
A User’s Guide for Selecting and Maintaining Password
Portfolios

Sreekanth Malladi, Robert Clark
Saint Leo University

33701 State Road 52
Saint Leo, FL 33574-6665

(352)-588-8190
Sreekanth.Malladi@saintleo.edu,
robert.clark04@email.saintleo.edu

ABSTRACT

Passwords have been used for authentication in various scenarios

for decades and their use has always been on the increase. They are

often preferred over other factors of authentication due to their

simplicity, and ease of use. However, users currently are facing

problems in selecting and maintaining a portfolio of passwords (on

an average 35 usernames & passwords per user). Little guidance

exists in literature that helps users in this, except general advises on

selecting strong passwords and warnings on not losing them. In

particular, no guidance exists on selecting passwords that are of

appropriate strengths for different servers based on their purpose,

type, and security. This is the problem we address in this paper: We

give prudent practices for users in selecting the right passwords

such that their effort is minimized in selecting and managing them,

while at the same time maintaining their security.

Categories and Subject Descriptors

D.3.3 [Cyber security]: Authentication, Access Control.

General Terms

Password strength, Dictionary attacks, Guessing attacks.

Keywords

Passwords, Online/Offline attacks, Salt, Hashing, Encryption.

1. INTRODUCTION
Passwords are a simple yet effective mechanism for authentication

that have been around a while. They are used in many situations,

including networks, systems and apps. Though many alternative

authentication mechanisms were proposed and discussed, the use

of passwords has always been on the increase.

However, as easy as they are, passwords are also beset with

difficulties both for administrators and users. Until recently,

administrators had little guidance in choosing their password

storage mechanisms and in setting their password selection policies

for users. To remedy this, Florencio et al. have published an

excellent guide that enlightens administrators on many previously

unknown facts about passwords [1]. For instance, offline guessing

attacks happen much more rarely than previously thought and in

limited situations. Also, in order to resist an off-line attack, users

need to choose passwords that resist 1014 guesses, as opposed to

just 106 guesses that they need, to resist on-line attacks.

But administrator guidance is only one part of the equation. The

other part is, guidance to the users. It is also important to guide

users on how to select their passwords in order to keep their

accounts secure while minimizing their efforts. Unfortunately,

currently there is no such guide available, other than those that

simply give strategies to choose “strong” passwords (e.g. [2]).

However, the need of the hour is not in aiming to create strong

passwords for every account, but in selecting them such that strong

passwords are chosen only for those accounts where they are

needed.

The average computer user struggles with the following problems

on password selection:

a) Choosing them so that they are easy to remember, yet hard to be

guessed, which were proven to be conflicting goals [3];

b) Maintaining a portfolio of passwords. The average user has to

memorize 25 usernames-passwords, and more difficultly, the

mapping for each username and its password;

c) Uncertain over the ways to store and manage the large portfolio

of passwords;

d) Unsure about where to and where not to enter passwords (e.g.

public machines are commonly infected with keystroke loggers);

e) Unsure about how to recover and reset lost, forgotten or stolen

passwords.

All users hear are the same general advices: “need to select a strong

password, remember it and not write it down” regardless of the

server’s type, importance, and security measures. These advices are

often unnecessary. For instance, a user with an account on a web

server that stores passwords in plain, needs to simply select a

password that withstand 106 guesses. No real gain in security is

achieved with a stronger password, since on-line attacks are

thwarted by the server, and off-line attacks are a concern only if the

server were to salt, hash or encrypt the passwords, not if it is storing

them in plain.

To remedy this, we are working on a guide that helps users spend

the appropriate time and effort in choosing and maintaining large

number of passwords. We describe preliminary results and the

major contributions of our work here, while saving some of the

details and auxiliary sections that are in progress, for the eventual

presentation of the paper.

The main contributions of our paper are derived from Florencio et

al.’s paper, but from a user’s point of view, not an administrator’s.

We give many takeaway points that will guide users in selecting

adequately strong passwords.

