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> Who am I? —Jordan T. Thayer

* B.S. CS, RHIT, 2006
* PhD Artificial Intelligence, U. of New Hampshire, 2012

e Advisor: Wheeler Ruml
* Thesis: Heuristic Search Under Time and Quality Bounds
* This stuff isn’t my thesis area, but it’s closely related
* Since then
 Logistics, Planning, Scheduling
* Formal Verification
 Static Analysis

* Currently Sr. Software Engineer for SEP



Talk Outline

 What is heuristic search and why should | care?
« Depth First Search: The Textbook Definition
* Depth First Search in Action
« Pancake Flipping — a toy domain
* The Travelling Salesman Problem
« Distributed Depth First Search
» Distributed Depth First Search In The Cloud



> Whatis Search, Why do | care?

« Searchis a technique for solving problems
* These problems look like this:

« States

* Actions

« Goals

 Heuristics
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> Whatis Search, Why do | care?

« Searchis a general technique for solving problems

* The search cares about your problem using this abstraction:
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Search is a technique for solving hard problems

These problems look like this:

NP hard or worse

Domain specific solution doesn’'t yet exist
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> What’s NP Hard? Why do | care?

Informally “ ... real expensive, and there are no known cheap solutions
Formally-ish “... at least as hard as the hardest problems in NP”
* A class of problems that have similar costs to solve
* No known polynomial time algorithms for solving
* Selection sort is poly-time for input sizen ~ n? Graph for xA2, 2/x
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> Whatis Search, Why do | care?

« Search is a technique for solving intractable problems

* These problems look like this: T I I
NP hard or worse B AEEEE & 1
« Domain specific solution doesn’t yet exist aaaa JAEEa '
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Talk Outline

What is heuristic search and why should | care?

* Where are we going with this talk?
» Depth First Search: The Textbook Definition
* Depth First Search in Action
« Pancake Flipping — a toy domain
* The Travelling Salesman Problem
« Distributed Depth First Search
» Distributed Depth First Search In The Cloud



D Heuristic Search Can Be Costly

* Checkers, the extreme case
e Constant computation from 1989 to 2007 involving around 200 processors

e VLSI & TSP, the hard case

e Hours to days of compute time for moderate instances (2500-3000)

* Scheduling

* Minutes to days depending on problem size, constrainedness

* Mercifully, CPU Time is not Wall Clock Time!



The Simplest Approach




> Why you can’t do that

* A problem of interest was a 115,000 city tsp
e 115,000! Potential solutions
e At the outside, maybe we prune 75% of those
e Still ~ 1.5 X 10°320939 nodes / expansions

» How much do 1032939 |lambda calls cost?
* First million are free, 20 cents per million after that.
e So, about $ 10°32032

e Current Worldwide GDP for 100,000 years is ~$1017



What you can do

SNS Events (or your favorite MPI)

S3
Events

Executor

Lambda EC2
Very Short Processes Very Long Processes
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 Depth First Search: The Textbook Definition
* Depth First Search in Action
« Pancake Flipping — a toy domain
* The Travelling Salesman Problem
« Distributed Depth First Search
» Distributed Depth First Search in the cloud



> Depth First Search from Al:AMA

def depth_first_tree_search(problem):
"""Search the deepest nodes in the search tree first.
Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.

Repeats infinitely in case of loops. [Figure 3.7]
frontier = [Node(problem.initial)] # Stack

while frontier:
node = frontier.pop()
if problem.goal_test(node.state):
return node
frontier.extend(node.expand(problem))

return None
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> Depth First Search

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:
node = frontier.pop()
if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):
solution = node
frontier.extend(node.expand(problem))

return solution



Talk Outline

 What is heuristic search and why should | care?
« Depth First Search: The Textbook Definition
 Depth First Search in Action

« Pancake Flipping — a toy domain

* The Travelling Salesman Problem
* Distributed DFS
 Distributed DFS in the cloud



|> The Pancake Domain
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Given an unordered stack of pancakes,
Order them using only a spatula and the ability to flip the stack



Step 1



Step 2



Step 3



> Whatis Search, Why do | care?

