

by David Marx

Data Scientist

August 11, 2015

Introduction ... 2

Version Control .. 2

Code Readability .. 2

Documentation .. 3

Semantic Folder Structure .. 3

Pipelines .. 4

Conclusion .. 4

About the Author ... 4

The Data Scientist’s skill set is a collection of coding and analytic talents, usually emphasizing
predictive analytics knowledge over coding acumen. Josh Wills of Cloudera characterizes Data
Scientists as people who are, “Better at coding than the average statistician,” which is probably

accurate but is also setting the programming bar fairly low :-). Software engineers put a lot of
thought and energy into the minutiae of their projects, like code structure and organization, and

these considerations are a major contributing factor to the success of such projects. Predictive
analytics projects have similar pain points as software development projects (with some

additional aggravations unique to analytics), and so the data science community can gain
significant benefit by adopting strategies and philosophies pioneered in the world of software
engineering. Five such strategies — version control, code readability, documentation, semantic

folder structure, and pipelines – are encouraged here.

One of the simplest and most valuable practices that can be adopted by an analytics team

is version control. Tools such as Git (http://git-scm.com) facilitate collaboration and make it

significantly easier to recover from problems introduced by changes to code. The software
development community implemented this tool decades ago, but it has only recently begun to

gain traction in analytics and research communities. In addition to tracking changes to code,
version control can also track small data sets, allowing you to associate data with each snapshot

of your project. This extremely powerful strategy allows you to reproduce analytical
experiments and audit how data and code changes have impacted your model or its results.
Version control should be applied at the level of the project wherever possible, and the project

or data product should live under its own repository. For most projects, a centralized repository
should serve as the canonical codebase. Code in this repository should not be modified directly;

instead, individual team members should work with local development copies of the project
and update the centralized canonical codebase by “pushing” their changes (commits) to it.

Segregating team member workspaces like this significantly reduces the risk of team members
“stepping on each other’s toes.” Branching can be leveraged further to prevent analytics
experiments, new features, or large structural changes from conflicting with other work in the

project. An excellent overview of several common Git workflows is available on the Atlassian
blog: https://www.atlassian.com/git/tutorials/comparing-workflows

Version control systems force a kind of documentation via commit messages, which provide
short summaries of the changes associated with a commit. As informative as these may be,
however, it is critically important that the code itself be descriptive and well documented. In-

line comments in code can be helpful, but the best code is self-explanatory and requires few
comments to understand, favoring meaningful variable and function names over reliance on in-

line comments. It is common for scientific programmers to liberally use extremely compact
abbreviations for variable names, but this practice often leads to code that is difficult for anyone

but the author to interpret, and the authors themselves may not even be able to readily

http://git-scm.com/

understand their own work in the future. An excellent discussion of the importance and nuance
of variable name selection can be found in chapter 11 of Steve McConnell’s book

Code Complete.

Intelligent use of whitespace is another way to increase code readability. The python language

places a strong emphasis on code readability by imparting syntactic meaning to white space
(among other clever design decisions); consequently, python code often reads almost like
normal English. Furthermore, objects in python are self-documenting via built-in tools, like the

dir() and help() commands, that allow a programmer to investigate the various attributes of an
object that describe how it can or should be used.

Self-explanatory code is always the goal, but even the clearest code should be accompanied by

solid documentation. Documentation for functions should include descriptions of what they do,
what kinds of inputs they take, what the output will look like, and perhaps some demo usage.

The documentation associated with R packages on CRAN serves as an excellent example.
Additionally, code files of all kinds (stand-alone functions, scripts, libraries, etc.) should include

a “header” providing the “what/who/when/why/how” of the code in clearly identified
sections:

 Summary (what does this do?)

 Author (Who wrote it?)

 Date (When was this first authored?)

 Purpose/Motivation (Why was this built?)

 Usage/Demo (How do I use this?)

Including this level of documentation takes some discipline, but the time taken to write a short
note immediately after putting code on paper will pay for itself many times over in the future

when team members can just read the documentation instead of reviewing someone else’s code
line-by-line to figure out how to use it.

The “self-explanatory code” philosophy can be extended to the global project structure. A

powerful strategy is to adopt a semantic folder structure in which the path/to/a/file encodes
meaning. There should be a clear location to which any particular artifact associated with the

project should go. Objects stored this way become very easy to find, and the location of objects
disambiguates their purpose in the project. Example paths might be: ./code/modeling

/train_ensemble.pyor ./data/raw/transactions.csv; the “.” denotes the location of the project folder

(NB: this notation is referred to as a “relative path” in contrast with an “absolute path,” which
gives the explicit location starting with the drive name or root directory).

With a semantic folder structure in place, it should be fairly clear what purpose different files
serve in the project. Even so, their inter-dependencies may not be obvious. The sequence in
which different scripts need to be executed should be encoded explicitly in an executable

pipeline that runs the project from front to back, including data ingestion, data transformation,
model training, ensembling, scoring, and evaluation (for production models, there should be a

separate pipeline just for scoring). For example, SAS Enterprise Miner (EM) provides a GUI
for building what it calls “Process Flows.” To remove ambiguity, it’s preferable to encode this

pipeline in a physical code file outside the GUI, which SAS EM is capable of generating.
There are several open source solutions to assist in constructing these types of pipelines. The
classic dependency management tool is GNU Make (http://gnu.org/software/make), which

remains one of the best tools available today. One of the benefits of Make is that it has been in
use for a long time, so there are many excellent tutorials for it (including several targeted

towards analytics projects and researchers). If Make doesn’t suit your needs, a popular, more
full-featured free tool is Spotify’s Luigi (http://luigi.readthedocs.org). Luigi is a python package

for building and handling pipelines. Some of Luigi’s benefits over Make include a visualization

tool, a scheduler, and more granular failure management. In the absence of a dedicated tool, a
pipeline can simply be constructed from a master script that runs everything in the appropriate

sequence. Modularize such a file to allow certain parts of the pipeline to be turned on or off as
needed. Pipelines constructed from tools like Make generally won’t need this kind of
modularity since the tool will automatically check to see if there have been modifications to

upstream data files and only run the downstream code if necessary.

Data science is an experimental and creative science that often depends heavily on software
development, but many analytics teams have yet to incorporate several valuable techniques

pioneered in the software engineering world. Some of the most valuable of these, summarized
here, are version control, readable code, liberal documentation, semantic folder structure and

project organization, and pipelining tools. Using these strategies in analytics projects requires
some overhead but can significantly streamline development in the near term and avoid a lot of
headaches in the long term. Borrow these proactive engineering strategies to achieve long-term

analytic success.

David Marx is a Data Scientist at Elder Research, a consulting firm
specializing in predictive analytics with offices in Arlington, Charlottesville

and Baltimore. Before joining the Elder Research team, David earned a
Master of Science in Mathematics and Statistics from Georgetown
University and worked as a Senior Data Analyst/Software Developer at

SoundExchange, a company that processes and distributes royalties for the
music industry. His expertise includes statistical modeling, anomaly

detection, natural language processing, recommendation systems, and
graph analytics.

http://gnu.org/software/make/
http://luigi.readthedocs.org/
http://www.elderresearch.com/

