,600</td>
<td>116%</td>
<td>25,800</td>
<td>101%</td>
<td>1,004</td>
</tr>
<tr>
<td>Conventional Nozzle (F)</td>
<td>28,600</td>
<td>25,600</td>
<td>100%</td>
<td>21,400</td>
<td>84%</td>
<td>945</td>
</tr>
<tr>
<td>Over Air, Full Airflow (F)</td>
<td>27,800</td>
<td>26,400</td>
<td>103%</td>
<td>18,800</td>
<td>73%</td>
<td>971</td>
</tr>
<tr>
<td>Over Air, 1/2 Airflow (F)</td>
<td>28,200</td>
<td>26,400</td>
<td>103%</td>
<td>21,200</td>
<td>83%</td>
<td>877</td>
</tr>
<tr>
<td>Injected, Full Airflow (F)</td>
<td>15,400</td>
<td>13,000</td>
<td>51%</td>
<td>15,400</td>
<td>51%</td>
<td>858</td>
</tr>
<tr>
<td>Injected, 1/2 Airflow (F)</td>
<td>16,400</td>
<td>15,400</td>
<td>60%</td>
<td>19,100</td>
<td>75%</td>
<td>858</td>
</tr>
</tbody>
</table>

Note: Injected, 1/3 originally run twice, avg shown
Injected, 1/3 run 1 17,400 20,000
Injected, 1/3 run 2 16,400 18,200
Viscosity procedure in accordance with manufacturer guidelines
Table 3.2: Endurance Times for Type IV Fluid Applied with Forced Air

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temp (°C)</th>
<th>Rate (g/dm²/h)</th>
<th>Operator</th>
<th>Endurance Time (minutes)</th>
<th>Air Assist</th>
<th>Inject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Temp (°C)</td>
<td>Rate (g/dm²/h)</td>
<td>Operator</td>
<td>Tank Sample</td>
<td>Conv'l Nozzle</td>
<td>Full Airflow</td>
</tr>
<tr>
<td>Snow</td>
<td>-6</td>
<td>13</td>
<td>FedEx</td>
<td>75</td>
<td>63</td>
<td>58</td>
</tr>
<tr>
<td>Snow</td>
<td>0</td>
<td>19</td>
<td>FedEx</td>
<td>62</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Snow</td>
<td>-8</td>
<td>6</td>
<td>FedEx</td>
<td>116</td>
<td>115</td>
<td>110</td>
</tr>
<tr>
<td>Snow</td>
<td>-8</td>
<td>5</td>
<td>USAirways</td>
<td>113</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>ZR</td>
<td>-3</td>
<td>25</td>
<td>FedEx</td>
<td>60</td>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>ZR</td>
<td>-10</td>
<td>25</td>
<td>FedEx</td>
<td>23</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>ZR</td>
<td>-3</td>
<td>13</td>
<td>FedEx</td>
<td>57</td>
<td>42</td>
<td>55</td>
</tr>
<tr>
<td>ZR</td>
<td>-10</td>
<td>13</td>
<td>FedEx</td>
<td>41</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>Freezing fog</td>
<td>-25</td>
<td>5</td>
<td>FedEx</td>
<td>28</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>Fluid viscosity (mPa.s)</td>
<td></td>
<td></td>
<td>FedEx</td>
<td>29600</td>
<td>26400</td>
<td>15400</td>
</tr>
<tr>
<td>Fluid viscosity (mPa.s)</td>
<td></td>
<td></td>
<td>USAirways</td>
<td>30600</td>
<td>29200</td>
<td>26600</td>
</tr>
</tbody>
</table>
Table 3.3: Endurance Times for Forced Air Applications Compared to Conventional Nozzle

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temp (°C)</th>
<th>Rate (g/dm²/h)</th>
<th>Operator</th>
<th>Tank Sample</th>
<th>Conv’l Nozzle</th>
<th>Air Assist</th>
<th>Inject</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Full Airflow</td>
<td>1/2 Airflow</td>
<td>Full Airflow</td>
</tr>
<tr>
<td>Snow</td>
<td>-6</td>
<td>13</td>
<td>FedEx</td>
<td>1.00</td>
<td>0.92</td>
<td>0.98</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USAirways</td>
<td>1.00</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>19</td>
<td>FedEx</td>
<td>1.00</td>
<td>0.81</td>
<td>0.97</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USAirways</td>
<td>1.00</td>
<td>0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td>6</td>
<td>FedEx</td>
<td>1.00</td>
<td>0.99</td>
<td>0.95</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USAirways</td>
<td>1.00</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td>5</td>
<td>FedEx</td>
<td>1.00</td>
<td>0.94</td>
<td>0.53</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USAirways</td>
<td>1.00</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZR</td>
<td>-3</td>
<td>25</td>
<td>FedEx</td>
<td>1.00</td>
<td>0.95</td>
<td>1.02</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USAirways</td>
<td>1.00</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>25</td>
<td>FedEx</td>
<td>1.00</td>
<td>0.94</td>
<td>1.11</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USAirways</td>
<td>1.00</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZD</td>
<td>-3</td>
<td>13</td>
<td>FedEx</td>
<td>1.00</td>
<td>0.94</td>
<td>0.74</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USAirways</td>
<td>1.00</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freezing fog</td>
<td>-25</td>
<td>5</td>
<td>FedEx</td>
<td>1.00</td>
<td>0.94</td>
<td>1.01</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USAirways</td>
<td>1.00</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid viscosity compared</td>
<td></td>
<td></td>
<td>FedEx</td>
<td>1.00</td>
<td>0.94</td>
<td>1.06</td>
<td>1.12</td>
</tr>
<tr>
<td>to conventional nozzle</td>
<td></td>
<td></td>
<td>USAirways</td>
<td>1.00</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid viscosity compared</td>
<td></td>
<td></td>
<td>FedEx</td>
<td>1.00</td>
<td>0.94</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>to tank sample</td>
<td></td>
<td></td>
<td>USAirways</td>
<td>1.00</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. ANALYSIS AND OBSERVATIONS