Organization. In Section 2, we give a background on passwords,

including their history, concepts and terminology. In Section 3, and

summarize the main takeaway points from Florencio et al.’s work.

In Section 4, we advocate prudent practices on choosing passwords,

both for new and existing accounts. We conclude in Section 5 with

a description of our work in progress.

2. Background

2.1 History of passwords
Passwords have been introduced initially as part of operating

system security (in MULTICS which is the basis of Linux), after

scientists have figured out that it is important to safeguard access

to systems as well, not just their physical security. Since then,

passwords are being ubiquitously used for authenticating users to

networks, devices and applications. Being the “something you

know” factor, they are often preferred over the “something you

have” factor (e.g. smartcards which need to be carried) and the

“something you are” factor (e.g. biometrics that need physical

presence).

2.2 Types and Ways of Password Use
We will describe the simplest and most general way in which

passwords are used, wherein there is a set of users and a server that

stores a set of passwords in a file containing records for users with

attributes username and password entry. The password entry could

be a plain-text password, or hashed password possibly after adding

a salt. Lastly, the password file itself could have been encrypted

with a symmetric key that is known only to a subset of users called

admins.

Fig 1. Password storage and checking

When a user sends the <username, password> combination to the

server, it matches it with the corresponding entry in the password

file, with or without hashing and salting the password first,

depending on the nature of the password file entries. The server also

has to first decrypt the password file if it was reversibly encrypted.

2.3 Concepts and Terminology
It is perhaps needless to mention that there have been numerous

instances where passwords have been breached through different

ways. We would like to describe those ways along with some basic

definitions:

Attack points. There are three points at which passwords can be

learnt (a) Client machine through malware (b) Server’s public-

facing side such as the login page for a web server and (c) Server’s

back-end where the password file is stolen using attacks such as

SQL-injection or remote code exploitation.

On-line guessing attacks. Perhaps the simplest way to learn a

password is by guessing online, as in entering guesses repeatedly

into the public-facing login page of a web server. Though defenses

exist such as rate-limiting and locking out after a few unsuccessful

attempts, they can be abused as well, to lock out legitimate users.

CAPTCHAs are also not always employed or successful.

Off-line guessing attacks. These require that the attacker somehow

gains the password file present at the server’s back-end. If the

server stores passwords in plain, no effort is needed to learn the

passwords, so they are not termed off-line guessing attacks. If the

server stores only hashes, then guesses also need to be hashed and

hashes have to be compared. If the server encrypts the password

file with a secret key known only to the admins, then off-line

guessing attacks will not work, assuming the key is not leaked.

Dictionary attacks. Both on-line and off-line guessing attacks can

be automated by taking guesses from dictionaries suitable to users.

In this case, they are termed on-line (off-line) dictionary attacks.

Rainbow tables. If the server stores hashes of passwords, guesses

don’t have to be hashed: they can be obtained from rainbow tables,

which are “processed” dictionaries in that they have guesses hashed

already.

Malware attacks. If a client’s machine has malware such as

keystroke loggers installed, then passwords can be learnt directly

without the need for on-line or off-line guessing.

Note that in all the above and throughout the paper, we only

consider technical attacks, but not passwords breached through

social engineering techniques, including learning passwords by

answering questions following “forgot your password?” link.

Password strength. The resistance against being guessed correctly

is said to be the strength of a password. There are no theoretical

boundaries, but based on practical experience, Florencio et al. have

noted that currently, it is enough to select a password that resists

106 and 1014 guesses to make online and offline guessing attacks

useless: it would take more time for the attacker to arrive at the

correct guess than he can afford to put the learnt password to any

use (4 months).

Salt. A cheap way to improve password strength is by simply

adding a random number called “salt” to it before hashing it and

storing it in the password file. An attacker who guesses passwords

and hashes them to match with the password file also has to guess

the salt first, which greatly increases the effort and time for an off-

line attack and effectively defeats it.

