
From Bare-Metal Windows
to Kubernetes in Two Months

Paul Steele

#IndyCloudConf

About Me

● Software Engineer at SEP
● Purdue University
● https://blog.paul-steele.com/

#IndyCloudConf

https://blog.paul-steele.com/

Greenfield

#IndyCloudConf

Legacy

#IndyCloudConf

Agenda

● Journey of migrating legacy application to the cloud
● Showcase some of the “gotchas” we found

#IndyCloudConf

The Application
● Incident tracking software
● C# application

○ IIS
○ Self Hosted - Bare Metal

● 10-15 years old
○ Architectural tradeoffs

● Supplemental windows services
○ Background tasks
○ Email
○ Indexing

#IndyCloudConf

Feature Development

● Two main teams
○ One in Indianapolis (SEP)
○ One several states away

● Focused solely on Development
● Never had the “budget” for DevOps

#IndyCloudConf

Problems

● Jenkins
○ Old
○ Only accessible to one team

● App hard to deploy
○ Manual file drops
○ Long list of instructions

● No automated database setup
○ No way to create a blank database

#IndyCloudConf

What did this cause?

● Uncertainty of state of code
○ Was the master branch passing?

● Slow QA cycles
○ Ask for a server to be setup

■ Days to weeks
○ Check bug
○ Repeat if necessary

● Deployed wrong version to production
#IndyCloudConf

Where We Came In

● Budget approved to move to the cloud
○ Azure
○ CI / CD pipeline
○ Deployments

● Wanted to experiment with new technologies
○ Docker
○ Kubernetes

● Team of three
● Two months to pull it off

#IndyCloudConf

Goals for the engagement

● Get into the cloud
○ Containerize Application
○ Automated Database Creation
○ Setup Jenkins
○ Push button deployments into test environment

■ Not enough time to get into production
● Everything should be scripted

#IndyCloudConf

Containerizing the Application

#IndyCloudConf

Containerizing The Application

● C# legacy application
○ No .net core

● Can’t use linux containers

#IndyCloudConf

Containers
● Share Kernel Space
● Linux

○ Few Compatibility Problems
○ Try to use newer kernel feature

■ Runtime error
● Windows

○ Compatibility Problems
○ Try to use newer kernel feature

■ Startup error
#IndyCloudConf

https://blogs.msdn.microsoft.com/azureservicefabric/2016/04/25/orchestrating-containers-with-service-fabric/ #IndyCloudConf

https://blogs.msdn.microsoft.com/azureservicefabric/2016/04/25/orchestrating-containers-with-service-fabric/ #IndyCloudConf

Windows Isolation Levels

● Process isolation
○ Actual containers

● Hyper-V isolation
○ Pretender containers

● None of this was obvious to us setting out

#IndyCloudConf

https://blogs.msdn.microsoft.com/azureservicefabric/2016/04/25/orchestrating-containers-with-service-fabric/ #IndyCloudConf

Helper Services

● The container would start up IIS

#IndyCloudConf

Helper Services

● Chose option 2

#IndyCloudConf

Fundamental Application Problems

● App configurations in various flat files.
○ Not in source control

● IIS configuration
○ Not in source control

● Helper services configuration
○ Not in source control

● Deployment required manually editing these files

○ Highly error prone
#IndyCloudConf

Addressing Configuration

● Consolidated configurations
○ Standard location

○ Source control

○ Templated the configurations

○ 95% of configurations standard

○ On container start, fill in templates

● Controlled by environment
variables

#IndyCloudConf

Goals for the engagement

● Get into the cloud
○ Containerize Application
○ Automated Database Creation
○ Setup Jenkins
○ Push button deployments into test environment

● Everything should be scripted

#IndyCloudConf

Automated Database Creation

#IndyCloudConf

State of the Database

● Microsoft SQL
● No clean setup
● Version x.7 introduced App migrations

○ Years of manual schema updates up to x.7
● Support creation for both

○ Azure SQL
○ Docker Database

#IndyCloudConf

A way forward

● Found a series of test scripts
● One script to get to version x

○ 7 scripts for each minor version

#IndyCloudConf

The script

● Added test data as it went

#IndyCloudConf

Untangling

● Hopeful we could add
some conditionals

#IndyCloudConf

Not so Lucky

● Schema scripts relied on
some data existing...

#IndyCloudConf

Result

● Fixing took longer than we wanted
● Had the ability to create a database from scratch

○ With / Without test data

#IndyCloudConf

Goals for the engagement

● Get into the cloud
○ Containerize Application

○ Automated Database Creation

○ Setup Jenkins

○ Push button deployments into test environment

● Everything should be scripted

#IndyCloudConf

Setup Jenkins

#IndyCloudConf

● Solution template
○ Azure Marketplace

○ All the basics to jump start a jenkins instance

● Utilized packer to create master image, and build
agent images

● Ondemand Build Agents
● Artifact Storage

○ Could use to deploy past testing

Next Step : Jenkins

https://azuremarketplace.microsoft.com/en-us/marketplace/apps/azure-oss.jenkins #IndyCloudConf

Structure of Jenkins

#IndyCloudConf

Build Agents

● Virtual Machines
○ Finer control of agents

themselves
■ Cpu / memory
■ More to manage

○ Slower to spin up
■ Tend to reuse

○ Expensive

● Containers
○ Less control of agents

■ Less to manager

○ Faster to spin up

○ Take advantage of

existing infrastructure
■ Kubernetes

#IndyCloudConf

Container build agents sound like the clear
choice right?