Results of the various tests are charted and discussed in this section.

4.1 Fluid Viscosity

Fluid viscosity was recorded when the samples were first received and again following the tests in artificial freezing precipitation.

4.1.1 Fluid Viscosity of Samples in “As Received” Condition

Figure 4.1 charts the fluid viscosity values measured for the various fluid samples when they were first received (mid-February 2003). Viscosity was measured with centrifuged fluid, in accordance with standard procedures, and also non-centrifuged fluid in an “as received” condition. Both values are shown in the chart, although the values for centrifuged fluid are more significant than those of non-centrifuged fluid.

The sources of fluid samples are shown on the x-axis, with operators identified by the letter U for US Airways and F for FedEx. Viscosity values (in mPa.s units) are indicated on the y-axis. For reference purposes, the lowest on-wing viscosity indicated on the HOT guideline for the tested fluid (18,000 mPa.s) is also shown. The tank samples from both FedEx and from US Airways had viscosities at the upper end of the production range.

The reduction in viscosity for fluids injected into the air stream is evident, being much below the forced air-assist sample values and also below the lowest on-wing viscosity value for the fluid.

Viscosity values for fluid applied over the air stream (or for FedEx, beside the air stream) are similar to those for the conventional nozzle.

Figure 4.2 presents viscosity values as a percentage of the viscosity for the conventional nozzle fluid sample. This presentation provides a clearer picture of the similarity of the over-air fluid sample viscosities to the conventional. It also points out a drop in viscosity from the tank sample to the conventional application.

4.1.2 Fluid Viscosity Reduction over Time

In mid-April 2003, following the fluid endurance tests in artificial freezing precipitation, fluid sample viscosities (centrifuged only) were again measured.
4. ANALYSIS AND OBSERVATIONS

Figure 4.1: Fluid Sample Viscosity when Received, FedEx and US Airways

Figure 4.2: Fluid Sample Viscosity when Received Relative to Conventional Application
Figure 4.3 shows the results. Fluid samples for injected fluids were not measured again as it was evident that this method of application was not acceptable.

In all cases, including that of the unsprayed fluid samples taken from the truck tanks, the results showed a notable decrease in viscosity from the original values.

Similar temporal reduction of fluid viscosity was observed in a separate study, documented in TC report TP 13996E, Influence of Application Procedure on anti-icing Viscosity (3). That study compared viscosity measurements of three fluid brands over a 16-month period. The data showed that the extent of reduction in viscosity varied by fluid brand. The viscosity dropped by 67 percent for Fluid A, by 43 percent for Fluid B1, and by 16 percent for Fluid C1 over the period from week two to month sixteen.

4.2 Fluid Density

The purpose of measuring fluid density was to gauge the extent of fluid aeration resulting from the various methods of application.

Figure 4.4 charts the density values for all fluid samples as measured when the samples arrived. Centrifuged and non-centrifuged fluids were measured. The results for centrifuged fluids are identical, indicating that the method of centrifuging was successful in removing all entrained air.

Figure 4.5, the reporting on non-centrifuged fluid samples, compares the density of the various samples with that of the conventional application. Fluid applied over or beside the air stream had density values similar to those of conventional applications indicating similar levels of aeration.

The extent of aeration was greatest with the injected fluid, where fluid density was as much as 20 percent lower than the conventional application.

All fluid samples showed a drop in density as compared to the fluid taken from the tank, indicating some degree of aeration from all application methods. Relative to the tank fluid, all variations on application method generated at least a 5 percent drop in density due to aeration.
4. ANALYSIS AND OBSERVATIONS

Figure 4.3: Fluid Sample Viscosity Reduction After Two Months

Figure 4.4: Fluid Sample Density when Received, FedEx and US Airways
4. ANALYSIS AND OBSERVATIONS

4.3 Fluid Endurance Times

The results of fluid endurance tests in natural snow and in artificial freezing precipitation are discussed in this section.

4.3.1 Fluid Endurance Times in Natural Snow

Figure 4.6 is a bar chart of the endurance times measured in natural snow fluid endurance tests for the various fluid samples. Four test sessions were conducted. In one test session, the only samples that remained for testing were from US Airways. The chart format is similar to that used for examining viscosity and density values.

