4

Heuristic Search In The Cloud
IndyCloud 2019

> Who am I? —Jordan T. Thayer

* B.S. CS, RHIT, 2006
* PhD Artificial Intelligence, U. of New Hampshire, 2012

e Advisor: Wheeler Ruml
* Thesis: Heuristic Search Under Time and Quality Bounds
* This stuff isn’t my thesis area, but it’s closely related
* Since then
 Logistics, Planning, Scheduling
* Formal Verification
 Static Analysis

* Currently Sr. Software Engineer for SEP

Talk Outline

 What is heuristic search and why should | care?
« Depth First Search: The Textbook Definition
* Depth First Search in Action
« Pancake Flipping — a toy domain
* The Travelling Salesman Problem
« Distributed Depth First Search
» Distributed Depth First Search In The Cloud

> Whatis Search, Why do | care?

« Searchis a technique for solving problems
* These problems look like this:

« States

* Actions

« Goals

 Heuristics

> Whatis Search, Why do | care?

« Searchis a technique for solving problems

* These problems look like this:

 States

« Actions
e Goadls

 Heuristics

> Whatis Search, Why do | care?

« Searchis a technique for solving problems

* These problems look like this:

 States

 Actions
e Goadls

 Heuristics

> Whatis Search, Why do | care?

« Searchis a technique for solving problems

* These problems look like this:
« States
* Actions
+ Goals

 Heuristics

> Whatis Search, Why do | care?

« Searchis a technique for solving problems

* These problems look like this:

 States

« Actions
e Goadls

 Heuristics

> Whatis Search, Why do | care?

« Searchis a general technique for solving problems

* The search cares about your problem using this abstraction:

e States ~ gww S
14 15 s
17 s 5
20 21 22

* Actions . N NemE 4
. Godls — e, W AETiEL
* Heuristics L -.-l_ AR A H - i
i HAE AAN
® o

Kingston

Westport

0sgood

Search is a technique for solving hard problems

These problems look like this:

NP hard or worse

Domain specific solution doesn’'t yet exist

rrrrrrrrrr

cccccccccc

Enochsburg

NNNNNN

aaaaaa

> Whatis Search, Why do | care?

11111

GGG 6 1 12 |13
14 15 16
17 18 19
20 2 2
23 24 25 |
NE_ dmahm
33 3 37 38
3) a1
42 aa
Ln 51 52 (53 54 |55
56 |57
61 62 63
o1 oo
&7 &
T —
E s t®

> What’s NP Hard? Why do | care?

Informally “ ... real expensive, and there are no known cheap solutions
Formally-ish “... at least as hard as the hardest problems in NP”
* A class of problems that have similar costs to solve
* No known polynomial time algorithms for solving
* Selection sort is poly-time for input sizen ~ n? Graph for xA2, 2/x

0 3.74690505

» Depth first search is not for solution depth n b™

12

yo 14.0382974

13 14

L]

13

> Whatis Search, Why do | care?

« Search is a technique for solving intractable problems

* These problems look like this: T I I
NP hard or worse B AEEEE & 1
« Domain specific solution doesn’t yet exist aaaa JAEEa '

rrrrrrrrrr

KKKKKKKK

Enochsburg

aaaaaa

L I
L
L]

Talk Outline

What is heuristic search and why should | care?

* Where are we going with this talk?
» Depth First Search: The Textbook Definition
* Depth First Search in Action
« Pancake Flipping — a toy domain
* The Travelling Salesman Problem
« Distributed Depth First Search
» Distributed Depth First Search In The Cloud

D Heuristic Search Can Be Costly

* Checkers, the extreme case
e Constant computation from 1989 to 2007 involving around 200 processors

e VLSI & TSP, the hard case

e Hours to days of compute time for moderate instances (2500-3000)

* Scheduling

* Minutes to days depending on problem size, constrainedness

* Mercifully, CPU Time is not Wall Clock Time!

