
WHITE PAPER

Concepts and Benefits of
Repository Management

By Manfred Moser
Community Advocate, Author & Trainer, Sonatype, Inc.

Page 2 Concepts and Benefits of Repository Management

ABOUT MANFRED MOSER

Manfred Moser has been dabbling with computers ever since getting a Com-

modore 64 in the 80s. He started using Linux and the Internet in the 90s and

has been developing software professionally since before the Y2K bug frenzy.

Manfred has an engineering background, an eye for detail and a desire for

doing it right, while also wanting to get the software released and used. This led

him to pursue agile software development methodologies before everybody

was talking about it. He has a passion for any tools and infrastructure that help

developers and development teams and loves mentoring others and sharing his

experience and wealth of knowledge.

He is a professional trainer for Apache Maven and Nexus Repository Manager,

author of books such as The Hudson Book, Repository Management with Nexus

and the Nexus IQ Server documentation. As community advocate at Sonatype,

he helps developers with their component usage on a daily basis. He is the

project lead for the Android Maven Plugin and is involved in a number of other

open source projects as well as local user groups. With this background he has

been presenting at conferences such as AnDevCon, OSCON, DevOpsDays, Java-

One and user group meetings around the world for a number of years.

Manfred lives in Victoria, BC with his wonderful wife and three little sons. You

can follow him on twitter or G+.

Page 3Concepts and Benefits of Repository Management

TABLE OF CONTENTS

Overview . 4

Concept Basics . 5

 What are Components? . 5

 Components in Public Repositories . 5

 Repository Formats . 6

 Repository Management . 6

Component Popularity and Challenges . 7

Capabilities and Benefits of a Repository Manager . 9

Conclusion .10

About Sonatype Solutions. .11

Page 4 Concepts and Benefits of Repository Management

OVERVIEW

Since much of today’s software is assembled using

open source, proprietary or 3rd party compo-

nents, many organizations rely on repository

management to efficiently source, store, share

and deploy these components. The volume and

velocity of component parts used in your software

development process creates a ‘software supply

chain’ and, in that context, a repository manager

serves as your official parts warehouse. The repos-

itory manager can also provide critical insight into

component quality so development teams make

better choices up front, and avoid downstream

technical debt and unplanned/unscheduled work.

Today, 80-90 percent of a typical application is

comprised of a variety of component formats and

types, such as libraries, frameworks, modules,

packages, assemblies and other parts. As develop-

ment teams move toward micro-services and con-

tainers, component usage increases even more.

 This report explains the concepts and terminol-

ogy of repository management. It then describes

the inefficiencies caused by poor component

management processes and the capabilities and

benefits of a repository manager such as:

• Increasing developer productivity and collabora-

tion with dedicated local storage for all compo-

nents - open source, proprietary or 3rd party.

• Accelerating continuous and DevOps goals with

a single repository to manage all assets related

to development and delivery.

• Improving performance and stability for builds

and other component users.

• Improving component selection resulting

in higher quality applications and less un-

planned work.

With this background, you will understand why

using a repository manager is considered a best

practice in modern software development and

operations scenarios.

Repository management is a foundational step in a broader trend
towards managing binary components across your software supply

chain and throughout the software development life cycle.

Page 5Concepts and Benefits of Repository Management

CONCEPT BASICS

So what are components?

A component is a resource like a library or a frame-

work that is used as part of your software application

at runtime, integration or unit test execution time or

required as part of your build or deployment process.

It can also be an entire application or a static resource,

like an image, without any dynamic behavior. Even an

entire operating system can be viewed as a compo-

nent when used with container-based systems such

as Docker.

Typically, components are archives of a large variety

of files such as Java byte code in class files, C object

files, binary files such as images, PDF files, sound and

music files and many more.

The archives use a variety of formats such as Java

JAR, WAR, EAR formats; plain ZIP or .tar.gz files; other

package formats such as NuGet packages, RubyGems,

npm packages, Docker images, and others.

Components can be composed of multiple, nested

components themselves. For example, a Java web

application packaged as a WAR component contains

a number of JAR components and a number of

JavaScript libraries. All of these are standalone com-

ponents in other contexts and happen to be included

as part of the WAR component.

