DEVELOPER
THINGS:
JAVA LOGGING

A STACKIFY PUBLICATION

TABLE OF CONTENTS

Introduction
P A C B 4
Acknowledgements. ..o 4
Development
Logging OV erVieW. o 5
Logging APIs ., 5

Basic Setup

Maven Configuration.o 6
Directory StrUCTUIe. . i 8
Initial Build. ... 8
Local Maven ReposSitory. ..o 9
SLF4J Logging APl ... 9
Default Configuration. ..o 10
SimpleLogger Configuration..........coooiiiiiiii e 11
Log Levels. 12
JSON Formatting. ..o 13
Conditional Logging...ccooiiii 16
Parameterized MessagesS. ..o i 17
Logging EXCeptions. ..o 18
Mapped Diagnostic ConteXts.....cooooviiiiii 18
Logback
Logging Solutions. ... 21
Logback Environment.......cooiiii 22
Logback Example. ... 23

Spring Web Applications

Spring Initiailizr. . 25
Spring Maven Configuration........ocoooiiii 25
Greeting Object ..o 27
Web Controller.. ..o 28
Application Startup....ccooo i, 29
UnNit TSt i 30
Spring Boot Application. ... 31
Web Route URL TeStS. .o, 32

Tomecat AcCess Log. . 32

Logback Configuration

Basic Default Configuration.......cooooiiiiiii 33
Variable Substitution..........oooi 34
Advanced Configuration........coooiiiiii e, 35
A D D BN BT S 36
Encoders and Layouts. ..o 38
L O g g T S i 40
Filtering LOgS. i 41
Conditional Configuration.........cooiiiii 45
Extending Logback.......ooooii 46
HTTP Request/Response Logging.....ccoovieiiiiiiiii, 477
Operations
Getting Serious about LOgging......coooviiiiiii b1
Application SUP PO b7
VoK SM AT BT . b7

Stackify Retrace

Custom Logging Appenders......ccoooiiii e, 58
Direct Log4dl12 Appender.....ccoooiiiiiii e b8
Direct Logback Appender.......coooiiiiiii e b8
Direct Log4d2 Appender....coooiiii 59
Data MasKing...oooooi i 60
Standalone Logwatcher.....oooooiiii 60
Logging Dashboard.........coooiiii 60

Log Management

Centralized Cloud Solution.........cooooiii 61
Filtering LOgS . i 61
Examining Exceptions and Time Periods...............ocoeeiinni. 61
Searching Your LOgS. ..o 62
Exploring Java Exception Details..........oooooii L, 63

Application Monitoring

MoONItOrS & ATt S i 65

ErrOr RaAt e S e e e 65

Resolved Errors & New Errors ..o, 66

LOg MOt Or S e 66

Java Logging Best Practices......ooiiiiii 67
Conclusion

Some Closing Words from Stackify.......coooovii, 69

INTRODUCTION

ABOUT YOUR JAVA LOGGING GUIDE

This Java Guide provides best practices and tips for logging. We emphasize an
integrated DevOps process that spans application development and operations.
It consolidates, integrates, refines and extends content from the following
previous Stackify blog articles.

- Solving Your Logging Problems with Logback

- Java Best Practices for Smarter Application Logging and Exception Handling

ACKNOWLEDGEMENTS

We thank the original authors of the source articles written for the Stackify
blog, Eugen Paraschiv and Eric Martin. Also this could not have been
accomplished without the significant effort from our technical editor, Doug
Warren.

Furthermore, Jennilee Tangpuz made this project possible with support from
Stackify Founder and CEO, Matt Watson, assistance from Bruce Solomon, and
helpful reviews by Eric Martin, Natalie Sowards, and Darin Howard.

https://stackify.com/logging-logback/
https://stackify.com/java-logging-best-practices/

AN OVERVIEW

Initially, we focus on application development, testing, and debugging. We will
cover the Simple Logging Facade for Java (SLF4J) APl using its SimpleLogger
implementation, and describe features and techniques in several examples
including a Spring web application. Maven provides the build system with
dependency management using a Java 8 platform with JUnit b testing.

We introduce the Logback logging framework, and explore its enhanced
capabilities and advanced configuration with appenders, encoders, layouts, and
loggers. Then we will address key operations topics using Log4J with the
Stackify Retrace cloud solution for log management and application monitoring
to support applications after deployment into a production environment.

WHY LOGGING MATTERS

Logging is a crucial part of any application for both debugging and audit
purposes, and choosing an adequate logging library is a foundational decision
for any project.

There are many Java logging frameworks and libraries available, and most
developers use one or more of them every day. Two of the most common
examples for Java developers are Logback and Log4J. They are simple, easy to
use, and work great for developers.

However, we should be logging better by now! Basic log files are just not
enough, and these Java best practices and tips will help you make the most of
them! Naturally, raw logging is just one aspect of understanding and reacting to
a running application, next to monitoring errors, log management and other
techniques that create a more holistic picture of your system. We will also
highlight those areas as well.

LOGGER APIS

There are several Logger APIs available, which can get very confusing. For
example, there’s SLF4J, Logback, Log4J, Log4J2, JDK java.util.logging (JUL),
Apache Java Commons Logging (JCL), and probably others. So how do you know
which ones to use, especially since they can be used in different combinations?
Well, we're going to make it easy for you.

https://stackify.com/error-monitoring/
https://stackify.com/log-management/

Each of these frameworks have their own unique logging API, but you should use
the Simple Logging Facade for Java (SLF4J) APl for whatever logging framework
you choose underneath for your specific implementation. This common interface
offers the greatest flexibility since it enables you to substitute any logging
implementation without having to change your code.

It can also be very tricky to get all the dependencies and configurations
correctly setup, but we have provided examples so that it works for you. That
way you can focus on your application and its logging, rather than fighting to get
your environment established properly.

BASIC SETUP

So let’s get started with our examples. First we define a Maven project with
dependencies for SLF4J, SimpleLogger, and JUnit 5; later we replace
SimpleLogger with Logback. Then we can create our initial HelloLogging example,
where we set up our Logger and demonstrate using the APl to log messages.

MAVEN CONFIGURATION

We use the Apache Maven 3 build system for project information, dependency
management, and documentation. It will utilize the standard project directory
structure, POM (project object model) configuration, and plugins for
development goals such as compile, test, and package. Furthermore, the
examples are supported by JUnit b tests. First we need to define a Maven
project with this pom.xml configuration file, which identifies our dependencies
on SLF4j, SimpleLogger, JUnitb, and Java 8. Explore Maven and JUnit for details
about setting up your development environment.

<?xmlversion="1.0" encoding="UTF-8"7>
<project
xmlns="nttp://maven.apache.org/POM/4.0.0"
xmlns:xsi="http:// www.w3.0rg/2001/XMLSchema-instance’
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupld>com.stackify.guide</grouplds>
<artifactld>logging-slf4j</artifactid>
<version>1.0.0</version>
<packaging>jar</packaging>

https://maven.apache.org/
https://junit.org/junit5/

<properties>
<java.version>1.8</java.version>
<maven.compiler.source>${java.versionf</maven.compiler.source>
<maven.compiler.target>$i{java.versiont</maven.compiler.target>
<file.encoding>UTF-8</file.encoding>
<project.build.sourceEncoding>$ifile.encoding}
</project.build.sourcekEncoding>
<project.reporting.outputEncoding>$i{file.encoding}
</project.reporting.outputEncoding>
</properties>

<dependencies>
<l-- SLF4J: Simple Logging Facade for Java APl -->
<dependency>
<groupld>org.slf4j</grouplds>
<artifactld>slt4j-api</artifactid>
<version>1.8.0-betaO</version>
</dependency>

<I-- SLF4J: SimpleLogger -->
<dependency>
<groupld>org.slf4j</grouplds>
<artifactld>slt4j-simple</artifactid>
<version>1.8.0-betaO</version>
</dependency>

<l-- JUnit 5: Unit testing framework -->

<dependency>
<groupld>org.junit.jupiter</grouplds>
<artifactld>junit-jupiter-api</artifactid>
<version>5.0.2</version>

</dependency>

</dependencies>
</project>

DIRECTORY STRUCTURE

Now create the main and test directory structure for Java source files and
resources. You can do this in your IDE or issue these commands in a terminal.

mkdir -p src/main/java/com/stackify/guide/logging/slf4j/hello
mkdir -p src/main/resources

mkdir -p src/test/java/com/stackify/guide/logging/slt4j/hello
mkdir -p src/test/resources

It’s also suggested that you create a README.md file with Markdown text
documentation for your project.

logging-slf4]
Source examples for Java Guide: Logging (Stackify)

Your directories will now be ready for the package structure of the HelloLogging
example.

~/Projects/stackify/guide/logging-slf4]

-—— README. md
-—— pom.xml
-—— SrC
F—— main
F—— java
L— com
L—— stackify
L—— guide
L—— logging
L—— slf4
L—— hello
L—— resources
L—— test
F—— java
| L—— com.stackify.guide logging.slf4]
| L—— hello
L—— resources

INITIAL BUILD

We haven't even created any Java source files yet, but we have established a
build system that we can use and extend throughout the project. So with the
Maven project now defined, we can add the dependencies for our project and
download the necessary JARs for our classpath by entering the following
command in a terminal console, or by using the Maven support in your |IDE.

https://guides.github.com/features/mastering-markdown/

mvn install

This compiles and tests any Java source files, copies resources, and packages
the project artifact as a JAR archive file (logging-sif4j-1.0.0.jar).

At this point, our project directory structure has been extended with the
compiled Java main and test classes used to package the JAR.

L—— target
—— classes
|——— logging-slf4j-1.0.0 jar
L—— test-classes

LOCAL MAVEN REPOSITORY

Maven also installed that JAR and POM into the local Maven repository under the
user’s home directory (~/.m2/repository).

~/.m2/repository/com/stackify/guide
F—— logging-slf4]
F—— 1.0.0
F—— _remote.repositories
F—— logging-slf4j-1.0.0.jar
L—— logging-slf4j-1.0.0.pom
L—— maven-metadata-local.xml

SLF4J LOGGING API

The logging interface is very simple. You create one or more Loggers using a
LoggingFactory, and then write messages with log statements for a logger at a
specific logging level.

First, we need a few imports that specify the packages required for the SLF4J
APl that we are using. Of course, you could use a wildcard with a single
statement import org.slf4j.”; Although IDEs offer assistance to generate
imports, it’s important that the correct Logger is being selected so we make
this explicit. For example, if you had multiple libraries in your classpath, you
might get prompted for many different Logger classes in various packages.

Then, a Logger is created from the SLF4J LoggerFactory class. This example
uses a single static Logger constant called log that will be initialized once for
each class with the fully-qualified class name
(com.stackify.guide.logging.slf4j.hello.HelloLogging). We're going to use “log” to
produce our messages, rather than calling it “logger” (or LOGGER or LOG), since
it seems to read better that way.

Finally, we start writing log messages with the logging APls using methods for
the desired log level (error, warn, info, debug, or trace).

package com.stackify.guide.logging.slf4j.hello;

import org.slf4j.LoggerkFactory;
import org.slf4j.Logger,;

public class HelloLogging {
private static final Logger log =
LoggerFactory.getLogger(HelloLogging.class);
public static void main(Stringl] args) {
log.info("Welcome to logging with the SLF4] APL");

DEFAULT CONFIGURATION

Initially, we use the basic default configuration. This writes log messages at the
INFO level or higher (WARN and ERROR) to the console (System.out). When you
run this HelloLogging Java application, you see the following log output in the
console.

imain] INFO com.stackify.guide.logging.slf4j.hello.HelloLogging - Welcome to
logging with the SLF4j API.

