Living Tumor Bank and Patient Derived Xenograft Models: A powerful translational engine for novel oncology therapeutics

Abstract

 $\bullet \bullet \bullet \bullet \bullet$

In life for life

Patient-derived xenograft (PDX) models have been established from the world's largest living tumor bank at Molecular Response and used to mimic clinical trial settings with patients from diverse populations and heterogeneous disease; these models are being used to test novel compounds in a more predictive preclinical setting. Overall, the collection is comprised of 144,000 tumor samples corresponding to 70,000 unique patients, and includes >350 PDX models.

Crown Bioscience acquired these PDX models and has exclusive CRO access to the Molecular Response living tumor bank. For several patients, multiple samples were collected at different times (before and after treatment) or at different locations (primary/metastatic). This allows evaluation of drug efficacy in pre and post treatment application which mimics a clinical setting as well the ability to monitor the effect of drug on the primary tumor and a matched metastatic tumor.

With the addition of the MRL PDX models, Crown Bioscience currently has over 1,600 PDX models established in >70 indications. Validated PDX models have confirmed histology and mutational profiling (Next-Gen sequencing) to demonstrate preservation of biological characteristics between tumor model and patient, as well as between growth passages of the model. Crown's vast and diverse collection of patient derived models allows clients the ability to perform preclinical trials with well-defined patient populations featuring the clinical, histologic, and genomic diversity encountered in the clinic.

NSCLC: Representative of Clinic

SPECNUM	- 0	Cancer Ty 💌	SEX	•	Age	•	CANCER	CLINDIAG	•	HISTOLOGY	PATHCOMNT
2003080272	N	NSCLC	м		80.9		LUN	Non-Small Cell Lung Car	ncer	ADENOCARCINOMA	C/W REFERRING D
2009040566	N	NSCLC	м		60.9		LUN	Non-small cell lung carc	inoma	ADENOCARCINOMA	C/W DIAGNOSIS.N
1996100628	N	ISCLC	м		68.9		LUN	Non-Small Cell Lung Car	ncer	ADENOCARCINOMA	TUMOR CELLS PRE
2004020826	N	ISCLC	F		39.6		LUN	Non-Small Cell Lung		ADENOCARCINOMA	C/W REFERRING D
2005111013	N	ISCLC	F		54.6		LUN	Non-Small Cell Lung Car	ncer	ADENOCARCINOMA, PD WITH RA	RE C/W DIAGNOSIS.
2008090507	N	ISCLC	м		80.2		LUN	Non-small cell lung can	er	ADENOCARCINOMA	C/W DIAGNOSIS. A
2001030397	N	ISCLC	м		68.3		LUN	Non-Small Cell Lung Car	ncer	ADENOCARCINOMA	UNCERTAIN TUMO
2004090718	N	ISCLC	м		63.9		LUN	Non-Small Cell Lung Car	ncer	ADENOCARCINOMA	C/W REFERRING D
2009110468	N	ISCLC	F		59.5		LUN	Lung carcinoma		METASTATIC ADENOCARCINOMA	C,
2004100122	N	ISCLC	м		71.9		LUN	Non-Small Cell Lung Car	ncer	ADENOCARCINOMA	C/W DIAGNOSIS.
2009050242	N	NSCLC	м		48		LUN	Non-small cell lung carc	inoma	POORLY DIFFERENTIATED ADENO	CA
2008100483	N	NSCLC	м		83.4		LUN	Non-small cell lung cano	er	ADENOCARCINOMA, MUCIN PRO	DL APPROXIMATELY 7

Figure 3. Patient to patient heterogeneity within population of n=12 NSCLC adenocarcinoma KRAS G12 mutant HuPrime PDX models. (A) Despite commonalities within the NSCLC population, variability is observed in clinical parameters. (B) Varied patient histologies seen within population of adenocarcinomas. (C) Mutational profile varies across population of similarly defined NSCLC adenocarcinoma KRAS G12 mutant tumors

Thomas B. Broudy, Jill Ricono, Colleen Scott, Praveen Nair, Jayant Thatte and Cyrus Mirsaidi Crown Bioscience San Diego Inc., 11011Torreyana Road, San Diego, CA 92121, USA.

HuPrime: >1,600 PDX Models

Cancer Type	Established
ALL	16
AML	4
Adrenal	2
Bladder	16
Brain Tumor	9
Breast	40
Cervical	16
Cholangiocarcinoma	21
Colorectal	284
Endometrial	1
Esophageal	42
Fallopian	1
Gallbladder	9
Gastric	177
GIST	5
Head & Neck	81
Kidney	15

Figure 1. The Crown Bioscience HuPrime PDX collection features more than 1,600 models, covering 70 clinical diagnoses

Figure 4. Preclinical Trial in Diverse Patient Background. Drug efficacy measured as tumor growth inhibition across a population of n=12 NSCLC similarly-defined patient derived tumor models. Each column in the waterfall plot represents a patient. 9 of 12 patients observed a growth inhibition or regression effect following treatment, indicating a successful patient selection criteria, despite the heterogeneity represented in the population.

Cancer Type	Established
Liver - HCC	99
Liver - Other	47
Lung - NSCLC	214
Lung - SCLC	64
Lung - Other	53
Lymphoma - HL	2
Lymphoma - NHL	7
Lymphoma - Other	14
Melanoma	22
Neuroendocrine	8
Ovarian	53
Pancreatic	118
Sarcoma	12
Testis	1
Thyroid	7
UPS	19
Uterine Sarcoma	16

Figure 2. Diverse patient background allows selection of PDX populations representative of clinical populations targeted. (A) HuPrime PDX models represent geographic diversity including models from Asia and non-Asian countries. (B) Within the US/Europe PDX collection, a broad diversity of treatment history as well as (C) cancer stages are represented.

- World's largest & most diverse PDX collection • >1,600 PDX Models Mirror global clinical population • Geographic: Asia, Europe, US Clinical: Late stage, metastatic, prior treated Biomarker: Mutational diversity captured and NGS characterized **Rapid & On-demand PDX Growth** • Access to 144,000 'Living Tumor Bank' enables rapid studies of cancer populations • Development path of 1,000s PDX models per year Client driven/sponsored PDX creation Population studies enable confident preclinical rational for clinical development strategy Patient selection criteria Biomarker/companionDx Combination therapies Candidate prioritization

- Resistance delay

Conclusions