« Searchis a technique for solving problems

* These problems look like this: :
« States
* Actions [ 1 /

e Goals :




What is Search, Why do | care?

« Searchis a technique for solving hard problems
* These problems look like this:
* NP hard or worse
« Domain specific solution doesn't yet exist
« Solving the pancake problem optimally is equivalent to known NP hard problems
* Rubik's Cube Optimally
* 15 Puzzle Optimally
* There's a new-ish reduction from 3-SAT
« Pancake Flipping is Hard by Bulteau, Fertin, and Rusu
« https://arxiv.org/pdf/1111.0434.pdf



> Depth First Search for Pancakes

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:
node = frontier.pop()
if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):
solution = node
frontier.extend(node.expand(problem))

return solution



't can (only) solve small instances

Problem: {numCakes = 4;
initState = [4; 2; 3; 1];}
{generated = 0;
expanded =
goalsFound = 9;
duplicatesFound 0;
pruned = 0;}
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> But how does it scale? (Real Bad)

Time to solve 100 instances(seconds)
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>

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):

solution = node

frontier.extend(node.expand(problem)) <

Children Are Unsorted!

return solution

Why

?



Child Ordering is Critical
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> Depth First Search: Child Ordering

def depth_first_tree_search(problem):
frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:
node = frontier.pop()
if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):
solution = node
children = node.expand(problem)
children.sort()
frontier.extend(children) < Children are sorted (Heuristics go here!)
return solution




> Depth First Search: Child Ordering

def depth_first_tree_search(problem):
frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:
node = frontier.pop()
if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):
solution = node
children = node.expand(problem) < Children are all generated at once

children.sort()

frontier.extend(children)

return solution



Making All Kids At Once Is Bad!
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Making All Kids At Once Is Bad!




Making All Kids At Once Is Bad!




> Depth First Search: Child Ordering

def depth_first_tree_search(problem):
frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:
node = frontier.pop()
if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):
solution = node
next = node.get_next_child(problem) # child ordering is now baked into next_child
if not next is None:

frontier.extend([next, node]) < One child at a time
return solution
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D Actually, the performance is complicated...
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Actually, the performance is complicated...

DFS Solutions to 200 Pancake Problem
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DFS is an Anytime Search
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Actually, the performance is Complicated...

DFS Solutions to 200 Pancake Problem
J00

FLL

500

Lid o
=]
L

=]
o=

Solution Cost

[t
=
L

100

0 10 20 30 40 50 &0

Time To Solution



Talk Outline

 What is heuristic search and why should | care?
« Depth First Search: The Textbook Definition
 Depth First Search in Action

« Pancake Flipping — a toy domain

* The Travelling Salesman Problem
« Distributed Depth First Search
 Distributed DFS in the Cloud



Travelling Salesman Pro

Waldron — ‘
Clarksburg ‘
Stivaul Downeyville
\ ®
Kingston
ﬁ] ¥
Greensburg ' EnocH
| e

W ‘ . New Point

artsville i E ' 3
",i 7,/'/
.///
. Millhousen”™
> Napoleon
l Westport o
Alert //"j
>

sburg

Osgood

blem



Travelling Salesman Problem

Waldron — ——y —
\‘ Clarksburg
Stifaul Downeyville
Kingston ‘
Enoch‘sburg
\ e
W [ New Point
|
artsville
Millhousen
Napoleon

Westport

Alert

— : ’ Osgood



Travelling Salesman Problem
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TreeSearch.TreeSearch<5tate, float
deterministicInit problem

goalTest problem state

state = euclidH problem state
) state = d problem state
.Equal =1 s: equal s1 s2
.NumChildren state = numChildren problem state
.NthChild ate n nthChild problem state n
.InitialCost = @.
ChildOrder = None