Figure 4.7 was developed to facilitate comparison of endurance times for forced air-assist fluid samples to times produced from fluid applied conventionally. Here endurance time values are shown as a percentage of those for the conventional nozzle fluid sample. This results in values of 100 percent for fluid applied conventionally, and different calculated percentage values for other samples. This chart illustrates that endurance times for fluids where the fluid nozzles were located over or beside the air nozzle were only slightly lower than those of conventional application. Endurance times for injected fluids were much less than for the other samples.
4. ANALYSIS AND OBSERVATIONS

Figure 4.6: Forced Air Tests – Endurance Times in Snow

Figure 4.7: Forced Air Tests – Endurance Times in Snow – Relative to Conventional Nozzle Endurance Times
4. ANALYSIS AND OBSERVATIONS

4.3.2 Fluid Endurance Times in Artificial Precipitation

Figure 4.8 is a bar chart of the endurance times measured in artificial precipitation fluid endurance tests for the various fluid samples.

Figure 4.9 compares endurance times for forced air-assist fluid samples to times produced from fluid applied conventionally. Here endurance time values are shown as a percentage of those for the conventional nozzle fluid sample. This results in values of 100 percent for fluid applied conventionally, and different calculated percentage values for other samples.

Endurance times for fluids from nozzles located over or beside the air nozzle, for the US Airways sample and the FedEx fluid sample at ½ airflow, were very close to those produced from the conventional application fluids. The FedEx fluid sample at full airflow was slightly lower than the conventional case.

Endurance times for injected fluids were much lower than all other samples.

4.3.3 Effect of Reduced Viscosity on Fluid Endurance Times

The objective of these tests was to examine whether measurement of any reduction to fluid viscosity resulting from the various modes of the forced air-assist fluid application is an adequate indicator of reduced fluid endurance times.

The most extreme cases examined were those in which fluid was injected into the air stream (FedEx samples) wherein the fluid experienced a large reduction in viscosity. For these cases, viscosity values for the three modes of fluid injection were 51 percent (Full Airflow), 60 percent (1/2 Airflow) and 75 percent (1/3 Airflow) of the viscosity resulting from a conventional application (Table 3.3 and Figure 4.2). When tested for fluid endurance, these fluid samples produced times, shown here as a percentage of the times for a conventional application, as follows: at Full Airflow, times ranged from 53 to 75 percent; at 1/2 Airflow, times ranged from 55 to 93 percent; and at 1/3 Airflow, times ranged from 77 to 87 percent. At least for these extreme cases, measurement of viscosity alone would appear to be an adequate indicator of reduced endurance times.

The cases where fluid was applied over (or beside) the air stream did not have such striking results. For the FedEx application, fluid viscosity from this method of application was slightly higher (103%) than that for the conventional application. However, the US Airways forced air-assist application exhibited a decrease in viscosity, with a value of 91 percent of that of the conventional application, and is examined here separately in Figure 4.10.
4. ANALYSIS AND OBSERVATIONS

Figure 4.8: Forced Air Tests - Endurance Times in Freezing Precipitation

Figure 4.9: Forced Air Tests - Endurance Times in Freezing Precipitation - Relative to Conventional Nozzle Endurance Times
Figure 4.10 shows endurance times measured for each weather condition, for conventional and forced air-assist applications. This chart shows that, for the degree of viscosity reduction experienced and for this particular fluid, there is very little reduction in endurance times. This is especially true for those weather conditions where short endurance times are expected (at the left side of the chart). For those weather conditions lying at the right side of the chart, where longer endurance times are expected, the reduced viscosity appears to cause some reduction in endurance times.

Based on these data, the use of measured viscosity reduction as an indicator of expected endurance time reduction would be a conservative and safe approach.
This page intentionally left blank.
5. CONCLUSIONS

It was concluded that:

a) The forced air-assist method in which the fluid nozzle is positioned over or beside the forced air nozzle has little effect on fluid viscosity, level of aeration, or fluid endurance times for the forced air system, the deicing truck, the fluid brand tested, and the particular set of test conditions;

b) The air-assist method in which the fluid is injected into the forced air stream within the air nozzle is unacceptable, as it results in a large reduction in fluid viscosity, a high level of aeration, and reduced endurance times;

c) Measurement of fluid viscosity degradation provides an adequate indication that fluid endurance time has also been degraded, and that the current test method need not be augmented by measuring actual endurance times for these configurations and fluid; and

d) The test/approval process is to be modified as follows:

- Test data submitted to the FAA and TC for approval to employ HOT guidelines need include only the fluid viscosity test results (from air-assist and conventional applications, and from the truck tank), along with detailed information that identifies the specific forced air system and fluid tested;

- Fluid viscosity is to be measured at the test site immediately following fluid spray. This test is to be performed in cold conditions (OAT below 0°C);

- Test fluid must be sprayed on an actual wing surface, not a substitute surface; and

- Operators can use the test procedure data on thickness and appearance of the fluid layer on the wing to decide whether this method of application is acceptable for deicing.
This page intentionally left blank.
6. RECOMMENDATIONS

It is recommended that:

a) The procedure for testing whether SAE HOT Time Guidelines can be employed when SAE Type II or IV fluid is sprayed with the assistance of forced air be modified as noted in the conclusion; and

b) The test procedure be formalized by the SAE G-12 Equipment Subcommittee as an SAE standard.
This page intentionally left blank.
REFERENCES

This page intentionally left blank.
APPENDIX A

TEST PROGRAM - FORCED AIR SYSTEMS
TYPE II/TYPE IV FLUID APPLIED OVER OR INJECTED INTO
THE FORCED AIR STREAM
TEST PROGRAM - FORCED AIR SYSTEMS

TYPE II/TYE IV FLUID APPLIED OVER or INJECTED INTO THE FORCED AIR STREAM

Prepared for

SAE G-12
Equipment Subcommittee
Forced Air Working Group

Prepared by: Peter Dawson
Reviewed by: John D’Avirro

Version 1.4
05 June 2002
1. OBJECTIVE

These tests are designed to examine whether published SAE holdover time guidelines can be approved for use when Type II / Type IV fluid is applied to aircraft surfaces with the assistance of forced air systems.