With no configuration, the default output format includes the relative time in
milliseconds, thread name (main), log level (INFO), logger name (fully-qualified
class name), message, and line separator.

PREFIX

Prefix is a lightweight tool that
shows Java developers

LOGS + ERRORS + QUERIES + MORE
in real time - FOR FREE!

| earn Morel

10

https://stackify.com/prefix/

SIMPLELOGGER CONFIGURATION

Use this initial configuration in a properties file for the SLF4J SimplelLogger
implementation. Save it as simplelogger.properties in the src/main/resources
directory, which will be copied by Maven when packaging the project JAR (or
WAR) artifact.

org.slf4j.simpleLogger.defaultLoglLevel = TRACE

org.slt4j.simplelLogger.logFile = System.out
org.slt4j.simpleLogger.logFile = target/simple.log

org.slfdj.simpleLogger.showDateTime = true
org.slt4j.simpleLogger.dateTimeFormat = yyyy.MM.dd HH:mm:ss 7

org.slfdj.simpleLogger.show ThreadName = false
org.slt4j.simplelLogger.levellnBrackets = true
org.slfdj.simpleLogger.showShortLogName = true

With defaultLoglLevel=TRACE, it will include all log levels displayed on the
console (logFile=System.out); however you can change this if you want it stored
in a file instead, such as target/simple.out (as shown in the comment line).

The showDateTime=true property displays date/time with the dateTimeFormat
based on Java SimpleDatefFormat; this example includes date with 4-digit year
(yyyy), 2-digit month (MM), and 2-digit day (dd) separated by periods, as well as
time with 2-digit hour (HH), 2-digit minutes (mm), 2-digit seconds (ss)
separated by colon.

The timestamp is followed by timezone (CST for me). This might not be that
useful in this simple starter configuration. However this becomes extremely
important when you start aggregating logs (like at Stackify), especially from
multiple applications on various platforms in different locations. In that case, it
would probably be better to be GMT time in ISO8601 format (X), but we will use
local time (CST) for now.

If you want more precise timing, you can add milliseconds (.S). The log level is
shown in brackets (levellnBrackets=true). If you prefer WARNING (like Maven

uses) for the WARN level, just override the default warnLevelString.

The default includes the fully-qualified logger name (showLogName=true), which
would be com.stackify.guide.logging.slf4j.hello.helloLogging for this example.

11

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

However, you can choose to just display the last component of the logger name

(usually the class, like HelloLogging) with showSortLogname=true. The latter is

much simpler, except for complex applications, so we have selected that option.
This will produce log output with the following format.

yyyy.mm.dd hh:mm:ss z [level] shortLogName message

So you now see the following output.

2018.01.11 15:40:24 CST [INFO] HelloLogging - Welcome to logging with the SLF4]
API.

LOG LEVELS

The APl makes the following b log levels available, arranged as a hierarchy in the
following order. Errors (ERROR) are highest, then warnings (WARN) and
information (INFO) Note that logging at INFO level would also include those
above it (WARN and ERROR). The lowest levels are intended to provide finer
(DEBUG) and finest (TRACE) details for developers. You can also use OFF in your
configuration to suppress all logging output, but that might be dangerous since
you would not see any errors or warnings.

- ERROR
- WARN
- INFO

- DEBUG
- TRACE

Each of these levels has a corresponding logging method: warn, error, info,
debug, and trace.

og.error("Action requiredl!”);
og.warn("Might be a possible problem.”);
og.info("Useful in production logs.”);
og.debug(“Information for developers.”);
log.trace("Log everything with details!”);

l
|
l
l

Always use the logging level that provides the smallest level of detail that is
sufficient. This reduces as much as possible the amount of logging data that
you have to sift through. For example, with defaultLoglLevel=TRACE in
simplelogger.properties, you will see this output.

12

2018.01.06 15:14:52.826 CST |[ERROR] Action required!

2018.01.06 15:14:52.826 CST [WARN] Might be a possible problem.
2018.01.06 15:14:52.826 CST [INFOJ] Useful in production logs.
2018.01.06 15:14:52.826 CST [DEBUG] Information for developers.
2018.01.06 15:14:52.826 CST [TRACE] Log everything with details!

It might be reasonably assumed for production applications that operations
would always set log level at INFO to capture error, warning, and information
messages; might sometimes use DEBUG for diagnostic investigation of
intermittent problems; and never use TRACE because of potential performance
implications. If you change defaultLoglLevel to INFO, then you would only see
this subset with lower-level TRACE and DEBUG messages suppressed.

2018.07.11 19:31:66 CST [ERROR] HelloLoggingTest - Action required!
2018.01.11 19:31:566 CST [WARN] HelloLoggingTest - Might be a possible problem.
2018.01.11 19:31:56 CST [INFOJ] HelloLoggingTest - Useful in production logs.

JSON FORMATTING

You might want to include objects formatted as JSON strings in your log
messages, especially during debugging. There are various ways to read/write
JSON and serialize arrays and objects; we will introduce a few common solutions
with Gson (Google JSON) and Jackson.

Gson

This can be done easily using a Google JSON library called Gson. Simply add the
following to your Maven project configuration file (pom.xml) so that the JAR is
added to your classpath.

<l-- Gson: Google JSON utility -->

<dependency>
<groupld>com.google.code.gson</groupld>
<artifactld>gson</artifactld>
<version>2.8.2</version>

</dependency>

13

https://github.com/google/gson

We will use a simple Employee class for our JSON examples under src/main/java
having a String name property initialized by a public constructor and accessed
with typical getter/setter methods.

package com.stackify.guide.logging.slf4j.employee;

import org.slf4j.Logger,;
import org.slf4j.LoggerkFactory;

public class Employee {
private static final Logger log = LoggerfFactory.getLogger(Employee.class);
orivate String name;
public Employee(String name) {setName(name):!
public String getName() {return name;}
public void setName(String name) {this.name = name;}
public String logString() {
return "Employee (logString) {

+'name="+ name + '\" + '}’

}

Then create a JSSONTest class under src/test/java that demonstrates using
Gson to log Employee objects as JSON messages in either a flat string or
hierarchical pretty format at the debug level.

package com.stackify.guide.logging.slf4j.employee;
import org.slf4j.Logger;
import org.slf4j.LoggerkFactory;

import org.junit.jupiter.api. I est;

import com.google.gson.Gson;
import com.google.gson.GsonBuilder;

class JSONTest {
static final Logger log = LoggerFactory.getLogger(GsonTest.class);

Employee employee = new Employee('John Doe");;

@Test void testLogString() {
log.debug(employee.logString()):

14

@ [est
void testGsonMessage() {
Gson gson = new Gson{();
log.debug("Employee (Gson object): {}', gson.todson(employee));

@ T est
void testGsonPretty() {
Gson gsonPretty = new GsonBuilder().setPrettyPrinting().createl();
log.debug("Employee (Gson pretty): \n{}", gsonPretty.todson(employee)):;

Running JSONTest shows the following console output.

2018.01.11 20:58:00 CST [DEBUG] JSONTest - Employee (logString) {name="'dohn
Doe'}

2018.01.11 20:568:01 CST [DEBUG] JSONTest - Employee (Gson object):
{"'name""John Doe'"}

2018.01.11 20:568:01 CST [DEBUG] JSONTest - Employee (Gson pretty):

{

'name" "John Doe"’

J

Jackson

Another popular JSON formatting library is Jackson 2, which uses an
ObjectMapper along with annotations for data binding. Add these dependencies
to pom.xml to incorporate Jackson into the project.

<l-- Jackson 2 -->

<dependency>
<groupld>com.fasterxml.jackson.core</groupld>
<artifactld>jackson-core</artifactld>
<version>2.9 3</version>

</dependency>

<dependency>
<groupld>com.fasterxml.jackson.core</grouplds>
<artifactld>jackson-annotations</artifactld>
<version>2.9 3</version>

</dependency>

15

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson-annotations
https://github.com/FasterXML/jackson-databind

<dependency>
<groupld>com.fasterxml.jackson.core</grouplds>
<artifactld>jackson-databind</artifactld>
<version>2.9 3</version>

</dependency>

Then add the necessary imports to JSONTest with a new JUnit b test for JSON
by Jackson.

import com.fasterxml.jackson.core.JsonProcessingkException;
import com.fasterxml.jackson.databind.ObjectMapper;

ObjectMapper mapper = new ObjectMapper();

@ T est

void testdackson() throws JsonProcessingException {
String result = mapper.writeValueAsStringlemployee);
log.debug("Employee (Jackson): {}", result);

Testing JSONTest now adds this additional output for the new test.

2018.01.11 22:22:36 CST [DEBUG] JSONTest - Employee (Jackson): {"name":"John
Doe'"}

CONDITIONAL LOGGING

You can check whether a specific level is enabled before logging. For example,
this would avoid string concatenation or building toString for a complex object
argument.

f (log.isDebugEnabled()) {
log.debug("Logger name: "’

}

+ log.getName()");

Run ning DevO PS with In this podcast episode, hear how Stackify does
NOOpS DevOps to monitor their large production

environment on Microsoft Azure - without an
Yes, it's possible. Here's how we do it. operations team.

Click here to listen!

16

https://stackify.com/podcast-devops-without-ops/

PARAMETERIZED MESSAGES

In some cases, the log message may contain parameters which have to be
evaluated. However, if the log level for the message is not enabled, then that is
not really necessary.

For example, let’'s assume that we have an Employee class with a name, along
with an EmployeeService that calculates a bonus for a given employee. However,
if we were calculating bonuses for all our employees, we might not want that
additional overhead unless we were debugging the application.

package com.stackify.guide.logging.slf4j.employee;

import org.slf4j.Logger,;
import org.slf4dj.LoggerkFactory;

oublic class EmployeeService {
private static final Logger log = LoggerFactory.getLogger(EmployeeService.class);

public int calculateBonus(Employee employee) {
log.debug('Calculating bonus...");
if (employee.getName().equals("Mary Smith")) {
return 10000;

}
return 1000;

One way to avoid this situation and therefore improve performance is to check
the log level before logging the message and constructing the parameter:

Employee employee = new Employee("John Doe’);
EmployeeService employeeService = new EmployeeServicel);

f (log.isDebugEnabled()) {
log.debug('The bonus for employee: " + employee.getName() +
"is "+ employeeService.calculateBonus(employee));

As you can see, this is simple but can get a bit verbose. Another alternative is

to make use of message format parameters where “{}” substitutes parameters
only when the indicated level is enabled without having to surround it with an if
condition block.

17

log.debug('The bonus for employee {} is {}"', employee.getName(),
employeeService.calculateBonus(employee));

This format ensures that the logger will first verify that the log level is enabled,
and only afterward will use the value of the parameters to construct the log
message. It is important to avoid such unnecessary method execution,
serialization, and formatting.

There are method signatures for one or two parameters, as well as a special
version for three or more variable arguments (...arguments); this last one does
incur a minor cost of creating an Object[] array before invoking the method.

LOGGING EXCEPTIONS

It is critical to capture exceptions when errors happen so that you can identify
the cause of problems and enable them to be resolved quickly. Besides the
logger statements with a message and one or more object arguments, there is
another variation shown here, where an exception is provided as the last
argument.

try {
// Database query: findEmployeeByld(id)

} catch(SQLException ex) {
log.error("Employee not found: {id}’, id, ex);

J

Note that there is no placeholder for the exception like there is for id; also a
message is required when you include an exception, even if it’s only “Exception
follows:”. It’s probably best to handle and log exceptions at the source, if
possible.

