
Your App. New. Again.

Calculating
the cost of manual rewrites
Know before you go.

You’ve got an old legacy application
and you’re faced with the dilemma

Should I rewrite from
scratch?

Should I keep trying
to maintain it?

2 - Your App. New. Again | 2016

3 - Your App. New. Again | 2016

Before you take on a manual rewrite, you should
understand the risks and costs.

4 - Your App. New. Again | 2016

Legacy code is expensive to keep around.

Higher sta�ng costs for specialized talent.

Higher maintenance costs for supported obsolete hardware.

High maintenance fees for legacy vendors
(i.e. high support contracts for Windows XP).

Higher costs to add features or do required updates.

Longer project cycles due to poor architecture, linear program-
ming, bad data schemas, and more.

Delays in responding to market changes and business cycles.

5 - Your App. New. Again | 2016

Sometimes it’s good to rewrite from scratch

There might be strategic reasons:

 If your app IS your business (e.g. if you’re Facebook or Amazon).

 If you want to do something fundamentally di�erent with the app
 (add complicated or complex features).

And there might be technical reasons:

 The code is bad, poorly written, unsalvageable.

 Your code depends on obsolete libraries that are no longer available.

6 - Your App. New. Again | Source: *Standish Group, 2010

The problem with manual rewrites

Typical Project Results for Full Manual Rewrites*

Failed
Successful
Challenged

HIGH FAILURE RATE
• 70% of manual software rewrites fail*

HIGH COST
• Rewrite costs 4 times more than migration

HUGE DEFECT RATE
• Developers write 10-50 bugs per KLOC
• In a 1 million line project, developers will write 10-50K bugs

FEATURE CREEP KILLS MANUAL REWRITES
• Projects overcome by too many features
• Requirements keep changing

7 - Your App. New. Again | 2016

But mostly, manual rewrites are expensive.

It’s going to cost between $6-$23 per line of code written.

And you’re going to write a bunch of bugs.

You should �gure out the costs before you attempt a full.
manual rewrite.

8 - Your App. New. Again | 2016

Before you can �gure
out costs, you need
to understand some
de�nitions.

9 - Your App. New. Again | 2016

There are 3 common ways to predict the e�ort
required to develop a software program.

Function Points (FP)
 A unit of measurement to express the amount of business functionality a
 software program provides to a user.
 The cost (in dollars or hours) of a single unit is calculated from past projects.

Source Lines of Code (SLOC):
 Measures the size of a program by counting
 number of lines in the source code.

COCOMO (Constructive Cost Model)
 Uses formulas to calculate costs based on SLOC.

10 - Your App. New. Again | 2016

Function Point estimating has pros and cons.

Pros:

Lots of support for FP because it
requires thorough planning and
results in a bulletproof plan.

Concentrates on functionality vs
implementation details so it’s
focused on end user outcomes.

Helps to drive an accurate
estimation of e�ort.

Independent of programming
language or style/terseness.

Cons:
It’s a lot of work, hard to do if you
lack experience, and there’s no way
to automate it.

Pros:

Automation tools make it simple
to count lines of code.

It’s an objective measure vs any
other method.

Cons:
Doesn’t take into account code
complexity.

Can be misleading depending on
the quality of code.

Varies by programming language
(high level vs low level).

11 - Your App. New. Again | 2016

So does SLOC

Pros:

Based on historical data.

Widely accepted.

Cons:
Based on analyzing waterfall
projects from before 1981.

Doesn’t factor in modern
patterns or methodologies.

12 - Your App. New. Again | 2016

As does COCOMO

13 - Your App. New. Again | 2016

Which one should you use?

Bottom line: they’re all great but �awed.
It’s not possible to accurately predict software development
costs for complex projects.

But you can at least get some order of magnitude estimates.

14 - Your App. New. Again | 2016

What’s the relationship between FP and SLOC?

15 - Your App. New. Again | 2016

Low level languages (e.g. Assembly) require
many lines of code for one Function Point.

16 - Your App. New. Again | 2016

High level languages (SQL, Powerbuilder) require
few lines of code for one Function Point.