InPlaceModificat problem

solve problem
iface

printfn "XA" metrics
solNode

This is what makes heuristic search so cool: None -> printfn "

Some s ImperativeTreeSearch.getSolution s printfn

| can solve a new problem, -
i mte problem
But | don’t have to change my approach! ceSearch. TreeSearcheState, int

problem.initState
goalTest state
ic state
. gapHeuristic state
.Equal 51 52 = 51 = 52
.MumChildren _ = problem.numCakes
.NthChild state n = flipStack state (n
InitialCost = 8
hildOrder = None

solveNaive problem

solve problem

iface = TreeSearchInterface(problem

a
solNode, metrics = DFSv2.intCycles iface

printfn " metrics
solNode
None printfn

Some s Imperativ earch.getSolution s printfn
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TSP Anytime Performance
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Distributed Depth First Search
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Distributed Depth First Search




Distributed Depth First Search

Executor




Distributed Depth First Search
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Distributed Depth First Search




DDFS Implementation

openList root
worker
MailboxProcessor.5tart inbox
loop
msg = inbox.TryReceive(1©
halt ref false

msg
Some (IncumbentCost g
Some Halt halt:= true

incCost

Some (Root r openlList

None
halt search iterationsBetweenPolls
printfn "Working is done or was told to halt” index
executorInbox.Post (Metrics metrics
executorInbox.Post (Done index

loop
loop

worker



DDFS Implementation

distributedIntCycles (iface : TreeSearch.TreeSearch<'state, int numkWorkers : int

totalMetrics initMetrics
incumbent ref None

workers : MailboxProcessor<MessageToWorker<'state,int»> Option array Array.init numbWorkers i None
betterSel sol
incumbent
Some p p.cost sol.cost
None true
postInc (g : int) (w : MailboxProcessor<MessageToWorker<'state, 'int>> Option
W
None
Some W w.Post (IncumbentCost g
getSome
None false
Some true
executer
MailboxProcessor.Start inbox
loop
msg = inbox.Receive
msg

IncumbentSolution sol
bettersSol sol

incumbent Some sol
Array.iter (postInc sol.cost) workers

Metrics m mergeMetrics totalMetrics m

Done index printfn " is done with search” index; workers.[index None
loop

loop
makekWorker index
urRoot = makeRoot iface.InitialCost iface.InitialState

root urRoot considering = index

Some (makeIntCycles iface executer 188 root index
index e numkorkers - 1
workers. [ index makekWlorker index

Array.exists getSome workers
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Distributed Depth First Search
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Distributed Depth First Search - Concept
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|>Distributed Depth First Search — Low Budget

SNS Events (or your favorite MPI)
S3
EEEEEE :

:| Executor

! Lambda
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Distributed Depth First Search — Big Budget

SNS Events (or your favorite MPI)

§ New Search Root
3

|

? IncumbentCost g
©

c S3

3 Events

Halt
Post Problem, Budget > 15m

Executor

Solution S
— New Solution s
-
g
o Resources Spent
2
£ :
o] H
? Lambda i EC2 All Done!
| . H :
2 Very Short Processes : Very Long Processes
= :



>

* Thanks for your attention
* What questions do you have?



> BACKUP SLIDES

* Here be dragons, proofs, F#



> Wait, What's Optimal?