#IndyCloudConf

We Chose Virtual Machines

#IndyCloudConf

Why

● Build agents need to build our
containers

● Need Docker in Docker
○ Not supported in Windows

Jenkins Overview

● Multibranch pipeline for builds
○ Didn’t have CI builds for

branches before

○ Didn’t build application in

dockerfile
■ Archive to azure blob storage

#IndyCloudConf

Database Creation

● Database Creation Job
○ System Testing

○ QA environments

#IndyCloudConf

System Tests

● System Test Job
○ Ran Integration tests for master branch

○ Challenge to modify the tests to work in Jenkins
■ Ran the app container in on the vm agents

#IndyCloudConf

Deployment Job

● Application Deployment Job
○ Deploy container

○ Deploy Where?

#IndyCloudConf

Goals for the engagement

● Get into the cloud
○ Containerize Application

○ Automated Database Creation

○ Setup Jenkins

○ Push button deployments into test environment

● Everything should be scripted

#IndyCloudConf

Push Button Deployment

#IndyCloudConf

Enter Kubernetes
● Azure? Use AKS!

○ Windows containers not natively supported

○ Better than AWS, or Google Cloud

● Options?
○ Virtual Kubelet

○ acs-engine

https://github.com/virtual-kubelet/virtual-kubelet#how-it-works #IndyCloudConf

ACS Engine

● Generated Solution Templates
● “Mimic’d” ACS with virtual machines
● Allowed creating Kubernetes Instances

○ Supported swarm

● Supported Hybrid Clusters
● Has since been deprecated for aks-engine
● Config files for ACS stored in source control

#IndyCloudConf

Kubernetes
● Master Node

○ Linux
○ Ran Nginx Ingress Controller

+ Certmanager
● Other Nodes

○ Windows
○ With our VM choice could fit 4

Applications per node
■ ACS engine provided

node auto scaling
#IndyCloudConf

Goals for the engagement

● Get into the cloud
○ Containerize Application

○ Automated Database Creation

○ Setup Jenkins

○ Push button deployments into test environment

● Everything should be scripted

#IndyCloudConf

So We’re Done!!!

#IndyCloudConf

Right?

#IndyCloudConf

Aren't we Done?

● Jenkins performance was pitiful
○ Large base images

■ 10 minutes to pull base layer
■ Slow to build the container

○ System Tests
■ Inconsistent Failures
■ Slow

#IndyCloudConf

Quick Fixes
● Pull base layer during image creation

○ Adds extra time to image creation
■ Better than every build

● Parallelize System Tests
○ From 1 node to 5

■ Budget constraints

#IndyCloudConf

Larger Problem

● Slow Container Builds
○ Were using hyper-v isolation not process isolation

https://blogs.msdn.microsoft.com/azureservicefabric/2016/04/25/orchestrating-containers-with-service-fabric/ #IndyCloudConf

https://blogs.msdn.microsoft.com/azureservicefabric/2016/04/25/orchestrating-containers-with-service-fabric/ #IndyCloudConf

https://blogs.msdn.microsoft.com/azureservicefabric/2016/04/25/orchestrating-containers-with-service-fabric/ #IndyCloudConf

What could go wrong?
● VM agents started taking twice as long to spin up

○ 20 minutes at worst case

● Container start time did improve however

#IndyCloudConf

System Tests

● System Tests were still flakey
● Narrowed it down to Time skew

○ 30 minute offset inside the container

#IndyCloudConf

The solution

● Use a different base image,
○ Upgrade to the latest and greatest

○ Continue to use process isolation

#IndyCloudConf

https://blogs.msdn.microsoft.com/azureservicefabric/2016/04/25/orchestrating-containers-with-service-fabric/ #IndyCloudConf

https://blogs.msdn.microsoft.com/azureservicefabric/2016/04/25/orchestrating-containers-with-service-fabric/ #IndyCloudConf

Keep VM Agents around

● Half of the time for CI builds was waiting for Vms
● Keep them around for 1 hour

#IndyCloudConf

#IndyCloudConf

Results after Two months

● Successful System Tests
● VM agents

○ Spun in 7 minutes

○ Persist between builds

● CI builds
○ Best Case < 10 minutes

● Push Button Deployment to Kubernetes
#IndyCloudConf

Before

Months to deploy
#IndyCloudConf

After

Hours to Deploy
#IndyCloudConf

Key Takeaways
● Tooling for windows containers is lacking

○ Until 1803, not worth trying
■ Slow
■ Buggy

● If we didn’t script all of this, never would have gotten done
○ Took a little longer upfront
○ All those vm changes, required full rebuild

● Cloud costs need to be monitored

#IndyCloudConf

Questions?

#IndyCloudConf

Thanks!

● Slides can be found:
https://info.sep.com/2019indycloudconf

● SEP blog:
https://www.sep.com/sep-blog/2019/04/11/migrating-a-
legacy-asp-net-application-to-azure/

#IndyCloudConf