The nature of the assistance typically can take either of two forms:

a. The fluid nozzle can be positioned above the forced air nozzle, with the goal of carrying the fluid stream on top of the air stream.

b. The fluid nozzle can be positioned to inject fluid within the air stream, where the fluid is mixed with, and carried as part of the air stream.

This examination compares the quality of fluid application produced by the forced air assist application, with the quality of a standard application.

2. APPROVAL PROCESS

Each combination of forced air deicing truck configuration and SAE Type II / Type IV fluid requires individual approval. The following steps are involved in the approval process:

1. A standard procedure for testing and data gathering is developed and approved by FAA, TC and the SAE G-12 Equipment Subcommittee Forced Air Working Group.

2. Prior to testing, in-house development of spray techniques and procedures is completed by the operator. The forced air systems planned for use in testing are to be verified by the manufacturer or operator’s maintenance staff to confirm that they are operating within manufacturer specifications.

3. When the operator is satisfied that it has evolved a suitable application procedure, the operator schedules a test session, inviting observers from FAA Technical Center and Transport Canada (TDC).

4. Tests are conducted to gather required data. A set of five tests is required, to demonstrate repeatability. Tests are conducted on aircraft wings. Each test involves applying fluid with air assist on one wing, and applying fluid with the operator’s standard Type II / Type IV nozzle and procedure on the other wing, as a benchmark.

5. If deemed satisfactory by the operator, test results are submitted to the following FAA/TC addressees to be considered for approval to use Type II / Type IV published HOT guidelines, for that specific truck / Type II / Type IV fluid combination.

<table>
<thead>
<tr>
<th>Charles O. Masters</th>
<th>Barry Myers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager, Flight Safety Research</td>
<td>Senior Development Officer</td>
</tr>
<tr>
<td>FAA Technical Centre</td>
<td>Transport Canada</td>
</tr>
<tr>
<td>Building 210 AAR 421</td>
<td>Transportation Development Centre</td>
</tr>
<tr>
<td>Atlantic City International Airport</td>
<td>800 René-Lévesque Blvd. West, 6th Floor</td>
</tr>
<tr>
<td>Atlantic City, NJ 08405</td>
<td>Montréal, Québec H3B 1X9 Canada</td>
</tr>
<tr>
<td>mastersc@tc.faa.gov</td>
<td>myersbb@tc.gc.ca</td>
</tr>
</tbody>
</table>
6. The approval decision rests on whether the forced air assist process produces results that are equivalent to the standard fluid application process. The factors considered are:
 - Fluid viscosity as measured from samples lifted from the wing
 - Fluid thickness measured at various points on the wing
 - Consistency of distribution of the fluid layer over the sprayed area on the wing.

3. TEST PROCEDURE

3.1 General

These tests are designed to be conducted in the field by the equipment operator. Equipment and fluid manufacturers will be invited to test sessions. Fluid samples are to be tested under laboratory conditions.

3.2 Test Planning

3.2.1 Weather Conditions

These tests are performed in dry conditions.

Some of the set of five required tests may be performed in non-winter conditions, with wing skin temperature not warmer than 15ºC. At least one test is to be performed in freezing conditions as confirmation that warm OAT does not affect test results related to fluid viscosity.

At least one test is performed in into-wind conditions.

3.2.2 Test Surface

Tests are to be conducted on dry wings of out-of-service aircraft (example, parked overnight).

Care must be taken to ensure that there is no residue of Type I fluid on the wings, as this will result in some mixing of Type I within the Type II / Type IV fluid, and will produce inaccurate viscosity measurements.

To avoid the risk of presence of Type I fluid, removal of Type II / Type IV fluid between consecutive tests can be performed by use of heated water or heated Type I fluid, followed by an application of forced air to dry the wing. Ensure that the wing temperature has cooled to ambient before conducting subsequent tests.
If the tests are conducted in freezing temperatures, the final cleaning of Type II / Type IV fluid following the last test is to be performed with heated Type I fluid, prior to returning the aircraft to service.

3.2.3 Test Fluid

The fluid used for test purposes is qualified standard production fluid.

3.2.4 Configuration of Forced Air System

The normal operating configuration of the forced air systems is to be used for testing. If the air-flow is operator controlled, the test is to be conducted at maximum air flow.

The operating performance of forced air systems planned for use in these tests is to be checked prior to tests. This may be done by the manufacturer or by the operator’s technical staff in accordance with manufacturer’s guidelines. Certification that systems are operating within manufacturers specifications is required for each truck used in testing. A completed and signed DECLARATION OF CONFORMITY (Attachment A-1a) is to be submitted for each forced air deicing vehicle used in the tests. A sample completed form (Attachment A-1b) is included for guidance.