17 - Your App. New. Again | * *Based on analyzing real project code

Ratio of lines of code to function points
is a re�ection of the level of language

development (high or low).

For example,
The average lines of code* it takes to build a Function Point in:

Macro Assembler = 119
Visual Basic = 42
SQL Server = 21

18 - Your App. New. Again | 2016

A developer can develop 5 to 9.25
FPs per month.

One developer month:

1

19 - Your App. New. Again | 2016

1 Function Point = approx. 54 SLOC in C#

20 - Your App. New. Again | 2016

A developer can develop 5 to 9.25
FPs per month.

How do FP productivity numbers
compare to SLOC?

Industry data by lines of code:

A world-class developer (e.g. Facebook or Google senior engineer) will
write 50 LOC per developer-day.

A regular developer will write 10 LOC per developer-day.

This includes everything from requirements de�nition, speci�cations,
coding, bug �xing, testing, and documentation.

Most work in programming is not actual coding.

21 - Your App. New. Again | 2016

What about COCOMO?

The COCOMO algorithm tells you three things:

Person-months to complete (“e�ort applied”).

Calendar months to complete (“development time”).

Number of engineers (“people required”).

Uses SLOC and standardized calculations to complete.

22 - Your App. New. Again | 2016

Now let’s talk about developer productivity
and defects.

There’s a lot of interesting data on this topic and it’s
pretty sobering stu�:

On average, developers write 4.5 defects per Function Point.

On average, 1.2 defects per FP make it into the �nal delivered application.

Best-in-class delivery is 1-3 defects per FP.

Unfortunately, US devs average 4-6 defects per FP.

23 - Your App. New. Again | 2016

You’re going to ship a lot of bugs

If you write a project with a thousand Function.

Points, you’re going to ship 1200 bugs.

Best-in-class developers will write fewer bugs, but not
by much.

24 - Your App. New. Again | 2016

How does that break down?

Design errors make up 30-60%.

Coding errors make up 25-40%.

Design errors take an average of 8.5 hours to �x.

Coding errors take an average of 3 hours to �x.

Data errors take an average of 6.5 hours to �x.

25 - Your App. New. Again | 2016

How many bugs will you write?

Typically, you’ll write 20 – 50 new bugs per KLOC.

A 100KLOC project will have 2000 – 5000 bugs to �nd, �x, and test.

Many of those bugs will not be discovered before the product is delivered.

26 - Your App. New. Again | 2016

Whichever costing
method you use,
the bottom line is
that everything
takes longer than
you estimate.

You’re going to
write more bugs
than you anticipate.

27 - Your App. New. Again | 2016

How do you �gure out realistic costs
for manual rewrites?

28 - Your App. New. Again | 2016

Inputs Description and sources

Here are some assumptions
to get you started….

Average LOC written or changed per developer per day

Total developer work days per year

Fully burdened cost of one developer per year

Maximum potential savings of o�shore development

Potential cost savings of rewrite vs. new development

New defects introduced per KLOC touched

Developer hours per defect to �nd, �x, test

Total project KLOC

Total function points (FP)

Average FPs per developer per day

Average defects per FP

20 Industry average from low of 10 to high of 50 (McConnell: Code Complete

250 Assumes 10 days o�, no additional sick or vacation days)

$150,000 Include all taxes, vacation, insurance, o�ce space, IT support, PC, software, etc.

15% Best savings is 40%, worst is less than 10%, likely is 15%:
Source: Deloitte, multiple research reports

20% Reductions come from better requirements, existing use and test cases, existing
sta� experience

25 Industry averages run from 10 to 50, Sources: Deloitte, Lotus, Microsoft

5.00 Industry averages run from 3 to 9.

100,000 lines of C# code would be considered a medium-large project

1,852 Based on C# ratio of 54 SLOC per FP.
See: www.qsm.com/resources/function-point-languages-table