Of course, you can choose to declare thrown exceptions, and handle them
further up the stack where there might be more context, or a
Thread.setDefaultUncaughtExceptionHandler. In any case, don’t just catch and
ignore, log and re-throw, or not include sufficient details about the error so it
can be addressed.

MAPPED DIAGNOSTIC CONTEXTS

Logging helps to debug and audit complex distributed client-server or web
applications and services that support multiple clients simultaneously, typically
on separate threads. Of course, it would be hard to identify associated log
output by user and/or transaction, so you might consider associating a separate
logger for each client; however, this approach would be strongly discouraged
because it proliferates loggers and their increased management overhead.

18

To address this requirement, the SLF4J logging API provides the Mapped
Diagnostic Context (MDC) as a lighter technique to uniquely stamp each log
request servicing a given client with contextual information, such as client id, IP
address, and request parameters. The MDC is managed on a per-thread basis,
and logging components will automatically include this information in each log
entry. Also note that a child thread does not automatically inherit a copy of the
mapped diagnostic context of its parent.

A simple static APl enables you to put a diagnostic context String value as
identified with a String key parameter into the current thread’s diagnostic
context map, which can be retrieved later by other logging components.

MDC.put('userRole", "ADMIN");
MDC.put('userld", "jdoe");
MDC.put('action", "Create.user');

log.info("Admin Action");

MDC.clear():

There is a special pattern layout in the encoder for the Logback configuration
that you will see later. The %mdc or %X placeholder is used to format log
messages with MDC context values associated with the thread that generated
the event. In fact, there is an example of a sifting appender with a default MDC
discriminator that will direct log messages to an ADMIN log based on a userRole
key.

<pattern>%X{userRole} %X{userld} %X{action} - %¥m%n</pattern>

If the mdc conversion word is followed by a key between braces, as in
%omdc{userRole}, then the MDC value corresponding to the key 'userRole' will be
output. When the value is null, then the default value is output, if specified
after the key with the :- operator, like %mdc{userRole:-USER}. If no default
value is specified, than the empty string is output. If no key is given, then the
entire content of the MDC will be output in the format "keyl=vall, key2=val2".

For example, to produce userRole=ADMIN, userld=jdoe, action=Create.user, any
of these <pattern> layout format conversion words would work.

userRole=%mdc{userRole}, userld=%mdc{userld} action=%mdci{action}
userRole=%X{userRole! userld=%X{userld} action=%X{action}
userRole=%X{userRole:-USER} userld=%X{userld} action=%X{action}

19

https://logback.qos.ch/manual/mdc.html
https://logback.qos.ch/manual/mdc.html

However, userRole=ADMIN, userld=jdoe, action=Create.user would be
produced by %mdc (or %X) alone, since the entire context map is output (with
equals and comma delimiter). It might be good to use %mdc when you want the
entire context map, and %X{key} to specify one or more individual values in the
log message.

Actually, it might be preferable to convert a JSON object with key “json” to
String as an MDC value. Then %omdc would produce json={userRole=ADMIN,
userld=jdoe, action=Create.user}. However, if you still wanted to use userRole
as a discriminator, you could use %oX{userRole}, % X{json} to get
userRole=ADMIN, json={userld=jdoe, action=Create.user}. There is a lot of
flexibility here, but this emphasizes that you need to plan your logging system,
and establishing standards would be very important.

You also have the ability to get or clear the context value for a specific key, as
well as clear/set/get the entire context map (Map<String, String>). See the MDC
chapter in the Logback manual and Javadoc for details.

This SLF4J AP| delegates to an underlying logging system with MDC
functionality, which is only currently available with Logback and Log4J; an empty
or basic adapter is provided for logging system without MDC support, such as
SLF4J Simple Logger (or NOP), as well as JDK java.util.logging. Therefore, you
can take advantage of this capability without dependencies on a particular
logging implementation.

20

https://logback.qos.ch/manual/mdc.html
https://www.slf4j.org/api/org/slf4j/MDC.html

LOGBACK

LOGGING SOLUTIONS

Now that we understand how to use the common SLF4J application interface
with the basic SLF4J SimpleLogger implementation, we can now explore the
more advanced logging frameworks Logback and Log4J. First we cover the
popular Logback logging framework for Java applications that was created as a
successor to Log4J 1.2,

Next we will create a web application using Spring Boot, which uses Logback for
its default logging system, it also generates a lot of log messages from all the
frameworks, like Spring WebMVC, Tomcat web server, JPA data persistence,
Hibernate object/relational mapping (ORM), H2 relational database, SQL, REST
web services, etc.

Then we will describe Apache Log4J 2, which also extended Log4dJ 1.2 with
additional features beyond Logback. Finally, we illustrate some scenarios with
Stackify Retrace cloud log management using Log4J 1.2.

Logback Advantages

These are some of the features and advantages of Logback over Log4J 1.2,
which it supersedes. These highlight some reasons why Logback is a great
choice for a logging framework.

. faster execution compared to Log4J 1.2

. native support of Simple Logging Facade for Java (SLF4J), which offers a
common logging APl that makes it easy to switch to a different logging
framework later if necessary

. conditional processing of the defined configuration

. advanced filtering capabilities

. compression of archived log files

. support for setting a maximum number of archived log files

« HTTP access logging

. recovery from I/0 failures

21

https://logging.apache.org/log4j/1.2/

Logback Structure

The Logback project is organized into 3 main modules:

. logback-core: basic logging functionality

. logback-classic: additional logging improvements, such as SLF4J API support

. logback-access: integration with servlet containers, such as Tomcat and
Jetty

LOGBACK ENVIRONMENT

To start using Logback requires adding the [ogbhack-classic dependency to the
Java classpath. We do that in Maven by adding the Logback 1.2.3 dependency
under <dependencies>. You will notice that we define Maven variables as
<properties> so that we have all our software versions identified in one place,
which makes it easier to upgrade when they change.

<dependency>
<groupld>ch.qos.logback</groupld>
<artifactld>logback-classic</artifactld>
<version>1.2.3</version>
</dependency>

This single dependency is enough since Maven will transitively pull in the
additional logback-core and slf4j-api dependencies.

If no custom configuration for logback.xml is defined, Logback provides a simple
automatic configuration. By default, this ensures that log statements are
printed to the console at DEBUG level. Note that the SLF4J SimpleLogger
default was INFO.

LOGBACK API

The Logback framework has its own native logging API, which uses a
LoggerContext (instead of LoggerFactory) and a different Logger. Here’s what
logging looks like with that API.

import ch.qos.logback.classic.LoggerContext;
import ch.qgos.logback.classic.Logger;

LoggerContext lc = new LoggerContext();

Logger log = lc.getlLogger(UserServiceTest.class),
log.debug("Debug log message from native Logback APl via LogContext');

22

http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22logback-classic%22

LOG4J2 API

There is also a unique AP| for the Log4J2 framework; yet another Logger with a
LogManager this time.

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

Logger log = LogManager.getLogger(UserServiceTest.class);
l0og.debug('Debug log message from native Log4J2 APl via LogManager");

However, we are not going to use either of these. We suggest that you use the
SLF4J APl instead, which is supported by Logback, Log4J2, and Log4J 1.2, as
well as SLF4J SimplelLogger.

LOGBACK EXAMPLE

This basic example for a user service shows logging using the same SLF4J AP|
with our new Logback implementation. This demonstrates how different logging
frameworks can be used without changing the developer interface.

UserService
Here is our user service class.

package com.stackify.logging.slf4j.user;

import org.slf4j.Logger,;
import org.slf4j.LoggerkFactory;

public class UserService {
private static final Logger log =
LoggerFactory.getLogger(UserService.class);
public UserServicel() {
l0og.debug("New UserService created.");

UserServiceTest
Thisis aJdUnit b test for the user service.

package com.stackify.logging.slf4j.user;
import org.junit.jupiter.api. =,

import org.slf4j.Logger,;
import org.slf4j.LoggerkFactory;

23

public class UserServiceTest {
private static final Logger log =
LoggerfFactory.getLogger(UserServiceTest.class),

private UserService userService = new UserServicel();

@ [est

public void testUserServicel() {
log.debug('Testing UserService ...");
// Test something!

Test Logback Output

Since we now have Logback logging enabled, it’s time to see it work by running
the JUnit 5 tests with Maven again, which builds and tests everything in the
project. Rather than using the console terminal, you will probably choose to use
the enhanced IDE support available for Java, Maven, JUnit, and Spring to run the
applications and tests.

mvn clean test

This is the output of running the tests.

22:55:08.159 [main] DEBUG com.stackify.logging.slf4j.user.UserService - New
UserService created.
22:55:08.166 [main] DEBUG com.stackify.logging..slf4j.user.UserServiceTest -
Testing UserService

24

SPRING WEB APPLICATIONS

Now let’s create a web application using Spring Boot.

SPRING INITIALIZR

Using the Spring Initializr is the easiest way to create a Spring Boot project.

® Generate a Maven project with Java and Spring Boot 1.6.9
® |dentify Project Metadata
O Group: com.stackify.guide
O Artifact: logging.spring
® Sclect Spring Boot Starters and dependencies
O Web
® Generate Project: Downloads Maven project configuration file (pom.xml)
® Make these cosmetic adjustments
O Change name from “demo” to “guide-logging-spring”
O Update description to “Stackify Guide: Logging - Spring Boot Web app”
O Change version from 0.0.1-SNAPSHOT to 0.0.1

SPRING MAVEN CONFIGURATION

We are now going to create a new project using this generated Maven POM
project configuration file, which contains all the necessary starters and
dependencies for a Spring Boot WebMVC application with an H2 database, and
uses Logback as the default logging system.

<?xmlversion="1.0" encoding="UTF-8"/>
<project
xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xs="http:// wwww3.org/2001/XMLSchema-instance
xsi:schemalLocation="nhttp://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd"
<modelVersion>4.0.0<modelVersion>

i

25

https://start.spring.io/

<groupld>com.stackify.guide</groupld>
<artifactld>logging-spring</artifactld>
<version>1.0.0</version>
<packaging>jar</packaging>
<relativePath/>

<name>logging-spring</name>
<description>

Stackify Guide: Logging - Spring Boot Web app
</description>

<l-- Inherit Spring Boot Starter defaults from repository -->

<parent>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-parent</artifactid>
<version>1.5.9 RELEASE</version>
<relativePath></relativePath>

</parent>

<dependencies>
<l-- Spring Boot: Web -->
<dependency>
<groupld>org.springframework.boot</grouplds>
<artifactld>spring-boot-starter-web</artifactid>
</dependency>

<l-- Spring Boot: Developer Tools -->

<dependency>
<groupld>org.springframework.boot</grouplds>
<artifactld>spring-boot-devtools</artifactid>
<optional>true</optional>

</dependency>

<l-- Spring Boot: Test -->
<dependency>
<groupld>org.springframework.boot</grouplds>
<artifactld>spring-boot-starter-test</artifactld>
<scopex>test</scope>
</dependency>
<dependencies>

<build>
<plugins>
<l-- Package Spring Boot application as executable JAR -->
<plugin>
<groupld>org.springframework.boot</grouplds>
<artifactld>spring-boot-maven-plugin</artifactld>
<version>${spring-boot.version}</version>
</plugin>
</plugins>
</build>

</project>

GREETING OBJECT

First, let’s create a Greeting class with attributes of id (long) and content
(String) with getters, as well a constructor for initialization. Also a toString
method is provided for formatted string output (like log messages).

package com.stackify.guide.logging.spring.greeting;

public class Greeting {
private final long id,;
private final String content;

oublic Greeting(long id, String content) {
this.id = id;
this.content = content;

public long getld() { return id; }

public String getContent() { return content; }

public String toString() { return "Greeting{" +
'ild="+1id + " content=" + content + \" + '}’

For more complex domain objects, you might want to provide a toLog method
that produces a subset of all the attributes with an id and key information
useful for application monitoring and log management. It can also be helpful to
include a toJSON method that produces JSON-formatted output that could be
used for structured logging.

