
THE VARNISH PAYWALL
– From general content to paid

premium content, control access to
your content the way you define it.

White paper:

2

Introduction

This white paper outlines the different restrictions that can be placed on content with the Varnish PaywallTM, how integration
with the various other systems can be implemented, how the Varnish PaywallTM ensures that subscribed and regular users
will be able to retrieve your website’s content equally fast and what pitfalls should be avoided when implementing it.

Over the last couple of years content heavy websites, digital media in particular, have increasingly been moving from a
business model purely driven by advertising to a model based on a combination of both advertising and a digital pay-for-
access method, a so called paywall. A paywall allows a website owner to set and use arbitrary rules to restrict access to
their online content. The paywall requires authentication and authorization before it delivers the content to the user and
traditionally website owners have felt that the logic behind this process, given that these are often a complex set of rules,
must be placed in the application server layer. But as the application server layer is slow and hard to scale, placing the
paywall logic there can significantly slow down a website’s performance. With the Varnish PaywallTM this challenge is no
longer true. And since performance is a very important element of any web management strategy the Varnish Paywall
introduces a solution that will help solve a challenge many are struggling with: a way to control access to online content
without sacrificing web performance.

From general content to paid premium content,
control access to your content the way you
define it.

What you will learn:

This white paper outlines the different restrictions that can be placed on content with the Varnish PaywallTM, how
integration with the various other systems can be implemented, how the Varnish Paywall ensures that subscribed
and regular users will be able to retrieve your website’s content equally fast and what pitfalls should be avoided
when implementing it. From general content to paid premium content, control access to your content the way you
define it.

What is Varnish Cache?

Varnish CacheTM is a web application accelerator. The
software speeds up a website by storing a copy of the page
served by the web server the first time a user visits that
page. This is referred to as caching. The next time a user
requests the same page, Varnish® will serve the copy, or
the cached content, instead of requesting the page from
the web server. The end result? Your application servers
need to handle less traffic and your website’s performance
and scalability go through the roof.

The Varnish Paywall is installed in Varnish Cache and its
functionality can be implemented on any kind of content
across all platforms.

�

Streaming
Delivery

CDN

Sources
[1] �The MD5 Message-Digest Algorithm is a widely used cryptographic

hash function that produces a 128-bit (16-byte) hash value.
[2] �The Varnish Configuration Language (VCL)TM is a small domain-

specific language used to define request handling and document
caching policies for Varnish Cache. When a new configuration is
loaded, the varnished management process translates the VCL code
to C and compiles it to a shared object which is then dynamically
linked into the server process.

3

Different access control
schemes

When deploying a paywall one of the more time consuming
parts is for the business organization to decide what sort of
restrictions are to be placed on the web content. For most
web editorial staff this is new territory and it can be difficult
to weigh the balance, to get optimal distribution of the
content and to monetize it.

These are some of the most common approaches to digital
content restrictions within the Varnish PaywallTM:

Subscriptions

The most common and best understood limitation on
content distribution is to require the user to have an active
subscription. When a subscription is verified the user gains
access to all restricted content.

Metered

With the metered approach the amount of content each
user can access is based on certain restrictions governed
by arbitrary rules set by the content owner. For example,
a baseline limit of five articles per week can be made
available for the user which could then be doubled to 10
in instances where the user is willing to sign in and leave
behind some information, such as a name and telephone
number or email address. The meter could then be reset
for each new week or month and Varnish would keep track
of articles already viewed by the user so that they are not
charged if the viewed articles are revisited.

Product plans

With the product plan approach multiple subscription
types are made available to the user. Subscriptions may be
based on certain content, e.g. all sports content across all
publications. Each piece of content then carries information
on what subscription type/product plan allows access to
the content the user is trying to access.

Handling non authorized users

Once you’ve set up a Varnish Paywall, Varnish will only
grant access to a user after verifying their identity. Varnish
however, doesn’t necessarily have access to the central
user database so it relies on a Single Sign On (SSO)
service to do the actual authentication. After successful
authentication the SSO service must set a cookie to relay
the users authentication to Varnish. The cookie can then
be made tamper-proof with a cryptographic signature.