* Informally, it’s the best solution to the problem

* Formally
e Let goal(n) be the goal test applied to some node n
» Let g(n) be the cost of arriving at some node n
* Let G be the (potentially) infinite graph induced by the tree search
* Then Goals ={n € G : goal(n)}
* Then Optimal = {n € Goals : Vm € Goals : g(n) < g(m)}
* Which is just “its cost is no more than that of any other goal”



[>>Depth First Search: Convergence on Optimal

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue
if is_better(solution, node): <

continue

Pruning on incumbent solution

if problem.goal_test(node.state):

solution = node
next = node.get_next_child(problem) # child ordering is now baked into next_child
if not next is None:

frontier.extend([next, node])

return solution



[>>Depth First Search: Convergence on Optimal

def depth_first_tree_search(problem):
frontier = [Node(problem.initial)] # Stack

solution = None

while frontier: < We exhaust the space of all solutions
node = frontier.pop()

if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node): <

continue

All nodes must improve |

if problem.goal_test(node.state):

solution = node Solutions must improve |
next = node.get_next_child(problem) # child ordering is now baked into next_child

if not next is None:
frontier.extend([next, node])

return solution



let makeIntCycles (iface : TreeSearch.TreeSearch<'state, int>) (executorInbox : MailboxProcessor<MessageToExecutor<'state, "int>>

iterationsBetweenPolls int root Mode<'state, "int> index int) =

let startTime = DateTime.MNow in

let better (a : Node<'state, ‘cost: b : Node<'state, ‘cost») = a.g < b.g in
let ¥ (a : Node<'state, 'cost») = a.g + (iface.H a.state) in

let (openList : Node<'state, ‘cost» list ref) = ref [] in

[ ]
let (incumbent : Mode<'state, 'cost> option ref) = ref None in
let (incCost ‘cost option ref) = ref None in p e I I I e n a I O n
let metrics = initMetrics in
let childOrder = makeIntChildOrder iface in
let newGoal = makeIntNewGoal metrics startTime better incumbent in
let cycleTest = makeIntCycleTest iface metrics in

let counter = ref iterationsBetweenPolls in
let betterSol node =

match !incCost with
Some g -> g > (f node
Mone -> true in
let addNextChild node =
let node® = match node.childOrder with
-» { node with childOrder = computeOrder iface childOrder node
-» node in

let childIndex = List.item node’.considering node’.childOrder in
let (costDelta, childstate) = iface.NthChild node’.state childIndex in

let node’'’ = { node’ with considering = node’.considering + 1 } in
let child = { parent = Some node’’; childOrder = []; state = childState; considering = 8; g = node''.g + costDelta
metrics.gen <- metrics.gen + 1;

push openList node’”;
push openList child in
let searchStep node =
if not (cycleTest node) then
if betterSol node then begin
if iface.Goal node.state then

incCost := Some node.g;
printfn "Worker %A is posting new solution”™ index;
executorInbox.Post (IncumbentSolution (getSolution node
newGoal node else

it node.considering »>= (iface.NumChildren node.state) then
metrics.exp <- metrics.exp + 1 else
addNextChild node end else
metrics.pruned <- metrics.pruned + 1 in

let rec search counter =

if (!openList).Length = 8 then
true else

if counter <= @ th

false else

let node = pop openlList in
searchStep node;
search (counter - 1) in




|> A More Exact Definition of Pancakes

* pancakes.fs @

le Pancakes
> State int list
Problem

numCakes
initState

State, Instance Definition

t newProblem seed
et goalTest state -
t cakesOutOfOrder state -
flipStack state index -
reeSearchInterface(problem

t solve problem =

[<EntryPoint>]
>t main argv =




A More Exact Definition of Pancakes

pancakes.fs ®

le Pancakes

> = int list

newproblen seed size Action Definition

t goalTest state -
cakesOutOfOrder state -
flipStack state index
aboveSpatula, belowSpatula = List.splitAt index state i
List.rev aboveSpatula) @ belowSpatula

rchInterface(problem

solve problem -

[<EntryPoint>]
] main argv =




A More Exact Definition of Pancakes

depthFirstSearch.fs pancakes.fs ®

> Pancakes

= int list

newProblem seed size
goalTest state -

b Goal Definition

» true
- true
ass bl a « k& test (b::tl
test state
cakesOutOfOrder state -
t flipStack state index