27

WEB CONTROLLER

Next, we need to define a GreetingController as a REST web service controller
for our Spring Web MVC application. This defines URL mappings for two routes.
One (“/”) simply returns “Hello Spring”, and the other (“/greeting”) returns a
custom greeting with an optional name request parameter (with default value of
“Spring”) and produces a JSON document response using Jackson.

package com.stackify.guide.logging.spring.greeting;

import org.springframework.web.bind.annotation.GetMapping,;
import org.springframework.web.bind.annotation. RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.util.concurrent.atomic. AtomiclLong;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

@RestController
public class GreetingController {

private static final Logger log =
LoggerFactory.getLogger(GreetingController.class);

private static final String template = "Hello, %s!",
private final AtomicLong counter = new AtomiclLong();

@GetMapping('/")
String home() {
log.info("Hello Spring!");
return "Hello Springl”;
@GetMapping('/greeting")
Greeting greeting(
@RequestParam(value = "name’, defaultValue = "'Spring") String name) {
String response = String.format(template, name);
long id = counter.incrementAndGet();
Greeting greeting = new Greetinglid, response);

log.info("{}", greeting),

return greeting;

28

APPLICATION STARTUP

Then, of course, we must have the GreetingApp that starts our Spring Boot
application.

package com.stackify.guide.logging.spring.greeting;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.slf4j.Logger,;
import org.slt4j.LoggerFactory;

@SpringBootApplication
public class GreetingApp {
private static final Logger log = LoggerFactory.getLogger(GreetingApp.class);

public static void main(Stringl] args) {
log.info("Starting Spring Boot REST WebMVC app...");

SpringApplication app = new SpringApplication(GreetingApp.class);

// Customize Spring Boot startup - No banner or startup messages
app.setBannerMode(Banner.Mode.OFF);
app.setLogStartupinfo(false);

// Disable automatic restart and live reload.
System.setProperty(“spring.devtools.restart.enabled’, false);

app.run(args);

This Spring Boot application (GreetingApp) is normally started with default
setting by the static method SpringApplication.run(GreetingApp.class), but here
we create an instance to customize our startup before running it. We suppress
the Spring Boot banner and turn off the startup INFO logs. Also we disable
automatic restart and live reload (for now) to simplify the log output without
the restartedMain thread. This illustrates how any system property can be
programmatically set, although usually it would make more sense to use the
application.properties external configuration file.

29

Normally, Spring Boot starts an embedded Tomcat server at port 8080.
However, since you might already have another Tomcat server at that address,
it might be best to define a different server.port like 8888 in the Spring Boot
application.properties file under both the src/main/resources and
src/test/resources directories.

server.port = 8888

UNIT TESTS

It would also be useful to have JUnit b tests for our Greeting, so let’s add this
GreetingTest class under src/test/java.

package com.stackify.guide.logging.spring.greeting;
import org.junit.jupiter.api. lest;
import org.slf4j.Logger,;

import org.slf4j.LoggerFactory;

class GreetingTest {
private static final Logger log = LoggerfFactory.getLogger(GreetingTest.class);

@ Test

void testGreeting() {
log.info("Starting Greeting tests...);
Greeting greeting = new Greeting(1, "Hello");
log.info(greeting.toString());

SPRING BOOT APPLICATION

Finally, you can start the Spring web application via your IDE, or Maven command
“mvn spring-boot:run”. You would normally see quite a few startup messages in
the console until the GreetingApp is started in the embedded Tomcat web
server on localhost:8888 (but we suppressed them).

- Spring Boot (v1.5.9.RELEASE)
2018.01.09 10:47:03 -06 [INFO] GreetingApp - Starting GreetingApp ...

2018.01.09 10:47:06 -06 [INFOJ] TomcatEmbeddedServietContainer - Tomcat
initialized with port(s): 8080 (http)

2018.01.09 10:47:06 -06 [INFO] StandardService - Starting service [Tomcat]
2018.01.09 10:47:06 -06 [INFOJ StandardEngine - Starting Servlet Engine: Apache
Tomcat/8.56.23

2018.01.09 10:47:06 -06 [INFO]J [/] - Initializing Spring embedded
WebApplicationContext

2018.01.09 10:47:07 -06 [INFOJ] TomcatEmbeddedServietContainer - Tomcat
started on port(s): 8080 (http)

2018.01.09 10:47:07 -06 [INFO] GreetingApp - Started GreetingApp in 4.15 seconds
(JVM running for 4.788)

2018.01.09 10:47:16 -06 [INFO] [/] - Initializing Spring FrameworkServlet
'dispatcherServlet

2018.01.09 10:47:16 -06 [INFO] DispatcherServlet - FrameworkServlet
'dispatcherServlet': initialization started

2018.01.09 10:47:16 -06 [INFO] DispatcherServlet - FrameworkServlet
'dispatcherServlet' initialization completed in 26 ms

However, we have a much simpler log output, since we are now only logging
WARN or ERROR messages from our application package, and ignoring INFO
messages from Spring. You can suppress the startup banner with
spring.main.banner-mode=off in application.properties.

15:47:37.6771 Imain] INFO com.stackify.guide.logging.spring.greeting.GreetingApp -
Starting Spring Boot REST WebMVC app via Tomcat on port 8888...

31

WEB ROUTE URL TESTS

Then try these scenarios in your browser.

1. localhost:8888
Hello Spring!

2. localhost:8888/greeting
{'id"1,"content"."Hello, Spring!"}

3. localhost:8888/greeting?name=John

{"id"2 "content""Hello, John!"}

TOMCAT ACCESS LOG

Tomcat can produce an access log (similar to Apache or Nginx) that logs all
incoming requests. The default embedded web server for Spring Boot has this
disabled by default, but we will turn it on so you can see what the common log
format looks like. We added these lines to application.properties to enable this
access log feature and set the log directory (which must already exist). By
default, these log files will have “access_log” prefix before the date (yyyy-MM)

with .log suffix.

server.tomcat.accesslog.enabled = true

server.tomcat.accesslog.directory = /spring-tomcat-logs

Using tail -f /spring-tomcat-lgs/access_10g.2018.01.21.log shows us the

following requests.

0:0:0:0:0:0:0:1 - - [21/Jan/2018:16:14:561 -0600] "GET / HTTP/1.1" 200 13
0:0:0:0:0:0:0:1 - - [21/Jan/2018:16:14:46 -0600] "GET /greeting HTTP/1.1" 200 46
0:0:0:0:0:0:0:1 - - [21/Jan/2018:16:14:42 -0600] "GET /greeting?name=John

HTTP/1.1" 200 44

LOGBACK
CONFIGURATION

To create a configuration for Logback, you can use XML as well as Groovy. The
system will automatically select and use the configuration, as long as you
adhere to the naming convention.

There are three valid standard file names that you can choose from, which will
be searched in this order:

. logback-test.xml
. logback.groovy
. logback.xml

BASIC DEFAULT CONFIGURATION

The examples in this tutorial will rely on a simple XML logback.xml file. Let’s see
what a basic configuration equivalent to the default one looks like:

<?xmlversion="1.0"encoding="UTF-8"7>
<configuration>
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender'>
<encoder>
<pattern>%d{HH:mm:ss.SSS} [%wthread] %-5level %logger{50} -
%msg%n</pattern>
</encoder>
</appender>
<root level="INFO">
<appender-ref ref="STDOUT" />
</root>
</configuration>

This configuration defines a ConsoleAppender with a PatternLayout. Log

messages on the console will be displayed at level DEBUG or above (INFO,
WARN, ERROR) when using the defined pattern:

18:25:57.903 [main] INFO c.s.guide.logging.spring.greeting.GreetingApp - Starting
Spring Boot REST WebMVC app via Tomcat on port 8888...

33

An interesting and quite useful feature is that the library can automatically
reload configuration files when they're modified. You can enable this behavior
by setting the scan="true” attribute:

<configuration scan="true">

By default, the library scans and reloads files every minute, so it might be
useful for long-running web applications.

To view the configuration log, you can add the debug="true” attribute:

<configuration debug="true">

This can also be quite helpful for development since it really speeds up
identifying potential configuration errors.

VARIABLE SUBSTITUTION

Logback configuration files support defining and substituting variable values.

Simply put, variables can be defined using <variable> elements; however,
<property>is also accepted since that's what variables were called in earlier
versions (as well as Log4J), and you may see that in many configuration files or
examples. Even though the Logback documentation emphasizes variable
substitution, their own configuration examples still use <property>.

Variables can be defined inline within the configuration file like this:

<variable name="fileName" value="file.log">

Then you can access the variable using the typical {} syntax:

<file>${fileName}</file>

Another option is to define variables externally, where they are loaded from a
properties file or classpath resource:

<variable resource="application.properties”>

The properties defined in the application.properties file will be defined as
variables in the logback.xml file.

Let’s take a closer look at each of the main configuration elements to start
putting together more complex, and ultimately more useful configurations.

34

ADVANCED CONFIGURATION

This section covers additional configuration features, such as appenders,
encoders, layouts, loggers, filters, conditional processing, and extensions.

APPENDERS

In the Logback architecture, appenders are the elements
responsible for writing log statements. All appenders must
implement the Appender interface.

Furthermore, each appender corresponds to a certain type of
output or mode of sending data. Here are some of the most helpful
appenders that you can configure:

. ConsoleAppender - writes messages to the system console

. FileAppender - appends messages to a file

. RollingFileAppender - extends the FileAppender with the ability to roll over
log files

« SMTPAppender - sends log messages in an email, by default only for ERROR
messages

.« DBAppender - adds log events to a database

. SiftingAppender - separates logs based on a runtime attribute

Let’s see a few configuration examples for some of these.

Standard Console OQutput
The ConsoleAppender is one of the more basic appenders available in Logback
since it can only log messages to System.out or System.err.

The configuration for this appender usually requires specifying an encoder, as
we saw in the basic example configuration from the previous section.

By default, messages are logged to System.out, but you can change that using
the target attribute:

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender'>
<target>System.err</target>
</appender>

Rollover Log Files

Of course, using a FileAppender for logging to a file is naturally the better way
to go in any kind of production scenario where you need persistent logs.
However, if all the logs are kept in a single file, this runs the risk of becoming
too large and difficult to wade through. It's also makes long-term storage and
warehousing of log data very difficult.

That's when rolling files come in handy. To address this well-known limitation,
Logback provides the RollingFileAppender, which rolls over the log file when
certain conditions are met (like time or size). For example this might be monthly,
daily, or hourly; you might use archive folders (yyyy-MM), compress them as zip
files, and choose your retention period.

The appender has two components:

. RollingPolicy - how rollover is performed
. TriggeringPolicy - when file is rolled over

To better understand these policies, let's create an appender which makes use
of a TimeBasedRollingPolicy and a SizeBasedTriggeringPolicy:

<?xmlversion="1.0"encoding="UTF-8"7>
<configuration>
<appender name="STDOUT" class="ch.gos.logback.core.ConsoleAppender'>
<encoder>
<pattern>%d{HH:mm:ss.SSS} [®thread] %-5level %logger{b0} -
%Msgrn</pattern>
</encoder>
</appender>

<appender name="rollingFileAppender’
class="ch.qos.logback.core.rolling.RollingFileAppender'>

<rollingPolicy
class="ch.qos.logback.core.rolling. TimeBasedRollingPolicy">
<fileNamePattern>log-%diyyyy-MM-dd} log</fileNamePattern>
<maxHistory>30</maxHistory>
<totalSizeCap>3GB</totalSizeCap>

</rollingPolicy>

<triggeringPolicy
class="ch.qos.logback.core.rolling.SizeBased TriggeringPolicy'>
<maxFileSize>3MB</maxFileSize>

</triggeringPolicy>

36

<encoder>
<pattern>|[%thread] %-blevel %logger{36} - xmsg%n</pattern>
</encoder>
</appender>

<root level="INFO">
<appender-ref ref="STDOUT" />
<appender-ref ref="rollingFileAppender" />
</root>
</configuration>

The TimeBasedRollingPolicy implements both a RollingPolicy and a
TriggeringPolicy.

