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The Data Scientist’s skill set is a collection of coding and analytic talents, usually emphasizing 
predictive analytics knowledge over coding acumen. Josh Wills of Cloudera characterizes Data 
Scientists as people who are, “Better at coding than the average statistician,” which is probably 

accurate but is also setting the programming bar fairly low :-). Software engineers put a lot of 
thought and energy into the minutiae of their projects, like code structure and organization, and 

these considerations are a major contributing factor to the success of such projects. Predictive 
analytics projects have similar pain points as software development projects (with some 

additional aggravations unique to analytics), and so the data science community can gain 
significant benefit by adopting strategies and philosophies pioneered in the world of software 
engineering. Five such strategies — version control, code readability, documentation, semantic 

folder structure, and pipelines – are encouraged here. 

 

One of the simplest and most valuable practices that can be adopted by an analytics team 

is version control. Tools such as Git (http://git-scm.com) facilitate collaboration and make it 

significantly easier to recover from problems introduced by changes to code. The software 
development community implemented this tool decades ago, but it has only recently begun to 

gain traction in analytics and research communities. In addition to tracking changes to code, 
version control can also track small data sets, allowing you to associate data with each snapshot 

of your project. This extremely powerful strategy allows you to reproduce analytical 
experiments and audit how data and code changes have impacted your model or its results. 
Version control should be applied at the level of the project wherever possible, and the project 

or data product should live under its own repository. For most projects, a centralized repository 
should serve as the canonical codebase. Code in this repository should not be modified directly; 

instead, individual team members should work with local development copies of the project 
and update the centralized canonical codebase by “pushing” their changes (commits) to it. 

Segregating team member workspaces like this significantly reduces the risk of team members 
“stepping on each other’s toes.” Branching can be leveraged further to prevent analytics 
experiments, new features, or large structural changes from conflicting with other work in the 

project. An excellent overview of several common Git workflows is available on the Atlassian 
blog: https://www.atlassian.com/git/tutorials/comparing-workflows 

 

Version control systems force a kind of documentation via commit messages, which provide 
short summaries of the changes associated with a commit. As informative as these may be, 
however, it is critically important that the code itself be descriptive and well documented. In-

line comments in code can be helpful, but the best code is self-explanatory and requires few 
comments to understand, favoring meaningful variable and function names over reliance on in-

line comments. It is common for scientific programmers to liberally use extremely compact 
abbreviations for variable names, but this practice often leads to code that is difficult for anyone 

but the author to interpret, and the authors themselves may not even be able to readily 

http://git-scm.com/


understand their own work in the future. An excellent discussion of the importance and nuance 
of variable name selection can be found in chapter 11 of Steve McConnell’s book 

Code Complete. 

Intelligent use of whitespace is another way to increase code readability. The python language 

places a strong emphasis on code readability by imparting syntactic meaning to white space 
(among other clever design decisions); consequently, python code often reads almost like 
normal English. Furthermore, objects in python are self-documenting via built-in tools, like the 

dir() and help() commands, that allow a programmer to investigate the various attributes of an 
object that describe how it can or should be used. 
 

Self-explanatory code is always the goal, but even the clearest code should be accompanied by 

solid documentation. Documentation for functions should include descriptions of what they do, 
what kinds of inputs they take, what the output will look like, and perhaps some demo usage. 

The documentation associated with R packages on CRAN serves as an excellent example. 
Additionally, code files of all kinds (stand-alone functions, scripts, libraries, etc.) should include 

a “header” providing the “what/who/when/why/how” of the code in clearly identified 
sections: 
 

 Summary (what does this do?) 

 Author (Who wrote it?) 

 Date (When was this first authored?) 

 Purpose/Motivation (Why was this built?) 

 Usage/Demo (How do I use this?) 

 
Including this level of documentation takes some discipline, but the time taken to write a short 
note immediately after putting code on paper will pay for itself many times over in the future 

when team members can just read the documentation instead of reviewing someone else’s code 
line-by-line to figure out how to use it. 
 

The “self-explanatory code” philosophy can be extended to the global project structure. A 

powerful strategy is to adopt a semantic folder structure in which the path/to/a/file encodes 
meaning. There should be a clear location to which any particular artifact associated with the 

project should go. Objects stored this way become very easy to find, and the location of objects 
disambiguates their purpose in the project. Example paths might be: ./code/modeling 

/train_ensemble.pyor ./data/raw/transactions.csv; the “.” denotes the location of the project folder 

(NB: this notation is referred to as a “relative path” in contrast with an “absolute path,” which 
gives the explicit location starting with the drive name or root directory). 
 

 



With a semantic folder structure in place, it should be fairly clear what purpose different files 
serve in the project. Even so, their inter-dependencies may not be obvious. The sequence in 
which different scripts need to be executed should be encoded explicitly in an executable 

pipeline that runs the project from front to back, including data ingestion, data transformation, 
model training, ensembling, scoring, and evaluation (for production models, there should be a 

separate pipeline just for scoring). For example, SAS Enterprise Miner (EM) provides a GUI 
for building what it calls “Process Flows.” To remove ambiguity, it’s preferable to encode this 

pipeline in a physical code file outside the GUI, which SAS EM is capable of generating. 
There are several open source solutions to assist in constructing these types of pipelines. The 
classic dependency management tool is GNU Make (http://gnu.org/software/make), which 

remains one of the best tools available today. One of the benefits of Make is that it has been in 
use for a long time, so there are many excellent tutorials for it (including several targeted 

towards analytics projects and researchers). If Make doesn’t suit your needs, a popular, more 
full-featured free tool is Spotify’s Luigi (http://luigi.readthedocs.org). Luigi is a python package 

for building and handling pipelines. Some of Luigi’s benefits over Make include a visualization 

tool, a scheduler, and more granular failure management. In the absence of a dedicated tool, a 
pipeline can simply be constructed from a master script that runs everything in the appropriate 

sequence. Modularize such a file to allow certain parts of the pipeline to be turned on or off as 
needed. Pipelines constructed from tools like Make generally won’t need this kind of 
modularity since the tool will automatically check to see if there have been modifications to 

upstream data files and only run the downstream code if necessary. 

Data science is an experimental and creative science that often depends heavily on software 
development, but many analytics teams have yet to incorporate several valuable techniques 

pioneered in the software engineering world. Some of the most valuable of these, summarized 
here, are version control, readable code, liberal documentation, semantic folder structure and 

project organization, and pipelining tools. Using these strategies in analytics projects requires 
some overhead but can significantly streamline development in the near term and avoid a lot of 
headaches in the long term. Borrow these proactive engineering strategies to achieve long-term 

analytic success. 
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music industry. His expertise includes statistical modeling, anomaly 
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