Reversible encryption. An alternative to salting plus hashing is to

encrypt the password file with a key known only to the admins. In

this case, passwords are stored in plain, and the only way for an

attacker to learn them is by first learning the decryption key. Offline

guessing is not needed in that case since passwords are in plain.

Password meters. A relatively new technique to assist users in

choosing good passwords is to have web servers embed JavaScript

inside their login pages that checks if a password satisfies certain

preset conditions to determine strength (e.g. length, uppercase

letter, punctuation symbol, numeric etc.). Since the checking is

only done as client-side script, these meters are known to inform

“Pa$$w0rd” as a good password.

Telepathwords. Probably derived from a combination of

“telepathy” and “passwords”, “Telepathwords” have been invented

by Komanduri et al [4]. Basically, Telepathwords is a technique

where a program guesses the probable next letter to be typed by the

user when choosing a password and displays it, forcing the user to

select a different character.

Password managers. Almost all browsers now including Mozilla,

and Chrome come with a password manager that stores passwords,

which can help the user in reducing the number of passwords that

need to be memorized. Some add-on software also offer the same

facility and can be installed into browsers. Jana et al. present an

analysis of these and find that password managers can sometimes

be tricked by attackers into revealing a stored password or allowing

an authenticated session of a legitimate user [5].

3. Administrator guidance: Florencio et al.
Let us now look at the main take-away points given by Florencio et

al. (reworded slightly for simplification).

The first concept by Florencio et al. deals with categorization of

user accounts based on their importance and the consequences if

the corresponding passwords are breached. In particular, they

mention that choosing weak passwords for inconsequential servers

(e.g. conference registration servers like easychair) should not be

something that should spark outrage.

T1. Categorizing accounts based on the consequence of password

leak is important as it ensures distribution of password selection

effort appropriately and reduces possibility of cross-category

password re-use.

Using only entropy to establish password strength is not adequate

or sensible, since they cannot detect passwords that would appear

in dictionaries. E.g. P@Ssw0rd! might have good entropy, but

will be easily detected by guessing attack tools like JohnTheRipper

[6]:

T2. Crude entropy-based estimates are unsuitable for measuring

password resistance to guessing attacks; their use should be

discouraged.

As mentioned before, guessing attacks are not the only way to learn

passwords. They can also be learnt at the client machine where they

are entered or on the wire when they are transferred:

T3. The success of threats such as client-side malware, phishing

and sniffing unencrypted wireless links are entirely unaffected by

password choice.

We will actually take it further and state that password leaks using

any social engineering technique and any unencrypted

communication (wired or wireless) is unaffected by password

strength.

T4. Password guessing attacks are either online or offline.

Resistance to them requires resisting 10^6 and 10^14 guesses

respectively.

This huge gap between offline and online guessing leads to the next

takeaway:

T5. No major gain in security is achieved by increasing password

strength after resisting online guessing, unless it also resists

offline guessing as well.

But if offline guessing is a concern because a server is uncertain

over the security of its password file, it could salt passwords before

hashing and storing:

T6. Rainbow table attacks, which are essentially lookup tables

with precomputed hashes can be defeated by salting or leakage of

password hashes.

But it turns out that offline guessing attacks are a cause of concern

only if the above is done:

T7. Offline guessing attacks are a concern only in the limited

situations when password files are salted and hashed, the files are

leaked and the leaks go undetected.

But if a server does not hash, it implies the following:

T8. If a server does not salt and hash but stores passwords in plain

or reversibly encrypted, it does not gain anything by enforcing

requirements for choosing strong passwords.

Indeed, because if an attacker gains the password file (and the key

if it was reversibly encrypted), he gets direct access to the

passwords. He does not need to guess them at all!

T9. Online attacks cannot be avoided entirely, but offline attacks

can be, by ensuring password file does not leak or mitigated by

having mechanisms that detect leaks and have disaster-recovery

plan to force system-wide resets.

Obviously, T9 is not always guaranteed; otherwise, entire password

literature would simply focus on preventing online attacks only.