The example above configures the fileNamePattern attribute based on the day -
which means the name of each file contains the current date, and also that the
rollover will happen daily.

Notice how we're limiting the log data here - maxHistory is set to a value of 30,
alongside a totalSizeCap of 3 GB - which means that the archived logs will be
kept for the past 30 days, up to a maximum size of 3 GB.

Finally, the SizeBasedTriggeringPolicy configures the rollover of the file
whenever it reaches 3 MB. Of course that’s quite a low limit, and a mature log-
viewing tool like Retrace from Stackify can certainly handle a lot more than that.

You can now see how we’'ve slowly moved out from basic examples to a more
realistic configuration that you can actually start using as the project moves
towards production.

User Context Logs

The SiftingAppender can be useful in situations when you want logs to be
separated (or sifted) based on a runtime attribute such as the user session. For
example, this might be used to create distinct log files per user, since it can
separate logging events according to user session via dynamic nested
appenders.

A class attribute on the <discriminator> tag identifies the type used for sifting
(default, context, access, JNDI, or MDC). If none is specified, the default is
MDCBasedDiscriminator, where the discriminating value is the MDC value
associated with the given key property; if that MDC value is null, then the
defaultValue is used.

37

https://stackify.com/best-log-viewer-prefix/
https://stackify.com/best-log-viewer-prefix/

For the discriminator to have access to the userRole key, you need to place it in
the MDC (Mapped Diagnostic Context), which enables you to set information to
be later retrieved by other Logback components using a simple static API:

MDC put("userRole", "ADMIN");
log.info("Admin Action");

This will write the log message in a file called ADMIN.log, with all others going to
the default ANONYMOUS.log.

To see this functionality in action, let’s configure a SiftingAppender that
separates logs into different files based on the userRole key, and add another
<appender-ref> under the roOt logger:

<appender name="roleSiftingAppender’
class="ch.qos.logback.classic.sift.SiftingAppender's
<discriminator>
<key>userRole</key>
<defaultValue>ANONYMOUS</defaultValue>
</discriminator>
<gift>
<appender name="fileAppender’
class="ch.qos.logback.core.FileAppender'>
<file>${userRole}.log</file>
<encoder>
<pattern>%d [%thread] %level %mdc %logger{b0} - %$msg%n</pattern>
</encoder>
</appender>
</Sift>
</appender>

ENCODERS AND LAYOUTS

Now that you're starting to understand how appenders work, and just how
flexible and powerful they are, let’s focus on another foundational component in
Logback.

The components responsible for transforming a log message to the desired
output format are layouts and encoders.

Layouts can only transform a message into a String, while encoders are more
flexible and can transform the message into a byte array and then write that to
an OutputStream. This means encoders have more control over when and how
bytes are written.

38

As a result, starting with version 0.9.19, layouts have been deprecated, but
they can still be used for a transition period. If you do still use layouts actively,
Logback will print a warning message:

This appender no longer admits a layout as a sub-component, set an encoder.
instead.

While they're starting to be phased out, layouts are still widely used and quite a
powerful component on their own, so they're worth understanding.

Some of the most commonly used layouts are PatternLayout, HTMLLayout, and
XMLLayout - let’s have a quick look at these in practice.

The PatternLayout layout creates a String from a log message based on a
conversion pattern, which is quite flexible and allows declaring several
conversion specifiers; these can control the characteristics of the output
String such as length and color, and can also insert values into the output
String.

Let’s see an example of a PatternLayout that prints the name of the logging
thread in green, logger name with a length of 50 characters, and log levels using
different colors with the %highlight modifier. Earlier versions of Logback
wrapped a <pattern>in a <layout>, which has been deprecated and replaced by
<encoder>; so the PatternlLayout is now wrapped in an convenient
PatternLayoutEncoder designed for this layout:

<appender name="colorAppender' class="ch.qos.logback.core.ConsoleAppender'>
<encoder class="ch.qgos.logback.classic.encoder.PatternLayoutEncoder"'>
<pattern>%d %green([%thread]) %highlight(%level) %loggerib0} -
%msg%n</pattern>
</encoder>
</appender>

The output of this configuration shows log lines with the format we defined:

2018-01-21 19:09:36,829 [main] INFO
c.s.guide.logging.spring.greeting.GreetingApp - Starting Spring Boot REST WebMVC
app via Tomcat on port 8888...

Web Page Output

The HTIMLLayout displays log data in an HTML table format, to which you can add
custom styles. Let’s configure an HTMLLayout using a LayoutWrappingEncoder
to avoid the deprecation warnings:

39

<appender name="htmlAppender' class="ch.qos.logback.core.FileAppender'>
<file>log.html</file>
<encoder class="ch.qos.logback.core.encoder.LayoutWrappingeEncoder'>
<layout class="ch.qgos.logback.classic.html.HTMLLayout">
<pattern>%thread%level%logger%»msg</pattern>
</layout>
</encoder>
</appender>

In the example above, the layout is used by a FileAppender to print logs to a
log.html file. Here’'s what the content of the HTML file will look like, using the
default CSS.

So far, we've used the layout examples in the two main encoders available:
PatternLayoutEncoder and LayoutWrappingEncoder. The purpose of these
encoders is to support the transition from layouts to encoders.

LOGGERS

Loggers are the third main component of Logback, which developers can use to
log messages at a certain level (and higher). Note that the levels may be
specified as either lowercase (“debug” - like APl methods) or uppercase
(“DEBUG” - like static Level constants).

In previous examples, we've seen a configuration of the root logger:

<root level="debug'>
<appender-ref ref="STDOUT" />
</root>

A root logger at the top of the logger hierarchy is always provided, even if you
don’t configure it explicitly; if none is defined, it will use a default
ConsoleAppender at the DEBUG level. However, our example explicitly

configures aroot logger at DEBUG level using the STDOUT console appender
defined earlier.

Let’s now define another logger, with an INFO level, which uses the
rollingFileAppender:

40

<logger level="info" name="rollingFileLogger">
<appender-ref ret="rollingFileAppender" />
</logger>

If you don’t explicitly define a log level, the logger will inherit the level of its
closest ancestor; in this case, the DEBUG level of the root logger.

As you can see, the name attribute specifies a logger name that you can later
use toretrieve that particular logger:

Logger rollingFileLog = LoggerFactory.getLogger('rollingFileLogger");
rollingFileLog.info("Testing rolling file log");

What's interesting here is that you can actually also configure the log level
programmatically, by casting to the ch.qos.logback.classic.Logger class, instead
of the org.slf4j.Logger interface:

ch.gqos.logback.classic.Logger rollingFileLog =
(ch.gos.logback.classic.Logger)
LoggerFactory. getLogger('rollingFileLogger');
rollingFileLog.setLevel(Level DEBUG);
rollingFileLog.debug("Testing rolling log level"):

Logger Additivity

By default, a log message will be displayed by the logger that writes it, as well
as ancestor loggers. And since root is the ancestor of all loggers, all messages
will also be displayed by the root logger.

To disable this behavior, you need to set the additivity="false” property on the
logger element:

<logger level="info" name="rollingFileLogger" additivity="false">
<./‘l.ogger>
FILTERS

Deciding what log information gets processed based on the log level is a good
way to get started, but at some point, that’s simply not enough.

Logback has solid support for additional log filtering, beyond just the log level,
This is done with the help of filters - which determine whether a log message

should be displayed or not.

Simply put, a filter needs to implement the Filter class, with a single decide()

41

method. This method returns enumeration values of type FilterReply: DENY,
NEUTRAL or ACCEPT.

The DENY value indicates the log event will not be processed, while ACCEPT
means the log event is processed, skipping the evaluation of the remaining
filters.

Finally, NEUTRAL allows the next filters in the chain to be evaluated. If there a
no more filters, the message is logged.

Here are the primary types of filters we have available: LevelFilter,
ThresholdFilter and EvaluatorFilter.

Filtering Levels
The LevelFilter and ThresholdFilter are related to the log level, with the
difference that LevelFilter verifies if alog message is equal to a given level,

re

while the ThresholdFilter checks if log events are at or above a specified level.

Let’s configure a LevelFilter that only allows ERROR messages:

<appender name="STDOUT_LEVEL_FILTER_APPENDER'
class="ch.qgos.logback.core.ConsoleAppender's
<filter class="ch.qos.logback.classic.filter.LevelFilter's
<level>ERROR</level>
<onMatch>ACCEPT</onMatch>
<onMismatch>DENY</onMismatch>
</filter>
<encoder class="ch.gos.logback.classic.encoder.PatternLayoutEncoder"'>
<pattern>%d{HH:mm:ss.SSS} [%wthread] %-5level %logger{36} -
%msg%n</pattern>
</encoder>
<target>System.err</target>
</appender>

As you can see, the filter is associated with an appender that outputs the
messages to the System.err target.

42

Filtering Thresholds

Similarly, you can configure the ThresholdFilter by specifying the level attribute
below which the filter rejects messages. This filters out TRACE (below DEBUG),
but accepts DEBUG and those above (INFO, WARN, and ERROR).

<appender name="STDOUT_THRESHOLD_FILTER_APPENDER'
class="ch.qos.logback.core.ConsoleAppender's
<filter class="ch.qos.logback.classic.filter. ThresholdFilter's
<level>DEBUG</level>
</filter>
<encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder's
<pattern>%d{HH:mm:ss.SSS} [%wthread] %-5level %logger{36} -
%Msgrn</pattern>
</encoder>
</appender>

Conditional Filters

Now let’s have a look at the EvaluatorFilter, which we can use for more complex
conditions. The EvaluatorFilter implements the same decide() method as the
two level-based filters above, and uses an EventEvaluator object to determine
whether a log message is accepted or denied.

There are actually two implementations available:

« GEventEvaluator - contains a condition written in Groovy
. JaninoEventEvaluator - uses a Java expression as an evaluation condition

Both evaluators require additional libraries on the classpath: groovy-all for the
first EventEvaluator and janino for the second.

Let’s take a look at how to define a Java-based EventEvaluator.

First, you need the janino dependency:

<dependency>
<groupld>org.codehaus.janino</groupld>
<artifactld>janino</artifactld>
<version>3.0.8</version>

</dependency>

The evaluation condition has access to several objects, including event,
message, logger, and level. Based on these, you can configure a filter using a
JaninoEventEvaluator:

43

<appender name="STDOUT_EVALUATOR_FILTER_APPENDER"
class="ch.qos.logback.core.ConsoleAppender's
<filter class="ch.qos.logback.core. filter.EvaluatorFilter'>
<evaluator class="ch.gos.logback.classic.boolex.JaninokEventEvaluator's
<expression>
return(level > DEBUG &&
message.toLowerCasel().contains("employee'));
</expression>
</evaluator>
<OnMismatch>DENY</OnMismatch>
<OnMatch>ACCEPT</OnMatch>
</filter>
<encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder's
<pattern>%d{HH:mm:ss.SSS} [®thread] %-5level %logger{36} -
%Msgrn</pattern>
</encoder>
</appenders>

The example above configures a filter that only accepts log messages that have
a level higher than DEBUG and contain the "employee” text.