There are libraries and frameworks written in various

languages on different platforms that are used for

application development every day. It has become a

default pattern to build applications by combining

the features of multiple components with your own

custom components containing your application

code. Components provide all the building blocks

and features that allow a development team to create

powerful applications by assembling them and add-

ing their own custom, business-related components

to create a full-fledged application.

In various toolchains components are called ‘artifacts’,

‘packages’, ‘bundles’, ‘archives’, ‘images’ and other

terms. The concept is the same and we use ‘compo-

nent’ as the independent, generic term.

There are a wide variety of components created by

the open source community and proprietary vendors.

This ecosystem is quite large and growing quickly. For

example, the Central Repository of Maven/Java com-

ponents contain over 120,000 unique components

and over 1 million total component versions.

Components in Public Repositories

To provide easy access to components, the open

source community aggregates collections of com-

ponents into ‘public repositories’. These repositories

are typically accessible via the Internet for free. On

different platforms, you may hear terms like ‘registry’

used to describe the same concept. A few of the

better known repositories are The Central Reposi-

tory, NuGet Gallery, RubyGems.org, npmjs.org and

Docker Hub. Components in these repositories

are accessed by numerous tools such as package

managers, build tools, IDEs, provisioning tools and

custom integrations using scripting languages.

The public repositories are more efficient than a

simple directory structure or download website. Users

no longer have to manually find the components and

their transitive dependencies and then store them in

their own infrastructure. Instead they can rely on tools

to perform all those tasks after a simple declaration of

the components needed.

Page 6 Concepts and Benefits of Repository Management

Repository Formats

Public and private repositories use varying technolo-

gies to store and expose components to client tools.

This defines a ‘repository format’ and as such is closely

related to the tools interacting with the repository.

For example, the Maven repository format relies on a

specific directory structure and file naming conven-

tion defined by the identifiers of the components and

a number of XML-formatted files for metadata. Com-

ponent interaction is performed via plain HTTP(S)

commands and some additional custom interaction

with the XML files. Tools like Apache Maven, Apache

Ivy, Gradle, Eclipse Aether and many others are able

to easily access a Maven repository.

Other repository formats use databases for storage

and REST API interactions, or different directory struc-

tures with format-specific files for the metadata.

Repository Management

The proliferation and usage of many varied public

repositories has triggered the need to improve the

process of managing and accessing components at a

local level. There is a growing need to locally host in-

ternal components for teams to efficiently exchange

components during all phases of the software devel-

opment life cycle. Furthermore, since research shows

that as many as 1 in 16 components downloaded

from public repositories have a known security or

license risk, component intelligence and visibility is

needed early in the development process to improve

overall software quality and avoid technical debt.

The task of managing access to all the public repos-

itories and components used by your development

teams can be simplified and accelerated with a

dedicated server application known as a ‘repository

manager’. A repository manager provides the ability

to proxy remote repositories and cache and host

components locally. Additionally the repository is the

deployment target for internal software components.

These development outputs can be treated as static

finished goods that are managed in the software

supply chain just like external components. Other

processes can pick up these goods from the reposito-

ry manager for production delivery, etc.

Repository managers are an essential part of any

enterprise or open source software development

effort. They enable greater collaboration between

developers and wider distribution of software by

facilitating the exchange and usage of binary com-

Just as Source Code
Management (SCM) tools
like CVS, Subversion, Git
and others are designed
to manage source code,
repository managers have
been specifically designed to
manage components.

Page 7Concepts and Benefits of Repository Management

COMPONENT POPULARITY AND CHALLENGES

The days of writing your own logging framework,

database abstraction layer and many other tools are

long gone. All modern software development stacks

rely heavily on the power of shared components

(which are most often open source) to deliver this

sort of essential functionality and more. This lower

level functionality is often considered ‘plumbing’

and is an essential part of your development efforts.

By taking advantage of these components to build

powerful features, you can more quickly deliver

applications that deliver business value and compet-

itive differentiation.

The quantity of components has exploded as can be

seen from the volume of components in the Central

Repository, npmjs.org and other public repositories.