The Simplest Approach

> Why you can’t do that

* A problem of interest was a 115,000 city tsp
e 115,000! Potential solutions
e At the outside, maybe we prune 75% of those
e Still ~ 1.5 X 10°320939 nodes / expansions

» How much do 1032939 |lambda calls cost?
* First million are free, 20 cents per million after that.
e So, about $ 10°32032

e Current Worldwide GDP for 100,000 years is ~$1017

What you can do

SNS Events (or your favorite MPI)

S3
Events

Executor

Lambda EC2
Very Short Processes Very Long Processes

[
=
[

Talk Outline

 What is heuristic search and why should | care?
 Depth First Search: The Textbook Definition
* Depth First Search in Action
« Pancake Flipping — a toy domain
* The Travelling Salesman Problem
« Distributed Depth First Search
» Distributed Depth First Search in the cloud

> Depth First Search from Al:AMA

def depth_first_tree_search(problem):
"""Search the deepest nodes in the search tree first.
Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.

Repeats infinitely in case of loops. [Figure 3.7]
frontier = [Node(problem.initial)] # Stack

while frontier:
node = frontier.pop()
if problem.goal_test(node.state):
return node
frontier.extend(node.expand(problem))

return None

> Depth First Search from Al:AMA

def depth_first_tree_search(problem):
"""Search the deepest nodes in the search tree first.
Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.

Repeats infinitely in case of loops. [Figure 3.7]
frontier = [Node(problem.initial)] # Stack

while frontier:
node = frontier.pop()
if problem.goal_test(node.state):
return node
frontier.extend(node.expand(problem))

return None

> Depth First Search

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:
node = frontier.pop()
if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):
solution = node
frontier.extend(node.expand(problem))

return solution

Talk Outline

 What is heuristic search and why should | care?
« Depth First Search: The Textbook Definition
 Depth First Search in Action

« Pancake Flipping — a toy domain

* The Travelling Salesman Problem
* Distributed DFS
 Distributed DFS in the cloud

|> The Pancake Domain

]
]
L

]

Given an unordered stack of pancakes,
Order them using only a spatula and the ability to flip the stack

Step 1

Step 2

Step 3

> Whatis Search, Why do | care?

« Searchis a technique for solving problems

* These problems look like this: :
« States
* Actions [1 /

e Goals :

What is Search, Why do | care?

« Searchis a technique for solving hard problems
* These problems look like this:
* NP hard or worse
« Domain specific solution doesn't yet exist
« Solving the pancake problem optimally is equivalent to known NP hard problems
* Rubik's Cube Optimally
* 15 Puzzle Optimally
* There's a new-ish reduction from 3-SAT
« Pancake Flipping is Hard by Bulteau, Fertin, and Rusu
« https://arxiv.org/pdf/1111.0434.pdf

> Depth First Search for Pancakes

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:
node = frontier.pop()
if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):
solution = node
frontier.extend(node.expand(problem))

return solution

't can (only) solve small instances

Problem: {numCakes = 4;
initState = [4; 2; 3; 1];}
{generated = 0;
expanded =
goalsFound = 9;
duplicatesFound 0;
pruned = 0;}

L5 [2: 45 3505 32452510 [A7 33025 -3 0§ 2535 4]

[[4; 2; 3;
il 3 0 W1tT Ut alsing a LoreCLLR StTc

B Ty s R v
| ne target process exited withou 11S1NE

-
~

> But how does it scale? (Real Bad)

Time to solve 100 instances(seconds)
80000

70000
60000

50000

30000
20000

10000

>

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):

solution = node

frontier.extend(node.expand(problem)) <

Children Are Unsorted!

return solution

Why

?

Child Ordering is Critical

OO
OO

O
OO

Child Ordering is Critical

O

> Depth First Search: Child Ordering

def depth_first_tree_search(problem):
frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:
node = frontier.pop()
if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):
solution = node
children = node.expand(problem)
children.sort()
frontier.extend(children) < Children are sorted (Heuristics go here!)
return solution

> Depth First Search: Child Ordering

def depth_first_tree_search(problem):
frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:
node = frontier.pop()
if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):
solution = node
children = node.expand(problem) < Children are all generated at once

children.sort()

frontier.extend(children)

return solution

Making All Kids At Once Is Bad!