3.2.5 Test Matrix

Five tests are to be conducted, to examine repeatability. If the main series of tests is conducted in warm weather, test number 5 in the test matrix must be conducted below freezing condition.

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Type of Application</th>
<th>Special Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Air-assist</td>
<td>Alternate air-assist test between port and starboard wings to eliminate any effect of wind-direction</td>
</tr>
<tr>
<td>1b</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>Air-assist</td>
<td>Duplicate of test 1 or 2</td>
</tr>
<tr>
<td>2b</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>Air-assist</td>
<td>Spray into-wind (conduct consecutive tests on the same wing to ensure the same wind affect)</td>
</tr>
<tr>
<td>3b</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>Air-assist</td>
<td>Cold OAT (below 0ºC)</td>
</tr>
<tr>
<td>4b</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>Air-assist</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>
3.2.6 Test Equipment

A list of equipment needed to conduct the tests is provided in Attachment A-II.

3.3 Data Forms

Two data forms are used for these tests as follows.

3.3.1 General Form (Figure A-1)

This is a cover form for all tests completed during a single test session. An operator signature verifies that deicing trucks used for tests have been checked to confirm that they operate in accordance with manufacturer’s specifications. The specifications for the forced air system may be provided by completing the form, or by attaching a copy of the manufacturer’s equipment description.

This form is completed only once per test session.

3.3.2 Test Data Form (Figure A-2)

This form is completed for each wing tested. Each test consists of an application of fluid on one wing using air-assist, and on the other wing using the operator’s standard Type II / Type IV fluid nozzle and procedure; thus two forms are completed for each test.

The form is designed to record data specific to fluid applied at minimum and maximum distances.

Values for OAT and wind speed can be retrieved from the local Met office.

3.4 Conducting the Tests

3.4.1 Fluid Application

To enable measurement of minimum and maximum distance of effective spray, the operator should be positioned at a fixed location relative to the test wing. Fluid is then applied over the wing (span-wise and chord-wise) from the fixed position, with the objective of determining the reach limitations.

Record the start and finish times for spray. If the truck is equipped, record the quantity of fluid sprayed.
The minimum and maximum distances from nozzle are measured, and the angle of the fluid stream to the horizontal is estimated.

For the test of spray into-wind, the operator should be positioned accordingly. This may require spraying from the rear of the wing.

3.4.2 Measuring Fluid Thickness

Allow at least 3 minutes for the fluid to settle, and measure fluid thickness on the wing at the locations where minimum distance and maximum distance was observed. The boundary of the area where satisfactory coverage was achieved may take the shape of an arc across the wing. In that case, the measurements should be taken within that arc, at the chord locations indicated.

Refer to Attachment A-III for equipment and procedures.

3.4.3 Noting Appearance of Fluid Layer

Grade the appearance as noted on the data form. This may be somewhat subjective, however the intent is simply to allow comparison between the air-assist and standard methods of application, so the important thing is consistency in grading. For continuity in each test, the same person should report the fluid appearance on both wings (the wing treated with the forced air assist, and the other wing treated with a standard application).

3.4.4 Taking Fluid Samples for Aeration and Viscosity Test

Sample containers as described by the appropriate fluid manufacturer for submission of fluid samples are suitable for this test. In preparation for measuring fluid aeration, first label each bottle and cap. The empty bottle with its cap is then weighed and the weight recorded. The volume capacity of each bottle when filled to overflowing and then capped, is measured and recorded. Maintain a list of container labels along with measured weight (empty and capped), and volume capacity.

An initial sample is required from the truck tank, to serve as a reference base. This sample may be taken directly from the tank by dipping from the top, or from the bottom drain valve. If taken from the drain valve, allow enough fluid to drain to completely flush the line before taking the sample.

Two samples are lifted from the wing surface for each test; one at minimum and one at maximum distance. At least 4 ounces (120 mL) is required for each sample. Fluid will need to be gathered from a fairly large area (in the order of 4 sq. ft.) to
accumulate this amount, so this activity should take place after recording of other test data (thickness and appearance).

To gather samples from the wing surface, it is recommended that the fluid be pulled together on the wing surface using flexible plastic sheets as scrapers. Then flow the accumulated fluid onto one plastic sheet, and, by bending the plastic sheet, pour the lifted fluid into the sample bottle. Plastic dustpans are also suitable for fluid collection. Two people are needed for this activity. Alternatively, if the wing structure allows it, the fluid can be flowed to the edge of the wing, and captured as it flows off.

As each bottle is filled, ensure that a record is maintained clearly linking the sample bottle label to test number, maximum or minimum position and date/time of test.

Samples are to be sent to a qualified lab within 24 hrs, for prompt testing.

To measure fluid aeration, first weigh the filled bottles without removing with their caps. Calculate the fluid density based on the recorded empty bottle weight and volume capacity. Calculate the percentage change to fluid density due to aeration by comparison to the density of the virgin sample taken from the truck tank as a base of reference.

Fluid viscosity is to be measured in accordance with the fluid manufacturer’s procedure. Fluid samples are to be centrifuged before testing for viscosity.

Test results received back from the fluid manufacturer are to be entered on the test data form, prior to submitting the completed test data forms for approval to use holdover times.