The cryptographic signature works by calculating a hash
string for the content of the cookie and a shared secret
(“password”) that has been set earlier and is recognized by
both the SSO service and Varnish Cache. The signature is
then appended to the cookie. Once set up the cookie might
look something like this:

If needed, Varnish can also verify the user’s identity
through a lookup in a web service, a database or other
data source. That would be somewhat more complicated
and could slow down the Varnish PaywallTM as it would
have to retrieve information from another service for every
single request. Varnish usually serves content straight from
memory so accessing a network service will result in a
significant slowdown.

Streaming

Delivery

userid=perbu,expiry=1334569718,signa-
ture=e19799f8f1b6bbf6c42c730b792f0312

If the shared secret is for example
“rabbits_are_cool” and we decided to
use MD51 as the hash function the sig-
nature would be generated like this:

$ echo userid=perbu,expiry=1334569718,
rabbits_are_cool | md5sum 	e19799f-
8f1b6bbf6c42c730b792f0312 -

In order to verify the cookie in Var-
nish you would need to extract the
cookie into a variable or a header and
then have some VCL2 that looks some-
thing like this:

We’ve parsed the cookie here into:
x-auth-cookie (the whole auth cook-
ie)
cookie-expiry (the expiry time, in
epoch format)
The cookie format needs to be veri-
fied beforehand

if (now - std.integer(http.req.cookie-
expiry, 0) > 0) {
 # cookie is OK - not expired
} else {
cookie is expired - show login/
signup-page
}

if (http.req.x-auth-cookie == digest.
md5(“rabbits_are_cool”,
 “userid=perbu,expiry=1334569718”))
{
 # the user is OK. We can serve con-
tent....
} else {
something fishy going on.
 error(406, “Subscription required”);
}

4

User authorization within
the different access
control schemes

Varnish now recognizes the user attempting to access
your content and can move on to check whether the user
is actually authorized to do so. The implementation of this
authorization process would vary depending on the access
control scheme

Choosing the appropriate
access control scheme

It is possible to choose what form of authorization schemes
should be enabled on a per object basis. The content
management system sets the HTTP header X-Authorization
to signal to Varnish what access control scheme should be
used on the content requested.

It is possible to use several different access control
schemes on a website according to your needs. Hence,
certain content may be made freely available while other
content requires a subscription and yet another class of
content would be metered.

The Varnish PaywallTM is dynamic and nearly all
configuration is derived from the content management
system behind it. Content can therefore be moved behind
the paywall at any given time without any reconfiguration of
Varnish.

Authorization revalidation

If there is an occasional need to revalidate the
authorization, for instance to check whether the account
has been revoked, Varnish can be setup to handle a
situation where the authorization has expired without
needing to re-authenticate the user. There are two ways
of doing this:

1. Silent reauthentication

Using client side asynchronous revalidation a client side
script can be used to examine the session cookie and
resubmit it to the SSO service. If the SSO service finds that
the user is eligible it can reissue the session cookie. The
website can use this method to extend the session without
the user noticing.

2. Redirection to SSO

Another way is for Varnish to issue a redirection back to
the SSO service when the session cookie has expired. The
SSO service would then examine the user, reissue a new
cookie and redirect the user back to the article. The user
would feel a negligible impact as the page would take a
little longer to load than usual but there should be no need
to prompt them for username and password.

Subscription authorization

The authorization process for the product plan approach
is slightly more complicated than the others since an
advanced subscription authorization entails a many-to-
many relationship between users and subscriptions as it
is possible for a user to have a multitude of subscriptions
(product plans) with this method for access control.

The easiest way to implement this subscription method
would be to have a web service answer simple queries
containing a user/product pair with a simple ‘allowed’ or
‘denied’. The result of this can be cached in a cookie so
that for instance the last 10 products each user is allowed
to access are stored in the cookie. This cookie would
also carry an expiry time so it would eventually time-out
triggering a reauthorization of the user.

A clever way to speed up this authorizing web service
would be to route it through Varnish Cache.