OO
OO

O
OO

Making All Kids At Once Is Bad!

Making All Kids At Once Is Bad!

> Depth First Search: Child Ordering

def depth_first_tree_search(problem):
frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:
node = frontier.pop()
if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node):
continue
if problem.goal_test(node.state):
solution = node
next = node.get_next_child(problem) # child ordering is now baked into next_child
if not next is None:

frontier.extend([next, node]) < One child at a time
return solution

Seconds

D How’s It Perform Now?

1600
1400
1200
1 CeChC
B0
GO0
400
200

Time to Optimal Solution

1234567 8 9101112131415161718192021222324252627 28

Pancakes

Seconds

D Actually, the performance is complicated...

1600
1400
1200
1 CeChC
B0
GO0
400
200

0

Time to Optimal Solution

1234567 8 9101112131415161718192021222324252627 28

Pancakes

Actually, the performance is complicated...

DFS Solutions to 200 Pancake Problem
J00

FLL

500

Lid o
=]
L

=]
o=

Solution Cost

[t
=
L

100

0 10 20 30 40 50 &0

Time To Solution

O

DFS is an Anytime Search

O
O 77

Actually, the performance is Complicated...

DFS Solutions to 200 Pancake Problem
J00

FLL

500

Lid o
=]
L

=]
o=

Solution Cost

[t
=
L

100

0 10 20 30 40 50 &0

Time To Solution

Talk Outline

 What is heuristic search and why should | care?
« Depth First Search: The Textbook Definition
 Depth First Search in Action

« Pancake Flipping — a toy domain

* The Travelling Salesman Problem
« Distributed Depth First Search
 Distributed DFS in the Cloud

Travelling Salesman Pro

Waldron — ‘
Clarksburg ‘
Stivaul Downeyville
\ ®
Kingston
ﬁ] ¥
Greensburg ' EnocH
| e

W ‘ . New Point

artsville i E ' 3
",i 7,/'/
.///
. Millhousen”™
> Napoleon
l Westport o
Alert //"j
>

sburg

Osgood

blem

Travelling Salesman Problem

Waldron — ——y —
\‘ Clarksburg
Stifaul Downeyville
Kingston ‘
Enoch‘sburg
\ e
W [New Point
|
artsville
Millhousen
Napoleon

Westport

Alert

— : ’ Osgood

Travelling Salesman Problem

Waldron p— — — _

Clarksburg

Downeyville

\

St Paul
[
|

Kingston

74

Enochlsburg

Greensburg
a2 74 |

New Point
Y% '
1

artsvile — 421
Millhousen
. Napoleon

Westport

Alert

eSS e Osgood

TreeSearch.TreeSearch<5tate, float
deterministicInit problem

goalTest problem state

state = euclidH problem state
) state = d problem state
.Equal =1 s: equal s1 s2
.NumChildren state = numChildren problem state
.NthChild ate n nthChild problem state n
.InitialCost = @.
ChildOrder = None

InPlaceModificat problem

solve problem
iface

printfn "XA" metrics
solNode

This is what makes heuristic search so cool: None -> printfn "

Some s ImperativeTreeSearch.getSolution s printfn

| can solve a new problem, -
i mte problem
But | don’t have to change my approach! ceSearch. TreeSearcheState, int

problem.initState
goalTest state
ic state
. gapHeuristic state
.Equal 51 52 = 51 = 52
.MumChildren _ = problem.numCakes
.NthChild state n = flipStack state (n
InitialCost = 8
hildOrder = None

solveNaive problem

solve problem

iface = TreeSearchInterface(problem

a
solNode, metrics = DFSv2.intCycles iface

printfn " metrics
solNode
None printfn

Some s Imperativ earch.getSolution s printfn

Tour Cost

1400

1380

1360

1340

1320

1300

1280

1260

TSP Anytime Performance

237 Cities

Time

10

12

14

16

18

TSP Anytime Performance

Tour Cost

3347

3346

3345

3344

3343

3342

3341

3340

42.7

42.75

42.8

e

662 Cities

42.85

42.9

Time

42.95

43

43.05

43.1

Talk Outline

 What is heuristic search and why should | care?
« Depth First Search: The Textbook Definition
* Depth First Search in Action
« Pancake Flipping — a toy domain
* The Travelling Salesman Problem
» Distributed Depth First Search
 Distributed DFS in the cloud

