


Who am I? – Jordan T. Thayer

• B.S. CS, RHIT, 2006

• PhD Artificial Intelligence, U. of New Hampshire, 2012
• Advisor: Wheeler Ruml

• Thesis: Heuristic Search Under Time and Quality Bounds
• This stuff isn’t my thesis area, but it’s closely related

• Since then
• Logistics, Planning, Scheduling

• Formal Verification

• Static Analysis

• Currently Sr. Software Engineer for SEP



•

•

•

•

•

•

•



•

•

•

•

•

•



•

•

•

•

•

•



•

•

•

•

•

•



•

•

•

•

•

•



•

•

•

•

•

•



•

•

•

•

•

•



•

•

•

•



•

•

•

•

• 𝑛2

• 𝑏𝑛



•

•

•

•



•

•

•

•

•

•

•

•



Heuristic Search Can Be Costly

• Checkers, the extreme case
• Constant computation from 1989 to 2007 involving around 200 processors

• VLSI & TSP, the hard case
• Hours to days of compute time for moderate instances (2500-3000)

• Scheduling
• Minutes to days depending on problem size, constrainedness

• Mercifully, CPU Time is not Wall Clock Time!



The Simplest Approach



Why you can’t do that

• A problem of interest was a 115,000 city tsp
• 115,000! Potential solutions

• At the outside, maybe we prune 75% of those

• Still ~ 1.5 × 10532039 nodes / expansions

• How much do 10532039 lambda calls cost?
• First million are free, 20 cents per million after that.

• So, about $ 10532032

• Current Worldwide GDP for 100,000 years is ~$1017



What you can do



•

•

•

•

•

•

•



Depth First Search from AI:AMA

def depth_first_tree_search(problem):

"""Search the deepest nodes in the search tree first.

Search through the successors of a problem to find a goal.

The argument frontier should be an empty queue.

Repeats infinitely in case of loops. [Figure 3.7]"""

frontier = [Node(problem.initial)]  # Stack

while frontier:

node = frontier.pop()

if problem.goal_test(node.state):

return node

frontier.extend(node.expand(problem))

return None



Depth First Search from AI:AMA

def depth_first_tree_search(problem):

"""Search the deepest nodes in the search tree first.

Search through the successors of a problem to find a goal.

The argument frontier should be an empty queue.

Repeats infinitely in case of loops. [Figure 3.7]"""

frontier = [Node(problem.initial)]  # Stack

while frontier:

node = frontier.pop()

if problem.goal_test(node.state):

return node

frontier.extend(node.expand(problem))

return None



Depth First Search

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)]  # Stack

solution = None

while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue

if is_better(solution, node):

continue

if problem.goal_test(node.state):

solution = node

frontier.extend(node.expand(problem))

return solution



•

•

•

•

•

•

•



The Pancake Domain

Given an unordered stack of pancakes,
Order them using only a spatula and the ability to flip the stack



Step 1



Step 2



Step 3



•

•

•

•

•

•



•

•

•

•

•

•

•

•

•

•



Depth First Search for Pancakes

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)]  # Stack

solution = None

while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue

if is_better(solution, node):

continue

if problem.goal_test(node.state):

solution = node

frontier.extend(node.expand(problem))

return solution



It can (only) solve small instances



But how does it scale? (Real Bad)



Why?

Children Are Unsorted!

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)]  # Stack

solution = None

while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue

if is_better(solution, node):

continue

if problem.goal_test(node.state):

solution = node

frontier.extend(node.expand(problem))

return solution



Child Ordering is Critical



Child Ordering is Critical



Depth First Search: Child Ordering

Children are sorted (Heuristics go here!)

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)]  # Stack

solution = None

while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue

if is_better(solution, node):

continue

if problem.goal_test(node.state):

solution = node

children = node.expand(problem)

children.sort()

frontier.extend(children)

return solution



Depth First Search: Child Ordering

Children are all generated at once

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)]  # Stack

solution = None

while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue

if is_better(solution, node):

continue

if problem.goal_test(node.state):

solution = node

children = node.expand(problem)

children.sort()

frontier.extend(children)

return solution



Making All Kids At Once Is Bad!



Making All Kids At Once Is Bad!



Making All Kids At Once Is Bad!