For more high-level filtering, Logback also provides the TurboFilter class.

Limit Duplicate Messages

The TurboFilter filter behaves in a similar way to the Filter class, with the
distinction that it’s not associated with a specific appender. Instead of
accessing a logger object, it's connected to the logging context and is invoked
for every logging request.

Here's a simple implementation of this class - the DuplicateMessageFilter. This
configuration only allows 2 repetitions of the same log message (meaning 3
instances of it) and eliminates all subsequent ones.

<configuration>
<turbokFilter
class="ch.qos.logback.classic.turbo.DuplicateMessageFilter's
<AllowedRepetitions>2</AllowedRepetitions>
</turboFilter>
</configuration>

44

CONDITIONAL CONFIGURATION

Sometimes you want to use different configuration file options for various
situations or environments based on specific conditions.

Logback supports <if>, <then>, <else> elements that control whether a part of
the configuration is processed or not. This is a unique feature among logging
libraries and requires the previously mentioned janino library.

To define the conditions evaluated to control the processing of configuration,
you can use the Java language. Furthermore, the expressions only have access
to context or system properties.

A common use case is enabling a different configuration for separate
environments:

<property scope='context’ resource="application.properties’ />
<if condition="property('env').equals('dev")'>
<then>
<root level="TRACE">
<appender-ref ref="STDOUT" />
</root>
</then>
</if>

This example configures the root logger to display messages of all levels to the
console, but only for the development environment, defined through an env=dev
property in the application.properties file.

EXTENDING LOGBACK

Beyond the many features that Logback already contains, its architecture
allows for the possibility of creating custom components that you can use in
the same way as the default ones.

For example, here are several ways you can extend Logback functionality by
creating custom elements.

. appender - extend AppenderBase and implement append()
. layout - subclass LayoutBase and define doLayout()

. filter - extend Filter and implement decide()

. TurboFilter - extend TurboFilter and override decide()

45

The configuration of custom elements is the same as standard elements.

Let’s define a custom TurboFilter that will ignore all log messages of a specific

logger:

package com.stackify.guide.logging;

import ch.qgos.logback.classic.Level;

import ch.qgos.logback.classic.Logger,;

import ch.qgos.logback.classic.turbo. TurbokFilter;
import ch.qos.logback.core.spi.FilterReply;
import org.slf4j.Marker;

public class IgnoreLoggerFilter extends TurboFilter {
private String loggerName;

@QOverride
public FilterReply decide(Marker marker, Logger logger,
Level level, String format, Objectl] params, Throwable t) {
f (loggerName == null) {
return FilterReply. NEUTRAL;
} else if (loggerName.equals(logger.getName())) {
return FilterReply. DENY;
} else
return FilterReply. NEUTRAL;

public void setLoggerName(String loggerName) {
this.loggerName = loggerName;

The logger that the filter will ignore is specified through the loggerName
property.

Next you can easily configure the custom filter:

<turbokFilter class="com.stackify.guide.logging.lgnorelLLoggerFilter'>
<LoggerName>colorLogger</LoggerName>
</turboFilter>

46

HTTP REQUEST/RESPONSE LOGGING

Often, you would like to view the details of HTTP requests and responses for

your web application. You might consider using custom Logback filters, servlet

filters, Spring interceptors, or AOP pointcuts to include this in your logs, but

there is an easier way with Logbook.

<properties>
<logbook.version><logbook.version>
<properties>

<dependency>
<groupld>org.zalando</groupld>
<artifactld>logbook-core</artifactid>
<version>${logbook.versioni</version>

</dependency>

<dependency>
<groupld>org.zalando</groupld>
<artifactld>logbook-servlet</artifactld>
<version>${logbook.version}</version>

</dependency>

<dependency>
<groupld>org.zalando</groupld>

<artifactld>logbook-httpclient</artifact!d>

<version>3$i{logbook.version}</versions
</dependency>
<dependency>
<groupld>org.zalando</groupld>

<artifactld>logbook-spring-boot-starter</artifactld>

<version>${logbook.version}</version>
</dependency>

Now, add the following configuration to logback.xml. This defines a timestamp
(withDash) that will used as a suffix for the logbook file appender that is
associated with the logbook default logger category (org.zalando.logbook.

Logbook) at the TRACE level. Logbook generates a structured JSON object, and

we prefix a “msg” key preceded by a “time” key with the timestamp. Then, we
wrap the entry in curly braces as a JSON object followed by a comma.

Finally, we can edit the output file to enclose all the records in a JSON array
within square brackets, after removing the last comma. You can view these

JSON logs with various editors, formatters, and tools; for example to might try

an online JSON formatter or the ja command-line JSON processor.

47

https://jsonformatter.curiousconcept.com/
https://stedolan.github.io/jq/

<timestamp key="withDash" datePattern="yyyy'--MM'-'dd’-"HH-'mm'-'ss"/>

<appender name="logbookAppender' class="ch.qos.logback.core.FileAppender's

<file>logbook-${withDash}.json</file>
<encoder>
<pattern>{"time""%d{HH:mmM:ss.SSS}", 'msg":%msg}, kn</pattern>
</encoder>
</appender>

<logger level="TRACE" name="org.zalando.logbook.Logbook" additivity="false">
<appender-ref ref="logbookAppender" />
</logger>

After trying localhost:8888 to get an HTML response, as well as

localhost:8888/greeting to produce an JSON response, here’s the logbook file

as pretty-printed JSON output via jg (with the period as an “all” filter) in the

terminal (skipped the HTML headers).
jq . logbook-2018-01-23-156-38-48.json

You might want use to use pipes for larger files like
cat logbook-2018-01-23-15-38-48.txt | jg "' | less

Also Python has a similar built-in JSON pretty printing tool
cat logbook-2018-01-23-15-38-48.txt | python -mjson.tool | less

Here's what it looks like.

[
{
"time". "156:39:04.805",
'msg": {
‘origin'; 'remote’,
'type’ 'request’,
‘correlation”; "184892ce-cc0a-4f9¢c-91af-8a340045477¢’,
‘orotocol” "HTTP/1.17,
‘remote’ '0:0:0:0:0:0:0:1",
‘method": "GET",
"uri': "nttp://localhost:8888/",

"neaders" |

48

{
"time" "156:39:05.001",
'msg" 1
‘origin®: "local’,
'type’ 'response’,
‘correlation’; "184892ce-cc0a-4f9c-91af-8a3400456477¢",
‘duration’; 222,
'‘orotocol” "HTTP/1.1",
'status’: 200,
'headers": {
'Content-Length": [
173
],
'Content-Type": [
"text/html,charset=UTF-8"
],
'Date": [
'"Tue, 23 Jan 2018 21:39:04 GMT"
],
"X-Application-Context": |
‘application:8888"
]
},
'‘body" "Hello Spring!’
J

J,

{

"time" "15:39:10.024",
'msg": {
‘origin’: 'remote’,
"type": 'request’,
'‘correlation"; 'd4f67c65-23fa-4d43-9ea8-3800cd /97108,
‘orotocol” "HTTP/1.1",
'remote’ '0:0:0:0:0:0:0:1",
'method" "GET",
‘uri': "http://localhost:8888/greeting’,

"neaders": {

49

"time" "15:39:10.0564",
'msg": {
‘origin®: "local’,
'type': 'response’,
'‘correlation"; 'd4f67c65-23fa-4d43-9ea8-3800cd /97108,
‘duration’; 23,
'‘orotocol” "HTTP/1.17,
'status’: 200,
'headers": {
'Content-Type": [
‘application/json;charset=UTF-8"
],
'Date": [
'"Tue, 23 Jan 2018 21:39:10 GMT"
],
'"Transfer-Encoding": [
‘chunked'
],
"X-Application-Context": [
‘application:8888"
]
},
"body": {
id" 1,
‘content” "Hello, Springl’

J

Start seeing what your code is

hiding from you.

And do it for FREE.

Download now!

"Prefix quickly highlighted that there
were hundreds of database calls for a
single web method call, something that
didn’t show up in the standard
performance analysis tools.

[A] simple fix literally cut the web
method call time in half making me look
like an instant hero!”

- Werner van Deventer. DevEnterprise
Software

https://stackify.com/prefix
https://stackify.com/prefix/

OPERATIONS

Our focus now shifts to operations after applications have been developed,
tested, and deployed. It is extremely important to consolidate logs with a
centralized cloud platform to effectively manage, monitor, and support
application operations in a production environment that supports any business
or organization. Stackify Retrace offers a solution for log management and
application monitoring that makes this possible. Now let’s discuss how that can
be done.

GET SERIOUS ABOUT LOGGING

Once you're working on an application that is not running on your desktop, log
messages (including exceptions) are usually your only lifeline to quickly
discovering why something in your application isn’t working correctly. Sure, APM
tools can alert you to memory leaks and performance bottlenecks, but generally
lack enough detail to help you solve a specific problem. Why can’t this user log
in, or why isn’t this record processing?

Stackify built a “culture of logging” that set out to accomplish these goals:

1. Log everything. Log as much as we possibly can in order to always have
relevant, contextual logs that don't add overhead.

2. Work smarter, not harder. Consolidate and aggregate all of our logging to a
central location that is available to all developers and easy to distill. Also
to find new ways for our logging and exception data to help us proactively
improve our product.

We’ll explore these best practices, and share what has been done to enable
them, much of which has become part of the Stackify log management product.
Also if you haven't used Prefix to view vour logs, be sure to check it out!

LOG EVERYTHING

Start Logging All the Things!
In a lot of shops log messages look like this:

} catch (Exception e) {
log.error(e.getMessagel();

J
51

https://stackify.com/application-performance-management-tools/
https://stackify.com/application-performance-management-tools/
https://stackify.com/memory-leaks-java/
https://stackify.com/log-management/
https://stackify.com/log-management/

Giving the developer credit, at least they are using a try/catch and handling the
exception. The exception will likely have a stack trace so you know roughly
where it came from, but no other context is logged.

Sometimes, they even do some more proactive logging, like this:

public void processResults(final List<Double results>) {
log.debug("Processing results”);

J

But generally, statements like that don't go a long way toward letting you know
what’s really happening in your app. If you're tasked with troubleshooting an
error in production, and/or it is happening for just one (or a subset) of the
application users, this doesn’t leave you with a lot to go on, especially when
considering your log statement could be a needle in a haystack in an app with
lots of use.

As mentioned earlier, logging is often one of the few lifelines you have in
production environments where you can’t physically attach and debug. You want
to log as much relevant contextual data as you can. Here are our guiding
principles on doing that.

Walk the Code

Let’s pretend that you have a process that you want to add logging around so
that you can look at what happened. You could just put a try/catch around the
entire thing and handle the exceptions (which you should), but it doesn’t tell you
much about what was passed into the request. Take a look at the following,
oversimplified example.

public class Foo {
orivate int id;
orivate double value;

public Fool(int id, double value) {

this.id = id:
this.value = value:

public int getld() {
return id;

public double getValuel() {
return value;

52

Take the following factory method, which creates a Foo. Note how the door has
been opened for error - the method takes a Double as an input parameter.
However, when its double value is accessed, there is no check for null and this
could cause an exception.

import org.slf4j.Logger;
import org.slf4j.LoggerkFactory;

public class FooFactory {
public static Foo createFool(int id, Double value) {
return new Foolid, value);

Note: the original example used value.doubleValue() in the return statement.
However, it is no longer necessary to explicitly perform this “unboxing” of the
double primitive value inside the Double wrapper object. But you can still get a
NullPointerException from the implicit conversion.