Sources
[3] �Memcached is an in-memory key-value store for small chunks of arbitrary data (strings,

objects) from results of database calls, API calls, or page rendering.
[4] �Redis is an open source, advanced key-value store. It is often referred to as a data structure

server since keys can contain strings, hashes, lists, sets and sorted sets.
[5] �A central processing unit (CPU) is the hardware within a computer system which carries

out the instructions of a computer program by performing the basic arithmetical, logical,
and input/output operations of the system.

Metered authorization

When running the authorization process for the metered
method for access control, Varnish needs to keep track of
which articles have been read within the current specified
time period. The simplest way to do this is to maintain a list
of article IDs. This ensures that even if the user reloads the
page no article is counted twice. One would also need to
maintain a timestamp to know when the user is given a new
quota of articles. This string could either be pushed to the
client and stored in a cookie or stored in a data service such
as memcached3 or redis4.

The advantages of the

Varnish Paywall

As explained above the commonly used solution for
implementing paywalls is to place the complex rules
governing access control within the application server layer.
This typically results in the content being served from this
layer, significantly slowing down the website’s performance.
However, placing the rules for access control within the
Varnish caching layer, the website’s performance is no
longer a challenge. In fact one of the major advantages
of the Varnish Paywall is its positive effect on a
website’s performance.

Here are some of the other key advantages of the
Varnish Paywall:

Scalability.

Varnish will retain its scalability with the paywall deployed.
The Varnish Paywall is compiled to native code which on
a modern CPU would run so fast that the time taken to
execute the logic will be insignificant.

Speed.

Varnish Cache is built for speed. It executes its policy code
more or less a thousand times faster than your typical Java
or PHP based application servers, mostly due to the fact
that the configuration is compiled into machine code free
of system calls. System calls require expensive context
switches, stall the CPU5 and wreck havoc in the CPU
cache. Avoiding system calls hence speeds up the
execution speed.

Flexibility.

What makes the paywall solution from Varnish unique
among pay-for-access solutions is its ability to integrate
with any type of publication and payment system. All
web content management systems (CMS) communicate
through the HTTP protocol. The authorization and
authentication schemes outlined in this white paper are all

Varnish now recognizes
the user attempting to

access your content and
can move on to check

whether the user is actually
authorized to do so.

5

6

done outside the CMS. For convenience we recommend
that the CMS is altered to send specific HTTP headers
along with the content to indicate what schemes should be
used but this could also be a static list of URLs.

If Varnish needs to communicate with a network service in
order to authenticate or authorize users this could happen
through a multitude of protocols. Varnish supports ReST
services. It is possible to connect Varnish to any open
source database as long as a C or C++ API is available.

Key takeaways

As a response to less than encouraging ad sales most
content heavy (e.g. digital newspapers and magazines)
websites are currently looking into ways to get paid for
content without sacrificing scalability, flexibility and
speed. The Varnish Paywall is a great alternative for
these organizations because by placing access-control
rules within the Varnish layer you ensure that your
website remains as fast and scalable as it was before
you implemented a paywall (even faster if you weren’t
using Varnish for caching). Hence, subscribers will not
experience any delay when they request content from
websites that have implemented a Varnish Paywall.

The Varnish Paywalls allows content owners to monetize
their content in a multitude of ways. The different
restrictions can be mixed and matched freely and work
across all devices. Another compelling quality of the
Varnish Paywall is its ability to integrate with any publication
and authentication system

7

About Varnish Software

Varnish Software is a global pioneer in high-performance
digital content delivery. Powered by a uniquely flexible
caching technology, Varnish Software’s solutions are
indispensable common denominators among some of the
world’s most popular brands, such as Eurosport, Twitch
and Tesla. The company’s solutions enable organizations
worldwide to provide a superior user experience with fast
digital content delivery at any scale, while giving them the
flexibility to maintain control over their content and make
the technology their own.

Streaming

www.varnish-software.com

www.varnish-software.com

Los Angeles - Paris - London

Stockholm - Singapore - Karlstad

Dusseldorf - Oslo - Tokyo