Depth First Search: Child Ordering

One child at a time

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)]  # Stack

solution = None

while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue

if is_better(solution, node):

continue

if problem.goal_test(node.state):

solution = node

next = node.get_next_child(problem)  # child ordering is now baked into next_child

if not next is None:

frontier.extend([next, node]) 

return solution



How’s It Perform Now?



Actually, the performance is complicated…



Actually, the performance is complicated…



DFS is an Anytime Search



Actually, the performance is Complicated…



•

•

•

•

•

•

•



Travelling Salesman Problem



Travelling Salesman Problem



Travelling Salesman Problem



This is what makes heuristic search so cool:

I can solve a new problem,
But I don’t have to change my approach!



TSP Anytime Performance



TSP Anytime Performance



•

•

•

•

•

•

•



Distributed Depth First Search



Distributed Depth First Search



Distributed Depth First Search



Distributed Depth First Search



Distributed Depth First Search



DDFS Implementation



DDFS Implementation



•

•

•

•

•

•

•



Distributed Depth First Search



Distributed Depth First Search - Concept



Distributed Depth First Search – Low Budget



Distributed Depth First Search – Big Budget



• Thanks for your attention

• What questions do you have?



BACKUP SLIDES

• Here be dragons, proofs, F#



Wait, What’s Optimal?

• Informally, it’s the best solution to the problem

• Formally
• Let goal(n) be the goal test applied to some node n

• Let g(n) be the cost of arriving at some node n

• Let 𝐺 be the (potentially) infinite graph induced by the tree search

• Then 𝐺𝑜𝑎𝑙𝑠 = 𝑛 ∈ 𝐺 ∶ 𝑔𝑜𝑎𝑙 𝑛

• Then 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑛 ∈ 𝐺𝑜𝑎𝑙𝑠 ∶ ∀𝑚 ∈ 𝐺𝑜𝑎𝑙𝑠 ∶ 𝑔 𝑛 ≤ 𝑔 𝑚

• Which is just “its cost is no more than that of any other goal”



Depth First Search: Convergence on Optimal

Pruning on incumbent solution

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)]  # Stack

solution = None

while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue

if is_better(solution, node):

continue

if problem.goal_test(node.state):

solution = node

next = node.get_next_child(problem)  # child ordering is now baked into next_child

if not next is None:

frontier.extend([next, node]) 

return solution



Depth First Search: Convergence on Optimal

All nodes must improve

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)]  # Stack

solution = None

while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue

if is_better(solution, node):

continue

if problem.goal_test(node.state):

solution = node

next = node.get_next_child(problem)  # child ordering is now baked into next_child

if not next is None:

frontier.extend([next, node]) 

return solution

Solutions must improve

We exhaust the space of all solutions



DDFS Implementation



A More Exact Definition of Pancakes

State, Instance Definition



A More Exact Definition of Pancakes

Action Definition



A More Exact Definition of Pancakes

Goal Definition



A More Exact Definition of Pancakes

Heuristics



Domain Meets Search

Here’s how Pancakes fulfils that interface.

Here’s us telling DFS to solve the abstracted
problem.



What’s f, why is it special?

• 𝑔 𝑛 is the cost of reaching a node n
• ℎ 𝑛 is a lower bound on the cost of an optimal solution starting at n
• ℎ∗ 𝑛 is the true cost of an optimal solution starting at n

• ℎ∗ 𝑛 = ℎ 𝑛 = 0 𝑖𝑓 𝑔𝑜𝑎𝑙 𝑛

• 𝑓 𝑛 = 𝑔 𝑛 + ℎ 𝑛

• 𝑓∗ 𝑛 = 𝑔 𝑛 + ℎ∗ 𝑛 is the true cost of an optimal solution

• 𝑓 𝑛 < 𝑓∗ 𝑛 < 𝑓∗ 𝑠𝑜𝑙 = 𝑔 𝑠𝑜𝑙 and additionally,

• 𝑓∗ 𝑛 ≥ 𝑓 𝑛 ≥ 𝑓∗ 𝑠𝑜𝑙 = 𝑔 𝑠𝑜𝑙



TSP Problem Representation



TSP Heuristics

One for child ordering

One for pruning



Search is domain
agnostic!