archInterface(problem

solve problem =

[<EntryPoint>]
t main arg I




cakesQutOfOrder state

longestRunHeuristic state
ret = ref 8
count cur

cur ret
tl
delta abs(a
1

cur ret
count 1 (b::tl
count (cur 1

count 1 state
ret

gapHeuristic state
count

a
tl
delta abs(a
thisval delta
thisval count (b::tl
count state

notGoalHeuristic state

A More

Exact Definition of Pancakes

Heuristics



Domain Meets Search

nterface(problem
> TreeSearch.NaiveTreeSearch<State, int
this.InitialState = problem.initState
is.Goal state = goalTest state
is.H state = if goalTest state
is.D state = if goalTest state i
is.Equal s1 s2 = s1 = s2
is.InitialCost = @
. is.Expand state
List.mapi (A ind el -> flipStack state (ind+1)) state

Here’s how Pancakes fulfils that interface.

= TreeSearchInterface(problem

EL 0LV BEODICW = Here’s us telling DFS to solve the abstracted
iface = NaiveTreeSearchInterface(problem) i
solNode, metrics = DFS.naiveDFS iface ii prOblem.
printfn "%ZA" metrics;
solNode
None -> printfn "No solution”

Some s -> DFS.getSolution » printfn 7

[<EntryPoint>]
t main arg
2 i
problem = newProblem None 4 i
printfn "Problem: %A" problem;
solve problem




> What’s f, why is it special?

* g(n) is the cost of reaching a node n
* h(n) is a lower bound on the cost of an optimal solution starting at n
* h*(n) is the true cost of an optimal solution starting at n

* h*(n) = h(n) =0if goal(n)

* f(n) = g(n) + h(n)

e f*(n) = g(n) + h*(n) is the true cost of an optimal solution

« f(n) < f*(n) < f*(sol) = g(sol) and additionally,
* ff(n) = f(n) = f*(sol) = g(sol)



TSP Problem Representation

current int
visitedSoFar int
visited

applyDelta
undoDelta

Problem
origin : int
numberCities int
citylLocations : float
distanceMatrix : float

deterministicInit problem

emptyProblem ph

initProblemSquare num problem
problem.numberCities num
problem.citylocations Array2D.create num 2
problem.distanceMatrix

Array.init num index Array.create




nextNearest
getDist
accum
i ref
ind

r'u
e
8

CLim

euclidH (p
minX
minyY
many
maxy

ind
not

P

Problem

5 State

getDistance p s.current

af

p.numberCities
s.visited.[ind
getDist ind i accum

1

List.map

.citylocations.
.Citylocations.
.citylocations.

citylocations.

.numberCities 1

c.visited.[ind

delta¥

minX
madX
minyY
many

minX
miny

p.citylLocations.
p.citylLocations.
minX X
maxx CX
miny cy
maxy cy

y.origin
y.origin,:
.origin
y.origin,:

TSP Heuristics

One for child ordering

One for pruning



float
deterministicInit problem
goalTest problem sta
state = euclidH problem state

=.D state = d problem state

.Equal s1 s: equal s1 s2

.NumChildren state = numChildren problem state
.NthChild state n nthChild problem state n
.InitialC 8.

g

InPlaceModific

solve problem
iface
solNode, m

printfn "
solNode

None pri
Some s I

hildOrder None

ch(problem

rchInterface(problem
DFSv2.floatCycles iface

" metrics

ntfn "N
mperativeTreeSearch.getSolution s printfn

> (problem
rch.TreeSearch<State, int
problem.initState
goalTest state
gapHeuristic state
gapHeuristic state

Equal 51 s2 = 51 = 52

.NumChildren = problem.numCakes
.NthChild state n = flipStack state (n
.InitialCost = @

solveNaive probl

solve problem
iface Tree
solNode, met

printfn

ChildOrder None

em

archInterface(problem

a
rics = DFSv2.intCycles iface

" metrics

solNode
None printfn "N

Search is domain

agnostic!