Since components form the foundation of your

application, the characteristics of these components

greatly influence the quality of your application. Since

components are freely available and usage is accel-

erating, important component quality information is

hard to find or easy to overlook, or both.

Furthermore, complexity has increased since compo-

nents are used in all development stacks and most

applications are a mixture of stacks. For example, a

server-side application may be implementing a REST

API using Java technologies and accessing com-

ponents via Maven. However, the web application

using these APIs to create a user interface uses a pure

JavaScript-based approach, and sources respective

components via npm. Furthermore a mobile appli-

ponents. When you install a repository manager,

you are bringing the power of a public repository,

like the Central Repository, into your organization.

Additionally, some repository managers, such as

the Nexus Repository Manager, help reduce un-

planned work and improve application quality

by enabling development to see known security

vulnerabilities, license obligations, component ver-

sions and other key factors to aid in smart compo-

nent selection.

Page 8 Concepts and Benefits of Repository Management

cation is using both of these component sources,

but adds platform specific components for iOS and

Android into the mix.

Without a local repository manager, common sce-

narios like these create inefficiencies that drag down

developer productivity. For example:

• Direct download from public repositories:

Most often, each developer downloads compo-

nents directly from public repositories. It’s not

uncommon for teams to then consume multiple

versions of the same components, creating down-

stream maintenance issues.

• Repeated component downloads: Builds

running on developer machines or continuous

integration server clusters repeatedly download

the same components and metadata.

• Manual component distribution: Proprietary or

3rd party components are passed around from

developer to developer. Developers likely pass

components around as an email attachment with

some ad-hoc instructions, by overloading the

usage of your version control or software configu-

ration management (SCM) system or invent some

other manual process.

• Usage of inefficient source control system stor-

age: The source control system is used to store

components used for your development as well

as component produces by your build process.

However, version control systems are typically

not designed to store binary components. This

results in performance degradation for all users of

the SCM system, potentially rendering the system

unusable. No component specific features such as

improved browsing or search or rich component

information is available.

• Heavy dependence on public repositories: The

continuous integration servers and your develop-

ers heavily depend on public repositories. When

you change your build or add a new dependency,

your builds download dependencies from the

public repositories. They rely on the availability

and performance of these public resources to run.

If the public resources are down, your internal

development efforts slow down.

• Inefficient build and deployment processes:

Production deployments potentially have to run

the entire build, from start to finish, to generate

components for deployment. When a build is test-

ed and then ultimately pushed to production, the

build and deployment scripts check out source

code, run the build, and deploy the resulting

components to production systems. Alternatively

production deployment relies on components

to be moved to the production systems using

custom processes including manual file copy

processes and other workarounds.

• Custom processes for component publishing:

Since there is no established mechanism for pub-

lishing components, sharing source code with

external partners means granting them access

to your SCM or designing your own, potentially

laborious process.

• Difficult to understand component usage: Cre-

ating an inventory of used components is a nearly

impossible, tedious and manual task.

• Higher storage costs: Storage and backup costs

are a lot higher due to duplicated copies of iden-

tical components in different storage locations.

The general theme in all of these behaviors is that either

your systems depend on public repositories, or they all

depend on the SCM system or some other storage as

a central collaboration point. In many cases a central

collaboration point is entirely absent, producing further

inefficiencies. In addition you have to develop, manage

and maintain numerous custom integration systems.

By contrast, a repository manager provides an optimal

solution for managing components.

Page 9Concepts and Benefits of Repository Management

CAPABILITIES AND BENEFITS OF A REPOSITORY MANAGER

In short, the repository manager acts as the authorita-

tive storage facility for all components.

Components flow into your repository manager from

external repositories as well as from internal builds

and other sources. Subsequently they are accessed by

development, QA and operations processes to create

the final finished goods and bring them into your

production environments. The repository manager

is the central access and management point for any

component usage in your software development life

cycle. This central role makes it easy for everyone to

understand where components are stored.

In addition, a repository manager can support the

following use cases:

• Search and browse components in repositories

and component archives.

• Display detailed component data, including com-

ponent dependencies, security, license info.

• Control access to components and repositories,

including audit tracking.

• Integrate with external security systems, such as

LDAP or Atlassian Crowd.