Distributed Depth First Search

OO
OO

O
OO

Distributed Depth First Search

Distributed Depth First Search

Executor

Distributed Depth First Search

 vewsouens

Distributed Depth First Search

DDFS Implementation

openList root
worker
MailboxProcessor.5tart inbox
loop
msg = inbox.TryReceive(1©
halt ref false

msg
Some (IncumbentCost g
Some Halt halt:= true

incCost

Some (Root r openlList

None
halt search iterationsBetweenPolls
printfn "Working is done or was told to halt” index
executorInbox.Post (Metrics metrics
executorInbox.Post (Done index

loop
loop

worker

DDFS Implementation

distributedIntCycles (iface : TreeSearch.TreeSearch<'state, int numkWorkers : int

totalMetrics initMetrics
incumbent ref None

workers : MailboxProcessor<MessageToWorker<'state,int»> Option array Array.init numbWorkers i None
betterSel sol
incumbent
Some p p.cost sol.cost
None true
postInc (g : int) (w : MailboxProcessor<MessageToWorker<'state, 'int>> Option
W
None
Some W w.Post (IncumbentCost g
getSome
None false
Some true
executer
MailboxProcessor.Start inbox
loop
msg = inbox.Receive
msg

IncumbentSolution sol
bettersSol sol

incumbent Some sol
Array.iter (postInc sol.cost) workers

Metrics m mergeMetrics totalMetrics m

Done index printfn " is done with search” index; workers.[index None
loop

loop
makekWorker index
urRoot = makeRoot iface.InitialCost iface.InitialState

root urRoot considering = index

Some (makeIntCycles iface executer 188 root index
index e numkorkers - 1
workers. [index makekWlorker index

Array.exists getSome workers

Talk Outline

 What is heuristic search and why should | care?
« Depth First Search: The Textbook Definition
* Depth First Search in Action
« Pancake Flipping — a toy domain
* The Travelling Salesman Problem
« Distributed Depth First Search
 Distributed DFS in the Cloud

Distributed Depth First Search

EEEEEEEE

Distributed Depth First Search - Concept

1
-
]

I EEEEEEEE

|>Distributed Depth First Search — Low Budget

SNS Events (or your favorite MPI)
S3
EEEEEE :

:| Executor

! Lambda

eeeeeeeeeeeeeeeee

Distributed Depth First Search — Big Budget

SNS Events (or your favorite MPI)

§ New Search Root
3

|

? IncumbentCost g
©

c S3

3 Events

Halt
Post Problem, Budget > 15m

Executor

Solution S
— New Solution s
-
g
o Resources Spent
2
£ :
o] H
? Lambda i EC2 All Done!
| . H :
2 Very Short Processes : Very Long Processes
= :

>

* Thanks for your attention
* What questions do you have?

> BACKUP SLIDES

* Here be dragons, proofs, F#

> Wait, What's Optimal?