4. User guidance
As one can notice, as simple and sensible Florencio et al.’s

takeaway points are, not all of them give guidance to the end-user

in choosing passwords. Hence, we will now use the concepts

explained in Florencio et al.’s work in deriving prudent practices

for users to follow in order to minimize their effort in choosing and

remembering passwords, and at the same time ensuring their

security against them being learnt by attackers.

Our first prudent practice P1 is related to T1 by Florencio et al.,

which is categorization of accounts. To tackle the problem of

having to maintain a large number of accounts, we suggest users to

start by categorizing them according to their consequence. Though

not backed up by a strong theoretical foundation, the following

categorization advocated by Florencio et al. seems adequate for

most individuals at this point:

(1) Don’t care accounts. These are basically those where a

password breach has no impact at all (e.g. one-time accounts for

obtaining VISAs, pay conference registration fee etc.).

(2) Low-consequence accounts. These are accounts where a

breach has some impact, though not life-changing for most.

Examples include social networking accounts (excluding high-

profile or celebrity users).

(3) Medium-consequence accounts. User accounts such as online

banking, or online shopping where credit card details are stored etc.

where a password breach at the minimum causes extra work such

as seeking credit card replacement or PIN change.

(4) High-consequence accounts. The most important accounts

with highest consequence for most users. For instance, password to

learning management system for a professor, or the password for a

system admin.

(5) Ultra-sensitive accounts. These are servers and things where

extremely few individuals would have access to (e.g. nuclear

missile codes, multi-million dollar irreversible bank transfers).

We will focus only on the three categories in between, but not the

“don’t care” accounts or ultra-sensitive accounts since they are

either of no consequence or rarely concern the regular public.

For easy remembrance and avoidance of password sharing among

inter-category accounts, we suggest the use of “seeds” that are

unique for a category (Note that we also advocate against sharing

usernames across categories as far as possible):

P1. It is prudent to choose a seed value that has enough entropy

to withstand guessing attacks (online and/or offline as per the

consequence of the accounts in the category and the password

storage mechanism of the server). The seed should then be

supplemented with server-specific information to derive unique

passwords within a category.

As an example, one could choose P@sswd as the seed and derive

passwords such as myP@sswd4gmail, myP@sswd4fb etc. for

accounts in a low-consequence category.

The “password storage mechanism” in the above principle refers to

the user knowledge on how the server stores its passwords, which

is not always known to users. However, for some accounts it can

be found. For instance, if the server sends back passwords in email

corresponding to “forgot my password” requests, it certainly stores

passwords in plain-text. Also, if an account is employment-related,

perhaps information on the level of security could be gathered on

its storage. At any rate, once the mechanism of password storage is

known, one can use the other principles below to transform the seed

into a strong password.

P2. If a server emails back a password in plain or does not ask

users for a strong password, most likely the server stores

passwords in plain or encrypts the password file. Hence, it is

prudent to not aim for a strong password. On the other hand, if a

server asks to reset the password when a user forgot it, it most

likely hashes and stores passwords. In those cases, depending on

the account and the server, it is worth going for a password that

resists online or offline guessing attacks.

For instance, a server that uses CAPTCHAS detects online

guessing, it is not necessary to choose a password that resists online

guessing. If the server seemingly does not detect online guessing

attempts, depending on the consequence of the account, it is

prudent to choose a password that would resist at least 106 guesses.

Whether server is equipped against online guessing or not, if it is a

high consequence account where the server seemingly hashes the

passwords, a password (or even a “pass phrase” if needed and

appropriate) that resists 1014 guesses is recommended to thwart off-

line guessing attacks.

Even after choosing a seed for the category and creating a

password, just basic entropy measures are not sufficient to check

its strength, as explained in our next prudent practice:

P3. Just choosing a password that satisfies crude entropy based

policies is not sufficient. It is important to create the password so

that it cannot be created easily by finding a word in a suitable

dictionary and changing some of the characters to symbols or

numbers.