This is a simple scenario, but it serves the purpose well. Assuming this is a
really critical aspect of my Java app (can’t have any failed Foos!), let’s add
some basic logging so we know what’s going on.

import org.slf4j.Logger,;
import org.slf4j.LogFactory;

public class FooFactory {
private static Logger log = LoggerFactory.getLogger(FooFactory.class);

public static Foo createFoolint id, double value) {

l0og.debug('Creating a Foo');
try {
Foo foo = new Foolid, value);
log.debug('{}", foo),
return foo;
} catch (Exception e) {
log.error(e.getMessagel), e);

}

return null

Now, let’s create two Foo’s: one that is valid and one that is not:

53

https://stackify.com/static-factory-methods/

FooFactory.createFoo(1, Double.valueOf(33.0));
FooFactory.createFoo(2, null);

And now we can see some logging, and it looks like this:

2017-02-1517:01:04,842 [main] DEBUG com.stackify.logging.FooFactory: Creating
a FoOo
2017-02-1517:01:04,848 [main] DEBUG com.stackify.logging.FooFactory:
com.stackifytest.logging.Foo@5d22bbb7
2017-02-1517:01:.04,849 [main] DEBUG com.stackify.logging.FooFactory: Creating
a Foo
2017-02-15 17:01:04,851 [main] ERROR com.stackify.logging.FooFactory:
java.lang.NullPointerException

at com.stackify.logging.FooFactory.createFoo(FooFactory.java:15)

at com.stackify.logging.FooFactoryTest.test(FooFactoryTest.java:11)

Now we have some logging - we know when Foo objects are created, and when
they fail to be created in createFoo(). But we are missing some context that
would help. The default toString() implementation doesn’t build any data about
the members of the object, but the class name and its unique address joined
with an “at” symbol (@), which isn’t very useful. We have some options here,
but let’s have the IDE generate an implementation for us.

In Eclipse, right-click the class name and select "Source > Generate
toString()...” where there are several options such string concatenation (like
here) or StringBuilder for more complex objects; in Intellid IDEA, select Code (or
right click) > Generate... > toString(). Notice that Eclipse creates Foo [id=1,
value=33.0] with square brackets (slightly misleading since it’s not an array),
whereas IDEA produces “Foo {id=1, value=33.0}" with curly braces (more
appropriate for an object, similar to JSON format). Similar additional options are
available to generate standard constructor, getters, setters, hashCode, and
equals methods.

@Override
public String toString() {
return "Foo lid="+ id +

value="+ value + "]|"

Run our test again:

2017-02-15 17:13:06,032 [main] DEBUG com.stackify.logging.FooFactory: Creating
a FOO

2017-02-1517:13:06,041 [main] DEBUG com.stackify.logging.FooFactory: Foo
[id=1, value=33.0]

94

2017-02-1517:13:06,041 [main] DEBUG com.stackify.logging.FooFactory: Creating
a FoOO
2017-02-15 17:13:06,043 [main] ERROR com.stackify.logging.FooFactory:
java.lang.NullPointerkException

at com.stackify.logging.FooFactory.createFoo(FooFactory.java:15)

at com.stackify.logging.FooFactoryTest.test(FooFactoryTest.java:11)

Much better! Now we can see the object that was logged as “[id=, value=]".
Another option you have for toString is to use Java’'s reflection capabilities. The
main benefit here is that you don’t have to modify the toString method when you
add or remove members.

Here is an example using Google’s Gson library which converts Java objects
between JSON strings. Changing toString in Foo produces JSON.

public String toString() {
return gson.toJson(this);

J

Now, let’s look at the output:

2017-02-15 17:22:565,5684 [main] DEBUG com.stackifytest.logging.FooFactory:
Creating a Foo
2017-02-1517:22:565,751 [main] DEBUG com.stackifytest.logging.FooFactory:
{"id"1,"value":33.0}
2017-02-1517:22:65,754 [main] DEBUG com.stackifytest.logging.FooFactory:
Creating a Foo
2017-02-156 17:22:55,760 [main] ERROR com.stackifytest.logging.FooFactory:
java.lang.NullPointerkException

at com.stackifytest.logging.FooFactory.createFoo(FooFactory.java:15)

at com.stackifytest.logging.FooFactoryTest.test(FooFactoryTest.java:11)

When you log objects as JSON and use Stackify’'s Retrace tool, you can get some
nice details like this.

eric-ubuntu DEBUG Creating a Foo

eric-ubuntu DEBUG

“1dNumber

“valueNumber®: 3

Retrace Logging Dashboard JSON Viewer
o5

Diagnostic Contexts

And this brings us to one last point on logging more details: diagnostic context
logging. When it comes to debugging a production issue, you might have the
“Creating a Foo” message thousands of times in your logs, but with no clue who
the logged-in user was that created it. Knowing the user is priceless context to
quickly resolve anissue. Think about what other detail might be useful like
HttpWebRequest details. But who wants to remember to log it every time?
Diagnostic context logging comes to the rescue, specifically the mapped
diagnostic context. Read more about SLF4J’s MDC here:
https://logback.qos.ch/manual/mdc.html.

The easiest way to add context items to your logging for web applications is
usually a servlet filter. For this example, let’s create a servlet filter that
generates a transaction id and attaches it to the MDC.

public class LogContextFilter implements Filter {
public void init(FilterConfig config) {}
public void destroy () {}

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain) throws ServletException, |IOException {
String transactionld = UUID.randomUUID().toString();
MDC.put("TRANS_ID", transactionld);
try {
chain.doFilter(request, response);
}finally {
MDC.clear();

Now, we can see some log statements like this:

19:49:36.350 eric-ubuntu DEBUG Creating a Foo {"TRANS_ID":"d02c0890-b661-

4460-7a0cbb3d1763}
19:49:36.406 eric-ubuntu DEBUG {"id""1" "value”:33.0} {"TRANS _ID":"d02c0890-

b661-4460-7a0cb6b3d 1763}

More context. We can now trace all log statements from a single request.

Before moving to the next topic, let’s address a question that you might be
asking: “But if | log everything, won’t that create overhead, unnecessary
chatter, and huge log files?” Our answer comes in a couple of parts: first, use
the logging verbosity levels. You can log.debug() everything that you think

56

https://logback.qos.ch/manual/mdc.html

you'll need, and then set your configuration for production appropriately, i.e.
Warning and above only. When you do need the debug info, it’s only changing a
config file and not redeploying code. Second, if you're logging in an async, non-
blocking way, then overhead should be low. Last, if you're worried about space
and log file rotation, there are smarter ways to do it, and we’ll talk about that in
the next section.

APPLICATION SUPPORT

Have you ever had to work with your log files after your application left
development? If so, you quickly run into a few pain points.

. There's a lot more data.

. You have to get access to that data.

. It's spread across multiple servers.

. A specific operation may be spread across applications - so there are even
more logs to dig through.

. I[t’s flat and hard to query; even if you do put it in a database, you are going to
have to do full-text indexing to make it usable.

. [t's hard to read; messages are scrambled.

. You generally don’t have any context of the user, etc.

« You probably lack some details that would be helpful. You mean log.info(“In
the method”) isn’t helpful???

. You will be managing log file rotation and retention.

Additionally, you have all this rich data about your application that is being
generated, and you simply aren’t proactively putting it to work.

WORK SMARTER

Now that we're logging everything, and it's providing more contextual data,
we're going to look at the next part of the equation. As we’'ve mentioned and
demonstrated, just dumping all of this out to flat files still doesn’t help you out
a lot in a large, complex application and environment.

Factor in thousands of requests, files spanning multiple days, weeks, or longer,
and across multiple servers, and you have to consider how you are going to
quickly find the data that you need.

What we all really need is a solution that

. Aggregates all log & exception data to one place

. Makes it available instantly to everyone on your team

. Presents a timeline of logging throughout your entire stack/infrastructure
. Is highly indexed and searchable by being in a structured format

57

STACKIFY RETRACE

This is where we tell you about Stackify Retrace. As we sought to improve our
own abilities to quickly and efficiently work with our log data, we decided to
make it a core part of our product; yes, we use Stackify to monitor Stackify! We
share this with our customers since we believe it’'s an issue central to
application troubleshooting.

Custom Logging Appenders

First, we realize that lots of developers already have logging in place, and aren’t
going to want to take a lot of time to rip that code out and put new code in.
That's why we've created logging appenders for the most common Java logging
frameworks.

. logback (https://github.com/stackify/stackify-log-logback)
. log4j 2.x (https://github.com/stackify/stackify-log-log4j2)
. log4j 1.2 (https://github.com/stackify/stackify-log-log4j12)

Direct Log4J12 Appender
Continuing with log4j as a sample, the setup is easy. Just add the Stackify
appender to your project’s Maven POM file.

<dependency>
<groupld>com.stackify</groupld>
<artifactld>stackify-log-log4j12</artifactid>
<version>2.0.2</version>
<scopex>runtime</scope>

</dependency>

Also, add in some Log4J configuration for the Stackify appender to your
logging.properties file.

log4j.rootLogger=DEBUG, CONSOLE, STACKIFY

log4j.appender. CONSOLE=0rg.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.layout=0org.apache.log4j.PatternLayout
log4j.appender. CONSOLE.layout.ConversionPattern=%d [%t] %-5p %Cc: %m%n
log4j.appender.STACKIFY=com.stackify.log.log4j12.StackifyLogAppender
log4j.appender.STACKIFY.apiKey=[HIDDEN]
log4j.appender.STACKIFY.environment=test

O
(@

Direct Loghack Appender

Stackify also provides an appender for Logback, which is included in the Maven
POM file:

58

https://stackify.com/retrace/

<dependency>
<groupld>com.stackify</groupld>
<artifactld>stackify-log-logback</artitfactld>
<version>2.0.2</version>
<scope>runtime</scope>

</dependency>

Here is a sample XML configuration of the Logback appender.

<appender name="STACKIFY"
class="com.stackify.log.logback.StackifyLogAppender's
<apiKey>YOUR_ACTIVATION_KEY</apiKey>
<application>YOUR_APPLICATION_NAME</application>
<environment>YOUR_ENVIRONMENT</environment>
</appender>

<root level=.. >

<appender-ref="STACKIFY">
</root>

As you can see, if you're already using a different appender, you can keep it in
place and put them side-by-side.

Direct Log4J2 Appender

Stackify also provides an appender for Log4J2, with this dependency in the
Maven POM file:

<dependency>
<groupld>com.stackify</groupld>
<artifactld>stackify-log-log4j2</artifactid>
<version>2.0.2</version>
<scope>runtime</scope>

</dependency>

Here is a sample XML configuration of the Log4J2 appender.

<Configuration packages="com.stackify.log.log4">
<Appenders>
<StackifyLog name="STACKIFY"
apiKey="YOUR_API_KEY"
application="YOUR_APPLICATION_NAME"
environment="YOUR_ENVIRONMENT"/>

</Appenders>

59

<Loggers>
<Root .. >

<AppenderRef ref="STACKIFY"/>
</Root>
</LLoggers>
</Configuration>

Data Masking

The Stackify appenders for both Log4J and Logback also have built-in data
masking of sensitive information, such as credit card and social security
numbers, IP addresses, and custom masks using regular expression (regex)
matching (like removing vowels).

Standalone Logwatcher

Recently, Stackify also released a standalone logwatcher, which can be useful
for apps that you can't inject an appender into (legacy). I[ts main purpose is to
monitor files that you consider important, like Apache web server or system
logs (syslog). You can use it to upload the contents of these files as they are
updated to Retrace, where the contents will then be viewable via the Logs
Dashboard. Only one file can be monitored per path, so if you have multiple files
you wish to monitor, then you must configure the path for each of them
separately.