• Control component releases with rules and auto-

mated notifications.

• Scale repository usage for multiple data centers,

distributed teams and organizations.

• Central storage to be referenced for backup,

archival and audit purposes.

As a result, a repository manager provides the follow-

ing benefits:

• Time-savings and increased performance by sig-

nificantly reducing remote repository downloads.

• Improved build stability by reducing reliance on

external repositories.

• Reduced build times by proxying public reposito-

ries and enabling local access to components.

• Improved collaboration by providing a central

location to store and manage components.

• Improved control with visibility into component

information and component usage.

• Better quality software by avoiding outdated

components with known security or license

issues.

• Easier access to components for developers and

others across continuous delivery.

• Less complexity with one, unified method to pro-

vide components to internal consumers.

• Simplified development environment and the

flexibility to use a variety of build tools.

The repository manager is the central access and management point for
any component usage in your software development life cycle.

Page 10 Concepts and Benefits of Repository Management

CONCLUSION

You are now equipped with the understanding of

the scale of component usage and their importance

in your software development efforts. Components

allow you to bring more powerful applications to

market with less effort. A repository manager allows

you to reduce and manage complexity while also

building better and safer software. It is therefore no

surprise that using a repository manager is consid-

ered a best practice in all organizations, especially

those requiring faster and faster releases in continu-

ous deployment and DevOps scenarios. As the local

‘parts warehouse’ for all build components, it is an

essential foundation for a well optimized and secure

software supply chain.

Page 11Concepts and Benefits of Repository Management

ABOUT SONATYPE SOLUTIONS

Nexus Repository

Nexus Repository serves as the universal local warehouse to efficiently manage and distribute component

parts, assemblies & finished goods across your software supply chain. Nexus Repository supports popular

component formats, including Java/Maven, npm, NuGet, RubyGems, Docker, P2, OBR, RPM and others. Fur-

thermore, the Nexus Repository Manager has built-in software supply chain intelligence to help you avoid

security vulnerabilities and restrictive licenses that lead to service interruptions, break-fixes, unplanned work

and unnecessary risk. With over 80% market share, the Nexus Repository Manager is the “go-to” solution for

organizations seeking to accelerate software development for Agile, DevOps, and continuous delivery or for

competitive differentiation. A 14-day free trial is available from www.sonatype.com.

Nexus Firewall

Nexus Firewall provides an innovative solution to block undesirable components from getting into your repos-

itory manager. Now you can automate otherwise manual, human reviews and ‘golden repository’ strategies in

order to keep pace with the speed of today’s development practices. With Nexus Firewall you can shield your

application development from waste and risk by automatically and continuously blocking these unacceptable

software components inbound and preventing release of applications containing such components out-

bound. Nexus Firewall goes beyond blocking, providing organizations with the visibility and data needed to

make ideal decisions for open source component selection early, significantly reducing risk, unplanned work

and technical and security debt.

For more information about all Nexus software supply chain solutions, including Nexus Lifecycle and Nexus

Auditor, please visit www.sonatype.com.

Sonatype helps organizations build better software, even faster. Like a traditional supply chain, software applications
are built by assembling open source and third party components streaming in from a wide variety of public and internal
sources. While re-use is far faster than custom code, the flow of components into and through an organization remains
complex and inefficient. Sonatype’s Nexus solutions apply proven supply chain principles to increase speed, efficiency
and quality by optimizing the component supply chain. Sonatype has been on the forefront of creating tools to improve
developer efficiency and quality since the inception of the Central Repository and Apache Maven in 2001, and the
company continues to serve as the steward of the Central Repository serving 17.2 Billion component download requests
in 2014 alone. Sonatype is privately held with investments from New Enterprise Associates (NEA), Accel Partners, Bay
Partners, Hummer Winblad Venture Partners and Morgenthaler Ventures. Visit: www.sonatype.com

Sonatype Inc. • 8161 Maple Lawn Blvd, Suite 250 • Fulton, MD 20759 • 1.877.866.2836 • www.sonatype.com
Sonatype Copyright 2015. All Rights Reserved.

http://Nexus solutions apply
http://www.sonatype.com