How much help are password meters? Florencio et al. make an

interesting observation that we use to frame our next prudent

practice in using password meters checking strength:

P4. Password meters are to be used as a rough guideline to

measure password strength so as to resist guessing. Since they do

not check against a dictionary but only static rules coded inside

client-side script, a “bill of strength” from a meter does not

guarantee strength against guessing.

Next we focus on password changes following expiration policies

or self-suspicion of guessing attacks.

P5. Minor changes to passwords do not prevent guessing attacks

(e.g. adding a numeric character at the end). Expiration policies

are set to restrict the time for off-line guessing for attackers. But

if password is learnt by guessing, the next password will be easily

learnt.

For instance, changing one character to upper-case merely doubles

the effort for the attacker in the case of guessing attacks [7].

We now move on to passwords entered on public machines or

public wireless networks.

P6. If it is an account that is frequently accessed on public

machines or public networks, changing the password frequently

is the only option. If they are not learnt by guessing attacks, even

minor changes suffice and strength doesn’t matter.

Finally, we give a prudent practice for choosing usernames, once

again following some observations pointed out by Florencio et al:

P7. Unless required by the server, refrain from using your email

address as username, as it could lead you to use the same

password. Also, if attacker gets the password file, he also gets your

email address and can compromise your other accounts.

We have designed a flow-chart diagram based on these concepts,

that can assist regular users in selecting their next password. The

diagram is included as Fig 2 in Appendix due to its size.

5. Conclusion
In this paper, we have given a detailed history and concepts

regarding passwords. We have analyzed Florencio et al.’s work in

detail, summarized the important points and used them to derive

prudent practices to guide users in choosing their passwords in a

way that optimizes their effort while maximizing their security.

At present, we are working on expanding this, with precise

guidelines to generate passwords using seeds for desired strength

(e.g. to resist 106 guesses). We are also researching on prudent ways

in which tools and techniques that can be utilized for strengthening

passwords (e.g. using Telepathwords) or easing their management

(e.g. using password managers). We are confident of finishing

research on these aspects to present a fuller user guide on smart and

secure password selection process.

6. References

[1] D. Florencio, C. Herley and P. C. van Oorschot, "An

Administrator’s Guide to Internet Password Research," in

USENIX Symposium, 2014.

[2] B. Schneier, "Schneier on Security," March 2014. [Online].

Available:

https://www.schneier.com/blog/archives/2014/03/choosing

_secure_1.html.

[3] A. Narayanan and V. Shmatikov, "Fast Dictionary Attacks

on Passwords Using Time-space Tradeoff," in ACM CCS,

New York, NY, 2005.

[4] S. Komanduri, R. Shay, L. Cranor and C. Herley,

"Telepathwords: preventing weak passwords by reading

users' minds," in Proceedings of the 23rd USENIX Security

Symposium, 2014.

[5] D. Silver, S. Jana, E. Chen, C. Jackson and D. Boneh,

"Password Managers: Attacks and Defenses," in 23rd

USENIX Security Symposium (USENIX Security '14), San

Diego, 2014.

[6] OpenWall, John the Ripper password cracker.

[7] M. Weir, S. Aggarwal, M. Collins and H. Stern, "Testing

metrics for password creation policies by attacking large

sets of revealed passwords," in ACM CCS, 2010.

Appendix
Password

is new?

Choose seed based on

category of account (L,

M, H etc.)

Create

password based

on seed

Seed look-

up table
Used on

public

machines?

Are you

changing in

response to an

expiration

policy?

No point in

creating a new

one.

Slight change in

existing

password is

sufficient

Change it

frequently

depending on

importance

Yes
No

 Ye

Yes No

 Ye

Yes No

 Ye

Encrypted,

hashed &

salted
Plain

Make it

stronger to

resist 1014

guesses

Make it strong

enough to resist

106 guesses

Encrypted &

hashed
Encrypted

Account

importance

High?

Yes No

 Ye

Fig 2. Flow-chart to select a password for new or existing accounts