* Informally, it’s the best solution to the problem

* Formally
e Let goal(n) be the goal test applied to some node n
» Let g(n) be the cost of arriving at some node n
* Let G be the (potentially) infinite graph induced by the tree search
* Then Goals ={n € G : goal(n)}
* Then Optimal = {n € Goals : Vm € Goals : g(n) < g(m)}
* Which is just “its cost is no more than that of any other goal”

[>>Depth First Search: Convergence on Optimal

def depth_first_tree_search(problem):

frontier = [Node(problem.initial)] # Stack
solution = None
while frontier:

node = frontier.pop()

if is_cycle(node, problem.are_equal):

continue
if is_better(solution, node): <

continue

Pruning on incumbent solution

if problem.goal_test(node.state):

solution = node
next = node.get_next_child(problem) # child ordering is now baked into next_child
if not next is None:

frontier.extend([next, node])

return solution

[>>Depth First Search: Convergence on Optimal

def depth_first_tree_search(problem):
frontier = [Node(problem.initial)] # Stack

solution = None

while frontier: < We exhaust the space of all solutions
node = frontier.pop()

if is_cycle(node, problem.are_equal):
continue
if is_better(solution, node): <

continue

All nodes must improve |

if problem.goal_test(node.state):

solution = node Solutions must improve |
next = node.get_next_child(problem) # child ordering is now baked into next_child

if not next is None:
frontier.extend([next, node])

return solution

let makeIntCycles (iface : TreeSearch.TreeSearch<'state, int>) (executorInbox : MailboxProcessor<MessageToExecutor<'state, "int>>

iterationsBetweenPolls int root Mode<'state, "int> index int) =

let startTime = DateTime.MNow in

let better (a : Node<'state, ‘cost: b : Node<'state, ‘cost») = a.g < b.g in
let ¥ (a : Node<'state, 'cost») = a.g + (iface.H a.state) in

let (openList : Node<'state, ‘cost» list ref) = ref [] in

[]
let (incumbent : Mode<'state, 'cost> option ref) = ref None in
let (incCost ‘cost option ref) = ref None in p e I I I e n a I O n
let metrics = initMetrics in
let childOrder = makeIntChildOrder iface in
let newGoal = makeIntNewGoal metrics startTime better incumbent in
let cycleTest = makeIntCycleTest iface metrics in

let counter = ref iterationsBetweenPolls in
let betterSol node =

match !incCost with
Some g -> g > (f node
Mone -> true in
let addNextChild node =
let node® = match node.childOrder with
-» { node with childOrder = computeOrder iface childOrder node
-» node in

let childIndex = List.item node’.considering node’.childOrder in
let (costDelta, childstate) = iface.NthChild node’.state childIndex in

let node’'’ = { node’ with considering = node’.considering + 1 } in
let child = { parent = Some node’’; childOrder = []; state = childState; considering = 8; g = node''.g + costDelta
metrics.gen <- metrics.gen + 1;

push openList node’”;
push openList child in
let searchStep node =
if not (cycleTest node) then
if betterSol node then begin
if iface.Goal node.state then

incCost := Some node.g;
printfn "Worker %A is posting new solution”™ index;
executorInbox.Post (IncumbentSolution (getSolution node
newGoal node else

it node.considering »>= (iface.NumChildren node.state) then
metrics.exp <- metrics.exp + 1 else
addNextChild node end else
metrics.pruned <- metrics.pruned + 1 in

let rec search counter =

if (!openList).Length = 8 then
true else

if counter <= @ th

false else

let node = pop openlList in
searchStep node;
search (counter - 1) in

|> A More Exact Definition of Pancakes

* pancakes.fs @

le Pancakes
> State int list
Problem

numCakes
initState

State, Instance Definition

t newProblem seed
et goalTest state -
t cakesOutOfOrder state -
flipStack state index -
reeSearchInterface(problem

t solve problem =

[<EntryPoint>]
>t main argv =

A More Exact Definition of Pancakes

pancakes.fs ®

le Pancakes

> = int list

newproblen seed size Action Definition

t goalTest state -
cakesOutOfOrder state -
flipStack state index
aboveSpatula, belowSpatula = List.splitAt index state i
List.rev aboveSpatula) @ belowSpatula

rchInterface(problem

solve problem -

[<EntryPoint>]
] main argv =

A More Exact Definition of Pancakes

depthFirstSearch.fs pancakes.fs ®

> Pancakes

= int list

newProblem seed size
goalTest state -

b Goal Definition

» true
- true
ass bl a « k& test (b::tl
test state
cakesOutOfOrder state -
t flipStack state index