3.4.5 Preparing for Next Test

To prepare for the next test, remove all Type II / Type IV fluid from the wing. This can be done with heated water or heated Type I fluid, and then dried using forced air.
Attachment A-la

Declaration of Conformity

Manufacturer or Operator Maintenance Department:

Notify that the machine hereunder mentioned:

Equipment:

Type:

Serial Number:

Complies with the Manufacturers Specifications.

Date:

Signature:

Attachment A-Ib

Sample of a Completed Declaration of Conformity

Manufacturer or Operator Maintenance Department:

Global Ground Support
540 East US Hwy 56
Olathe, KS 66061

Notify that the machine hereunder mentioned:

Equipment: Aircraft Deicer
Type: 2100 LFTE
Serial Number: TE21-1099-0020

Complies with the Manufacturers Specifications.

Date: ______________________________

Signature: ____________________________
Attachment A-II

Test Equipment Checklist
Trials for Type II / Type IV Fluid Applied over or Injected into the Forced Air Stream

<table>
<thead>
<tr>
<th>TASK</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistics For Every Test Session</td>
<td></td>
</tr>
<tr>
<td>Schedule test with truck and fluid manufacturers</td>
<td></td>
</tr>
<tr>
<td>Advise FAA, TDC</td>
<td></td>
</tr>
<tr>
<td>Arrange for test aircraft</td>
<td></td>
</tr>
<tr>
<td>Test Equipment</td>
<td></td>
</tr>
<tr>
<td>Forced air deicing truck</td>
<td></td>
</tr>
<tr>
<td>Test procedures</td>
<td></td>
</tr>
<tr>
<td>Data Forms</td>
<td></td>
</tr>
<tr>
<td>Clipboards</td>
<td></td>
</tr>
<tr>
<td>Pencils</td>
<td></td>
</tr>
<tr>
<td>Wiper rags</td>
<td></td>
</tr>
<tr>
<td>Fluid thickness gauges</td>
<td></td>
</tr>
<tr>
<td>Fluid sample containers with labels (24)</td>
<td></td>
</tr>
<tr>
<td>Plastic to pick up fluid samples from wing</td>
<td></td>
</tr>
<tr>
<td>Lighting for stands</td>
<td></td>
</tr>
<tr>
<td>Access stands for observers at wing</td>
<td></td>
</tr>
<tr>
<td>Flashlights</td>
<td></td>
</tr>
</tbody>
</table>
Attachment A-III

Measuring Fluid Film Thickness

Fluid thickness can be measured with use of a wet film thickness gauge. Two types are recommended as follows.

The Octagon wet film thickness gauge ranges from 0.4 to 400 mils. It is available with a micron scale on the reverse side. This gauge is suitable for normal on-wing thickness for Type II / Type IV fluid. Part number WF-OCT.

The second gauge is a standard stock gauge ranging from 1 to 80 mils. This gauge gives better accuracy for thinner films, such as seen with Type I fluid on wings, or thinner applications of Type II / Type IV fluid. Part number WF-CCA.

Both gauges are available from:

Paul N. Gardner Company, Inc.
316 NE 1st St. POMPANO BEACH, FL 33060
1-800-762-2478 (954) 946-9454 FAX (954) 946-9309

Instructions for Use

1. Place the gauge in the fluid at 90° to the underlying surface, selecting the gauge side that allows a tooth to touch the fluid surface.
2. Note the last tooth that is wetted. This can be done by withdrawing the gauge and observing which is the last tooth wetted, or by peering under the gauge while inserted in the fluid, noting which is the last tooth touching the fluid surface. With clear fluid, the latter method usually works better.
3. Record the value of the last tooth wetted.
4. Dry the gauge before next use.
5. If repeat measurements are taken, ensure that the gauge is slightly offset from the previously measured location as the fluid surface may still be indented from the earlier measure.
Figure A-1: SAE G-12 EQUIPMENT SUBCOMMITTEE
TYPE II / TYPE IV FLUID WITH AIR ASSIST - GENERAL FORM
(Complete One Per Test Session For Each Truck / Fluid Combination)

OPERATOR______________________ LOCATION______________________ DATE____________________

AIRCRAFT TYPE __

FLUID MANUFACTURER AND TYPE __

TRUCK MANUFACTURER AND TYPE __

TRUCK SERIAL NUMBER (S) __
(Operator verifies that deicing trucks used for these tests have been checked to confirm operation in accordance with manufacturer’s specifications. System specifications can be provided by completion of the following or by submission of the manufacturer’s system description.)

OPERATOR REPRESENTATIVE NAME (BLOCK LETTERS), SIGNATURE AND TELEPHONE

APPLICATION OF TYPE II / IV WITH AIR
- SYSTEM DESCRIPTION
INJECTED INTO AIR STREAM
OR OVER AIR STREAM

FLUID FLOW RATE ____________________________
FLUID NOZZLE TYPE ___________________________
FLUID PRESSURE ______________________________
AIR PRESSURE ______________________________
AIR FLOW RATE ______________________________
Figure A-2: SAE G-12 EQUIPMENT SUBCOMMITTEE

TYPE II / TYPE IV FLUID WITH AIR ASSIST - DATA FORM

(Complete One Form for Each Wing Tested)