Logging Dashboard

Now that you've got your logs streaming to Stackify, we can take a look at the
logging dashboard. By the way, if our monitoring agent is installed, you can also
send Syslog entries to Stackify as well!

This dashboard shows a consolidated stream of log data, coming from all your
servers and apps, presented in a timeline.

60

https://support.stackify.com/errors-logs-configure-standalone-logwatcher/
https://stackify.com/syslog-101/

f you're a developer, team lead, or architect, Stackify’s tools were
ouilt for you. In fact, we have two game-changing, code performance
oroducts no developer or dev team should ever be without.

Prefix Retrace
Prefix is a popular developer tool Retrace is an APM tool built
for finding and fixing bugs while specifically for dev teams. Our
you write your code. You have agent caninstall on pre-prod or
profilers and debuggers, but production servers to find and
nothing is like Prefix. fix problems faster.

Download now for FREE.

LOG MANAGEMENT

Centralized Cloud Solution
Having consolidated logs available at a centralized Stackify cloud server
simplifies log management and enables application monitoring.

This enables you to filter and search logs, explore exceptions, and monitor
errors, and track metrics.

Filtering Logs
From the dashboard, you can quickly

. View logs based on arange of time
. Filter for specific servers, apps, or environments

Plus, there are a couple of really great usability things built in. One of the first
things that you’'ll notice is the chart at the top. It's a great way to quickly
“triage” your application. The blue line indicates the rate of log messages, and
the red bars indicate the number of exceptions being logged.

Examining Exceptions and Time Periods

It’s clear that a few minutes ago, the web app started having more consistent
activity but more importantly, we started getting more exceptions at the same
time. Exceptions don’t come without overhead for your CPU and memory, and
they also can have a direct impact on user satisfaction, which can cost real

money.

61

https://stackify.com/best-practices-exceptions-java/
https://stackify.com/prefix/
https://stackify.com/retrace/

By zooming in on the chart to this time period, you can quickly filter your log
detail down to that time range and take a look at the logs for that period of
time.

g Search - Tail | IF Dasc D2/17/17 B:4B AM - 02/17/17 9:04 AM | Fsave 32

=
=
x
™m
(1]
a
"
[3
-
[]
[=]
i
£
-

Searching Your Logs
Do you see that blue text below that looks like a JSON object?

= Tall IF Desc Last Haur = | save

Reset App Mame Erivironiment Host Serser Name Long L Log Type

S8 - e

Well, it is a JSON object. That’s the result of logging objects, and adding
context properties earlier. |t looks a lot nicer than plain text in a flat file,
doesn’t it? Well, it gets even more awesome. See the search box at the top of
the page? You can put in any search string that you can think of, and it will
query all your logs as if it were a flat file.

However, as we discussed earlier, thisisn't great because you could end up with
a lot more matches than you want. Suppose that you want to search for all
objects with anid of 5. Fortunately, our log aggregator is smart enough to help
in this situation. That's because when we find serialized objects in logs, we
index each and every field we find. That makes it easy to perform a search like
this:

json.idNumber:5.0

62

That search yields the following results:

%

(7] m T If Desc Last Hour | o Save =

Heset App Name Envvinomment Host/Server Name Log Lewvel Log Type

SO1B1]

SaljliEag

Let's look at what else you can search by. Click on the document icon when you
hover over a log record, and you'll see all the fields that Stackify indexes. This
allows you to get more value out of your logs and search by all the fields,
otherwise known as structured logging.

(7] m P Tail |7 Dasc Last Howr * | Save W

Reset App Name Environme Host/Server Name g Leve og Type T
L]

=

o

i

-

- e =

Exploring Java Exception Details

You may have also noticed this little red bug icon ([E3) next to exception
messages. That's because we treat exceptions differently by automatically
showing more context. Click on it and we present a deeper view of that

exception.

Error Detail

Dratm s

Information

Ocourred:

App: L] (EEst App Dashboard

SEreer:

P bl el

Error

63

https://stackify.com/what-is-structured-logging-and-why-developers-need-it/

Our libraries not only grab the full stack trace, but all the web request details,
including headers, query strings, and server variables, when available. In this
modal, there is a “Logs” tab which gives you a pre-filtered view of the logging
from the app that threw the error, on the server where it occurred, for a narrow
time window before and after the exception, to give more context around the
exception. Curious about how common or frequent these errors occurs, or want
to see details on other occurrences? Click the "View All Occurrences” button
and voilal

' Retrace . U
test-logging (Test) 1)) searen m Last Haur -

oSt/ Sereer Name

L

Firat | | PM (& day C ?_
Lmst: 1417 10:56 AM g care -: I
UL @ Ignore | «F Resolve E -LI

Lask Error Oecurrences (60 Similar Errors (0) Group By Ermor Type Meszage Id

Information
Docurtsd: & 1Ay | 5 A '

App: tast ally App Deshboard
SErver

Mathod:

Error

You can quickly see this error has occurred 60 times over the last hour. Errors
and logs are closely related, and in an app where a tremendous amount of
logging can occur, exceptions could sometimes get a bit lost in the noise. That's
why we’ve built an Errors Dashboard as well, to give you this same consolidated
view but limited to exceptions.

ﬂ m E il - ¥ Traces Last Housr - H S

SaUmmarses

ﬁ - e @ _. E]- -.".

i
1Y

64

https://stackify.com/error-monitoring/

Here you can see a couple of great pieces of data:
. uptick in the rate of exceptions over the past few minutes
. majority of errors are coming from “test” environment - about 84 per hour
. couple of new errors just started occurring (indicated by red triangles)

Have you ever put a new app release out to production and wondered what QA
missed? We're not saying that QA would ever miss a bug, but ... Error Dashboard
to the rescue. You can watch real time and see a trend - lots of red triangles,
lots of new bugs. Big spike in the graph? Perhaps you have an increase in
usage, so a previously known error is being hit more; perhaps some buggy code
(like a leaking SQL connection pool) went out and is causing a higher rate of SQL
timeout errors than normal.

APPLICATION MONITORING

You can establish monitor thresholds for errors & rates, and receive notification
alerts when they are reached.

Monitors & Alerts
Wouldn't it be nice to be alerted when
. error rate for a specific app or environment suddenly increases?
. error that was specifically resolved starts happening again?
. certain action that you log does not happen
. enough, too often, etc?

Stackify can do all of that. Let’s take a look at each.

Error Rates

Let's look at the error dashboard, where the ‘test” environment is getting a high
number of errors per hour. From the Error dashboard, click on “Error Rates” and
then select which app/environment you wish to configure alerts for.

Configurae App Maonitoring - Creabe New

65

You can configure monitors for “Errors/Minute” and “Total Errors Last 60
minutes” and then select the “Notifications” tab to specify who should be
alerted, and how. Subsequently, if using Stackify Monitoring, you can configure
all of your other alerting here as well: App running state, memory usage,
performance counters, custom metrics, ping checks, and more.

Resolved Errors & New Errors

Earlier on, we introduced a new error by not checking for null values when
creating Foo objects. We've since fixed that and confirmed it by looking at
the details for that particular error. As you can see, the last time it happened
was 12 minutes ago:

Tl
H Hiocii R % m m Last Four - #-
test-logging (Test) 0 =

Beset " ‘ostiServer Mame
NullPainterExceptio = -

=l Share | = -II. l

Last EFrar

Information

Oiccurred: 171 Il EFRIOR

SEreer

| B R T Y

Error

It was a silly mistake, but one that is easy to make. You can mark this one as
“resolved”, which lets you do something really cool: get an alert if it comes
back. The Notifications menu will let you check your configuration, and by
default, you're set to receive both new and regressed error notifications for all
your apps and environments.

Error Notifications i

otk Carndp N Irarimsnts Afips S ErToirs g rassad Ermns

Log Monitors

Some things aren’t very straightforward to monitor. Perhaps you have a critical
process that runs asynchronously and the only record of its success (or failure)
is logging statements. Earlier, we discussed the ability to run deep queries
against your structured log data, and any of those queries can be saved and
monitored. Here's a very simple scenario: the query is executed every minute,
and we can monitor how many matching records we have.

It’s just a great simple way to check system health if a log file is your only
indication.

Configure Log Monitor - Foo Id 5

Java Logging Best Practices

The error and log data that this provides is invaluable, especially when you take
a step back and look at a slightly larger picture. Below is the Application
Dashboard for a Java web app that contains all of the monitoring:

Spring PetClinic Dashboard (] Lsr 4 bewrs "

|||||||||||||

........

67

https://stackify.com/what-is-structured-logging-and-why-developers-need-it/

As you can see, you get some great contextual data at a glance that errors and
logs contribute to: Satisfaction and HTTP Error Rate. You can see that user
satisfaction is high and the HTTP error rate is low. You can quickly start drilling
down to see which pages might not be performing well, and what errors are

occurring.

Spring PetClinic Dashboard [F] Last 4 hours *
v Hessy Ervironiment (AT %1
H
Dashboard Muoanit) Pefarmance [APM 4] 2
L =
e B Database [Servler Comtaine Bl Serdde Filber
1]
-
-y
]
3
nf]
= i i 18| (& G | 0) i ¥ 1 4 10 | 1 14 11
I
I
R Th Fi
aqquast Throwghpat M 7,758 Fast Regpaests 0 Sluggish Reguests B8 0 Too Slow Bequests [l O Failed Boquests

LR w815 (RE & 4 i Wi i i R | T | T AT " 1U-B0
N N L Error %
Satisfaction Slipaest Failure Hits Tartal Time
i
Feaquested Action U Thives Hils A T At By

& iB i
¥ 1.1 151 13 il

.1 e Satrilaction Score W
A 45 1

CONCLUSION

There was a lot to cover on logging, and we've barely scratched the surface. If
you dig a little deeper or even get your hands on it, you can! We hope that these
Java logging best practices will help you write better logs and save time
troubleshooting.

All of our Java logging appenders are available on GitHub and you can sign up for
a free trial to get started with Stackify today!

You have a number of options to choose from when it comes to logging in the
Java ecosystem. Out of all of these, Logback is certainly a great choice and a
very powerful library. It also brings several improvements over Log4dJ, such as
better overall performance, more advanced filtering possibilities, automatic
reloading of configuration files, automatic removal of archived log files, and
many other advanced and useful features.

And due to the native SLF4J support, we also have the unique option to easily
switch to a different logging library at any point if we want to. Overall, the
maturity and impressive flexibility of Logback have made it the go-to option
next to Log4J? for most of the Java ecosystem today.

Take a look at some of the most common and detrimental practices that you
might encounter when making use of logging in a Java application.

69

https://github.com/stackify
https://stackify.com/sign-up/
https://stackify.com/sign-up/
https://stackify.com/log4j2-java/
https://stackify.com/9-logging-sins-java/

©2018 Stackify
8900 State Line Rd. STE 100
Leawood, KS 66206

At Stackify, we believe that the ideal development team, today and in the future, is consistently
optimizing its output across the entire lifecycle of an application; from development to testing to
production. With Stackify's Retrace and Prefix, we hope to support that endeavor.

Along with tools to help improve application performance, we created our Developer Things series
to deliver relevant, useful content to developers like you no matter where you are. Check our
newsletter before your stand-up, listen to our podcast on your drive home, or read our in-depth
explorations of programming when you're ready to improve, expand or validate your skills.

FOR EVEN MORE DEVELOPER
CONTENT,VISIT OUR BLOG AT

WWW.STACKIFY.COM/BLOG.

https://stackify.com/prefix/
https://stackify.com/retrace/
https://stackify.com/blog/