archInterface(problem

solve problem =

[<EntryPoint>]
t main arg I

cakesQutOfOrder state

longestRunHeuristic state
ret = ref 8
count cur

cur ret
tl
delta abs(a
1

cur ret
count 1 (b::tl
count (cur 1

count 1 state
ret

gapHeuristic state
count

a
tl
delta abs(a
thisval delta
thisval count (b::tl
count state

notGoalHeuristic state

A More

Exact Definition of Pancakes

Heuristics

Domain Meets Search

nterface(problem
> TreeSearch.NaiveTreeSearch<State, int
this.InitialState = problem.initState
is.Goal state = goalTest state
is.H state = if goalTest state
is.D state = if goalTest state i
is.Equal s1 s2 = s1 = s2
is.InitialCost = @
. is.Expand state
List.mapi (A ind el -> flipStack state (ind+1)) state

Here’s how Pancakes fulfils that interface.

= TreeSearchInterface(problem

EL 0LV BEODICW = Here’s us telling DFS to solve the abstracted
iface = NaiveTreeSearchInterface(problem) i
solNode, metrics = DFS.naiveDFS iface ii prOblem.
printfn "%ZA" metrics;
solNode
None -> printfn "No solution”

Some s -> DFS.getSolution » printfn 7

[<EntryPoint>]
t main arg
2 i
problem = newProblem None 4 i
printfn "Problem: %A" problem;
solve problem

> What’s f, why is it special?

* g(n) is the cost of reaching a node n
* h(n) is a lower bound on the cost of an optimal solution starting at n
* h*(n) is the true cost of an optimal solution starting at n

* h*(n) = h(n) =0if goal(n)

* f(n) = g(n) + h(n)

e f*(n) = g(n) + h*(n) is the true cost of an optimal solution

« f(n) < f*(n) < f*(sol) = g(sol) and additionally,
* ff(n) = f(n) = f*(sol) = g(sol)

TSP Problem Representation

current int
visitedSoFar int
visited

applyDelta
undoDelta

Problem
origin : int
numberCities int
citylLocations : float
distanceMatrix : float

deterministicInit problem

emptyProblem ph

initProblemSquare num problem
problem.numberCities num
problem.citylocations Array2D.create num 2
problem.distanceMatrix

Array.init num index Array.create

nextNearest
getDist
accum
i ref
ind

r'u
e
8

CLim

euclidH (p
minX
minyY
many
maxy

ind
not

P

Problem

5 State

getDistance p s.current

af

p.numberCities
s.visited.[ind
getDist ind i accum

1

List.map

.citylocations.
.Citylocations.
.citylocations.

citylocations.

.numberCities 1

c.visited.[ind

delta¥

minX
madX
minyY
many

minX
miny

p.citylLocations.
p.citylLocations.
minX X
maxx CX
miny cy
maxy cy

y.origin
y.origin,:
.origin
y.origin,:

TSP Heuristics

One for child ordering

One for pruning

float
deterministicInit problem
goalTest problem sta
state = euclidH problem state

=.D state = d problem state

.Equal s1 s: equal s1 s2

.NumChildren state = numChildren problem state
.NthChild state n nthChild problem state n
.InitialC 8.

g

InPlaceModific

solve problem
iface
solNode, m

printfn "
solNode

None pri
Some s I

hildOrder None

ch(problem

rchInterface(problem
DFSv2.floatCycles iface

" metrics

ntfn "N
mperativeTreeSearch.getSolution s printfn

> (problem
rch.TreeSearch<State, int
problem.initState
goalTest state
gapHeuristic state
gapHeuristic state

Equal 51 s2 = 51 = 52

.NumChildren = problem.numCakes
.NthChild state n = flipStack state (n
.InitialCost = @

solveNaive probl

solve problem
iface Tree
solNode, met

printfn

ChildOrder None

em

archInterface(problem

a
rics = DFSv2.intCycles iface

" metrics

solNode
None printfn "N

Search is domain

agnostic!