0.30 Industry averages run from 0.24 to 0.44

5 US industry averages are 4-6.
See: http://sqgne.org/presentations/2011-12/Jones-Sep-2011.pdf

29 - Your App. New. Again | 2016

…which result in these estimates

Software Development using LOC estimates:
Lines of code per developer per year

Total developer-months to design / develop new application similar size

Estimated number of regression defects introduced by rewrite

Average cost per LOC for on-shore new development

Best case scenario cost per LOC o�shore development

Rewrite cost per LOC domestic rewrite

Rewrite cost per LOC o�shore rewrite (optimum)

Estimated rewrite cost on-shore

Cost of defect mitigation before ship (on-shore)

Estimated rewrite cost o�-shore

Cost of defect mitigation before ship (o�-shore)

Software Development using Function Point estimates:
FPs per developer per month

Total person months to complete

Estimated cost per FP on-shore

Cost per FP on-shore with rewrite e�ciency factored in

Estimated regressions / defects introduced

Estimated rewrite on-shore

Cost of defect mitigation before ship (on-shore)

Estimated rewrite o�-shore

Cost of defect mitigation before ship (o�-shore)

5,000

416.7

2,500

$30.00

$25.50

$24.00

$20.40

$2,400,000

$937,500

$2,040,000

$796,875

$6.25

$296.3

$2,000

$1,600

$1,852

$2,962,963.0

$694,444

2,518,518.5

$590,278

Calculations

30- Your App. New. Again | 2016

And for COCOMO

E�ort Applied (Person months)

Development Time (months)

People Required

Cost

302.14

21.90

$14

$3,776,776

31- Your App. New. Again | 2016

Which should you believe?

Bottom line: expect your total costs to be somewhere

between the high and low in the di�erent models.

None is perfect.

32 - Your App. New. Again | 2016

What are your alternatives
to starting from scratch?

33 - Your App. New. Again | 2016

Automated software code conversion
gives you the best of both worlds,

costs 80% less money and is 4X faster.

Bottom line: expect your total costs to be somewhere

between the high and low in the di�erent models.

34 - Your App. New. Again | 2016

Code conversion via automation tools
enables you to reuse the existing

functionality without
starting over from scratch.

35 - Your App. New. Again | 2016

Automated software code conversion
gives you the best of both worlds,

costs 80% less money and is 4X faster.

Because you don’t have to re-invent the wheel:

 Costs are lower
 You need less time
 Your risk is lower

No new bugs are introduced.

Doesn’t require re-training because
UI is the same (or similar).

Presentation Tier Logic Tier Data Tier

36 - Your App. New. Again | 2016

The application can be re-factored and
re-architected via automation tools to make the
new application multi-tier and cloud-enabled.

(User Interface) (Business rules and processes) (Database storage and retrival)

Three Tier Architecture

37 - Your App. New. Again | 2016

Once the code conversion is complete, you can
enhance the app with new features, updated UI
and other improvements.

You will get a full-functioning application that works on the new platform.

38 - Your App. New. Again | 2016

Why use automated code conversion?
Guaranteed success!

We’ve developed a calculator where you can
calculate your development costs for a

rewrite vs a migration.

You can use real numbers from your projects.

See your savings here:
http://mobilize.net/solution/rewrite-calculator

Calculate the real costs of your project

39 - Your App. New. Again | 2016

You can also use our assessment tool to help you �gure out costs:
http://mobilize.net/modernization-assessment-tool/

Let a Mobilize.Net migration engineer help you �gure out how to
convert your legacy application:

http://mobilize.net/talk-to-an-engineer/

Migrate to web, mobile & cloud

40 - Your App. New. Again | 2016

Need more help?

41 - Your App. New. Again | 2016

If you really want to go deep on rewrite
statistics:

www.qsm.com/resources/function-point-languages-table

http://sqgne.org/presentations/2011-12/Jones-Sep-2011.pdf

www.compaid.com/caiinternet/ezine/bundschuh-est.pdf

www.ifpug.org

Your App. New. Again.

www.mobilize.net
+1.425.609.8458

info@mobilize.net

Mobilize.Net
10500 NE 8th St., Ste 725

Bellevue. WA 98004