<table>
<thead>
<tr>
<th>OPERATOR</th>
<th>LOCATION</th>
<th>DATE</th>
<th>TIME</th>
<th>RUN #</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TRUCK MANUFACTURER AND TYPE</th>
<th>TRUCK NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OAT</th>
<th>WIND SPEED</th>
<th>FLUID MANUFACTURER AND TYPE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TYPE OF APPLICATION</th>
<th>Over Air Stream</th>
<th>Injected In Air Stream</th>
<th>Standard Application</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SPRAY PATTERN SETTING</th>
<th>% Fan; Solid Stream</th>
<th>Other</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SPRAY START TIME</th>
<th>SPRAY END TIME</th>
<th>FLUID QUANTITY APPLIED</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LOCATION FOR FLUID THICKNESS MEASUREMENT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Minimum distance from nozzle</th>
<th>ft</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Estimated angle of stream to horizontal</th>
<th>°</th>
</tr>
</thead>
</table>

AT MINIMUM EFFECTIVE DISTANCE

<table>
<thead>
<tr>
<th>Fluid thickness on wing chord at Min distance</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Appearance of Fluid Layer at Min distance</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>grade each line from 1 to 5</th>
</tr>
</thead>
</table>

1 5

<table>
<thead>
<tr>
<th>VERY RIDGED</th>
<th>CONSISTENT THICKNESS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Patchy colour</th>
<th>Consistent colour</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Highly aerated</th>
<th>Few bubbles</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Surface appears as if contaminated</th>
</tr>
</thead>
</table>

Yes No

Other comments:

<table>
<thead>
<tr>
<th>Label on Fluid Sample</th>
<th>Aeration %</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample Viscosity</th>
<th>Brix</th>
</tr>
</thead>
</table>

Recorded by:

AT MAXIMUM EFFECTIVE DISTANCE

<table>
<thead>
<tr>
<th>Maximum distance from nozzle</th>
<th>ft</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Estimated angle of stream to horizontal</th>
<th>°</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fluid thickness on wing chord at Max distance</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Appearance of Fluid Layer at Max distance</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>grade each line from 1 to 5</th>
</tr>
</thead>
</table>

1 5

<table>
<thead>
<tr>
<th>Very ridged</th>
<th>Consistent thickness</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Patchy colour</th>
<th>Consistent colour</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Highly aerated</th>
<th>Few bubbles</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Surface appears as if contaminated</th>
</tr>
</thead>
</table>

Yes No

Other comments:

<table>
<thead>
<tr>
<th>Label on Fluid Sample</th>
<th>Aeration %</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample Viscosity</th>
<th>Brix</th>
</tr>
</thead>
</table>

Recorded by:
APPENDIX B

TRANSPORTATION DEVELOPMENT CENTRE
WORK STATEMENT EXCERPT
AIRCRAFT & ANTI-ICING FLUID WINTER TESTING
2002-03
5.20 Forced Air System Evaluation

5.20.1 Phase I
a) Analyse and report on the results of the endurance trials on Type II/IV fluids applied with forced air-assisted systems; and
b) Continue to assist the SAE ground equipment committee in its evaluation of forced air-assisted systems.

5.20.2 Phase II

c) Monitor and participate in some operator field trials of air-assisted Type II/IV fluids, and report on observations;
d) Monitor and participate in some operator field trials of air-assisted Type I fluid as a first-step procedure to ascertain and recommend whether observed times to freezing are supportive of further study of potential use as a one-step application; and

e) Support the SAE ground equipment committee development of an SAE ARP for forced air deicing systems.
This page intentionally left blank.
APPENDIX C

EXPERIMENTAL PROGRAM
ENDURANCE TIMES FOR SAE TYPE II/IV FLUIDS
WHEN APPLIED WITH FORCED AIR-ASSIST
EXPERIMENTAL PROGRAM
ENDURANCE TIMES FOR SAE TYPE II/IV FLUIDS
WHEN APPLIED WITH FORCED AIR-ASSIST

Winter 2002-03

Prepared for
Transportation Development Centre
Transport Canada

Prepared by: Peter Dawson

Reviewed by: John D’Avirro

December 12, 2002
Version 1.0

Editorial Revision
June 28, 2005
Version 1.1
EXPERIMENTAL PROGRAM
ENDURANCE TIMES FOR SAE TYPE II/IV FLUIDS
WHEN APPLIED WITH FORCED AIR-ASSIST
Winter 2002-03

1. BACKGROUND

In response to a request from the SAE G-12 Equipment subcommittee, Transport Canada and the Federal Aviation Administration (FAA) jointly agreed to support development of test procedures and an approval process for specific functional applications of forced air deicing systems. The test procedures were to be designed to be performed by operators of forced air deicing systems.

Consequently, test procedures were developed for two types of applications, of which one examined spraying of SAE Type II and IV fluids with forced air assist. This test was designed to examine whether published SAE holdover time guidelines could be approved for use when Type II / Type IV fluid is applied to aircraft surfaces with the assistance of forced air systems.

The current approval process rests on whether the forced air assisted spray produces a layer of fluid on the wing that is equivalent to the standard fluid application spray, and that the fluid viscosity is not degraded below the fluid manufacturer’s stated lowest on-wing viscosity. The factors considered are:

- Fluid viscosity measured from samples lifted from the wing;
- Fluid thickness measured at various points on the wing;
- Consistency of distribution of the fluid layer over the sprayed area on the wing.

The FAA has requested that a supplementary check be performed to examine endurance times for fluids applied in this manner, to ensure that no other fluid property has been altered which might result in shorter times.

2. OBJECTIVES

The objective of this procedure is to examine endurance times for SAE Type II and IV fluids which have been sprayed with forced air assist.

To achieve this objective, arrangements will be made with forced air deicing system operators to retrieve samples of fluids which have been sprayed with the assistance of forced air and samples sprayed with conventional nozzles. The fluid samples will be measured for viscosity, and subjected to endurance trials in natural snow conditions.
3. PROCEDURE/TEST REQUIREMENTS

The procedure has two parts, retrieving fluid samples from operators, and then testing those samples.

3.1 Obtaining Fluid Samples

Airlines or deicing operators known to have tested or to have a potential interest in using forced air assisted Type II or IV fluid application will be contacted for possible submission of fluid samples.

A fluid collection data form will be provided to the prospective fluid sample providers for completion, as shown in Attachment C-I.

Samples of fluid sprayed with air-assist and sprayed with conventional nozzles will be requested. A quantity of 5 L will be requested for each type of spray application, to enable several endurance tests to be conducted in snow conditions at different temperatures.

As well, a sample of unsprayed fluid from the truck tank will be requested, to serve as a base case for fluid viscosity values.

3.2 Conducting Fluid Endurance Trials

When the samples are received, fluid viscosity will be measured.

Endurance trials will be conducted at the earliest opportunity following receipt of each sample, when the next snowfall occurs. Endurance trials will be conducted outdoors, using the standard SAE Type II/IV Fluid test procedure in natural snow outdoor conditions.

4. EQUIPMENT AND FLUIDS

4.1 Equipment

The standard equipment used for endurance time trials will apply.

4.2 Fluids

Tests will be conducted with fluid samples provided by field operators. The fluids will be at ambient temperature for application.
5. PERSONNEL

Two technicians:

- First calls failures, prepares fluid samples
- Second measures precipitation rates and wind

6. DATA FORMS

- Attachment C-I Fluid Sample Data Form
- Attachment C-II End Condition Data Form
- Attachment C-III Meteo/Plate Pan Data Form
ATTACHMENT C-I

SAE TYPE II/IV FLUID SAMPLE DATA FORM
SAMPLES APPLIED WITH FORCED AIR ASSIST AND CONVENTIONAL SPRAY
(Please complete this form and submit it with the fluid samples)

Operator: __

Location: __

Fluid: __
Manufacturer/Name/Concentration

Truck: __
Manufacturer/Type ____________________________ Serial Number ____________________________

Air Compressor: __
Manufacturer/Type

Fluid Nozzle:
Forced Air System ____________________________ Conventional ____________________________
Manufacturer/Type ____________________________ Manufacturer/Type ____________________________

Type Of Forced Air Assist Application: ☐ Over Air Stream ☐ Injected In Air Stream

Description Of Fluid Sample

When Was The Fluid Sample Sprayed? Date: _____/_____/_____ Time: _____:____ am
(day/month/year)

Quantity Of Sprayed Fluid Supplied (Approximately 5 L each requested):
Air-Assist Spray Sample: ___________
Conventional Nozzle Spray Sample: ___________

Quantity Of Fluid Sample Taken From Truck Tank (1 L is sufficient): ___________

Describe How The Sample Was Collected (was it sprayed onto the wing, onto a plastic
sheet on the ground, into a container, etc.):

__
__
__
__

SHIPPING INSTRUCTIONS:
Please ship to the following address, and
advise by e-mail (pdawson@adga.ca) that the samples have been sent.

APS Aviation Inc.
1100 Rene Levesque Ouest
Suite 1340, Montreal (Quebec)
CANADA H3B 4N4
Phone: 514 878-4388
ATTACHMENT C-II

END CONDITION DATA FORM

<table>
<thead>
<tr>
<th>Location: Dorval Test Site</th>
<th>Date:</th>
</tr>
</thead>
</table>

Time of Fluid Application

<table>
<thead>
<tr>
<th>FLUID NAME</th>
<th>PLATE</th>
<th>PLATE</th>
<th>PLATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 B2 B3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 C2 C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1 D2 D3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Comments (Fluid Batch, etc.):

-
-
-

Time to First Plate Failure within Work Area

- Calculated Failure Time (Minutes)
 - BkV Fluid Temperature
 - At Start

Failures Called by:

-
-
-

Print

Sign
ATTACHMENT C-III
METEO/PLATE PAN DATA FORM

PLATE PAN WEIGHT MEASUREMENTS

<table>
<thead>
<tr>
<th>PAN #</th>
<th>TIME BEFORE (hh:mm:ss)</th>
<th>BUFFER TIME (hh:mm:ss)</th>
<th>BUFFER WEIGHT BEFORE (grams)</th>
<th>WEIGHT AFTER (grams)</th>
<th>COMPUTE RATE (g/m²/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METEO OBSERVATIONS

<table>
<thead>
<tr>
<th>TIME (hr: min)</th>
<th>TYPE</th>
<th>SNOW CLASSIFICATION</th>
<th>WIND SPEED at 2 m (kph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations at beginning, end, and every 5 min. intervals. Additional observations when there are significant changes.

COMMENTS:

-

WRITTEN & PERFORMED BY:

-

APPROVED BY:

-

PRINT

-

SIGN

-

Final Version 1.0, August 05