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This article is Part 9 (of 11) of a series by the author on the Top 10 Data Mining 

Mistakes, drawn from the Handbook of Statistical Analysis and Data Mining Applications. 

I’m tempted to start with a kind of query that experience teaches some of us not to answer, 

like “Does this data make me look fat?” But that actually misleads about the point I’m 

trying to make. Data Scientists (and their models) should answer all queries as truthfully as 

the evidence allows, regardless of how happy or unhappy that makes the questioner. What I 

am arguing here is we shouldn’t answer when our opinion is unqualified; that is, when there 

is not enough evidence. I learned this the hard way! 

Early in my career, I demonstrated a model built to estimate rocket thrust that used engine 

temperature, T, as one of the important inputs. A technical gate-keeper for the potential 

client (who, it turned out, was trying to kill the project to advance his own agenda) slyly 

suggested we vary some inputs and see what ensued. “Try T = 98.6 degrees.” (human body 

temperature, way below the bounds of normal operation.) I argued the test would be 

senseless, since the input was far outside the model’s training bounds, but with much 

cajoling, I naively complied (See earlier Mistake #7). The model was a nonlinear 

polynomial network, so when given an input value far outside its training range its output 

was ridiculous, as expected, but no amount of calm technical explanation around that non-

surprising result could erase, in the onlooking decision-makers mind, the negative impact of 

the breathtakingly bad result that had briefly flashed by. My firm never heard from that 

company again. Obviously, a model should answer “don’t know” for situations in which its 

training has no standing! 

But, how do we know where the model is valid; that is, has enough data close to the query 

by which to make a useful decision? The simplest approach is to note whether the new point 

is outside the bounds, on any dimension, of the training data. Yet, especially in high-d, the 

volume of the populated space is only a small fraction of the volume of the rectangle defined 

by the univariate bounds. With most real data, inputs are very far from mutually 

independent, so the occupied fraction of space is very small, even in low-d. (The data often 

look to me like a folded umbrella packed diagonally in a box.) A second approach, more 

difficult and rare, is to calculate the convex hull of the sample – essentially, a “shrink wrap” 

of the data points. Yet even this does not always work well to define the populated space. 

Figure 1 illustrates a 2-d problem similar to one I encountered in practice (in higher-d) in an 

aeronautical application. There, practical constraints on joint values of physical variables 

(e.g., height, velocity, pitch, and yaw) caused the data to be far from i.i.d. (independent and 

identically distributed.) I noticed then, as in the Figure, that astonishingly, even the sample 

mean of the data, μ, was outside the true region of populated space! 



 

Figure 1: Example 2-dimensional problem for which the data mean (open box symbol) is 

outside the bounds of the (crescent-shaped) valid space 

An approach for flagging some outliers (though perhaps not all) that has helped the few 

times we’ve tried it, is to fit a very responsive, nonlinear model to the data, for instance 

through a polynomial network (Elder & Brown, 1992). High-order polynomials quickly go 

toward infinity outside the bounds of the training data. If the output estimate resulting from 

an unbounded, nonlinear (and even overfit) model is well beyond the output bounds, then it 

is very likely the input point is outside the training data. If a training data point had been 

near that new input point, it would have better constrained the model’s estimate. 

Just as it is essential to know where a model has standing – i.e., in what regions of input 

space its estimates might be valid – it is also useful to know the uncertainty of estimates. 

Most techniques provide some measure of spread, such as s, for the overall accuracy result 

(e.g., +/- 3% for a political survey), but it is rare indeed to have a conditional standard 

deviation, σ(x), to go with the conditional μ(x). That is, to have a different uncertainty level 

for each region of input space, as determined by the data. A valuable area of research, I 

believe, would be to enhance existing modeling methods to estimate certainty conditioned 

on where in input space one is inquiring. 



I did develop one estimation algorithm, which I call Delaunay Triangles, to depend strongly 

on σ(x); it’s goal is to make optimal use of experimental information for global optimization 

(Elder, 1993). For systems where results are expensive to obtain (e.g., samples from drilling, 

or other physical experiments), the challenge is to find, as efficiently as possible, the location 

(input) with the best result (output). If several samples and their results are known, one can 

model the score surface (relationship between input vector and output score) and rapidly 

query or traverse the surface of the model to find the best location for the next probe (i.e., 

experimental settings to employ). If that result isn’t yet good enough (and budget remains to 

keep going), its sample-result information could be used to update the model for use in 

searching for the new best probe location. The overall estimation surface consists of 

piecewise planes, as shown in Figure 2, where each region’s plane has a quadratic variance 

“canopy” over it, as shown in Figure 3, revealing how the uncertainty of the estimation 

grows as one departs from the known points (the corners).1 This approach worked extremely 

well, for low (1-12 or so) dimensions, and the resulting multi-modal search algorithm, 

GROPE (Global Rd Optimization when Probes are Expensive) took the fewest probes of all 

then-existing algorithms to converge close to the answer on an academic suite of test 

problems. By having, for every location, x, an estimate of the mean, μ(x), along with its 

uncertainty, σ(x), the algorithm could, with every new result, refine its estimates and reduce 

its uncertainty, and thereby zero in on the locations with the greatest potential. 

 

      

  

Figure 3: Each simplex (e.g., triangle in 2-

dimensions) of the Delaunay method 

(Elder, 1993) pairs a planar estimation of μ

(x) with a quadratic estimation of σ2(x). 

Figure 2: Estimation surface of Delaunay 
Triangle method (Elder, 1993) is piecewise 

planar. (The underlying function surface is 
represented here by a mesh.) 
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1 The modeling technique developed for GROPE was driven by the special requirements of optimizing an 

unknown function – especially, that the response surface model had to agree exactly with the known samples. 

If one assumes the least about the response surface – that there is Brownian motion (or a random walk) 

between the known points — then the ideal estimator turns out to be a plane. So, μ(x) is a piecewise planar 

collection of simplices (e.g., triangles when there are two input dimensions). The tiling or tessellation of the 

input space is done in such a way as to create the most uniform simplices (those with the greatest minimum 

angle), which is performed by Delaunay triangulation (a dual of nearest neighbor mapping). The key though, 

was to pair this with an estimate of the standard deviation of μ(x), conditioned on x, σ(x). (The Brownian 

motion assumption drives this to be the square root of a quadratic function of distance from the known 

corners.) Now, with both parts, μ(x) and σ(x), one can rapidly calculate the location, x, where the probability of 

exceeding one’s result goal is the greatest. So, the model would suggest a probe location, one would perform 

the experiment, and the result would update the model, with greater clarity on the mean estimates (piecewise 

planes) and reduced variance (piecewise quadratic “bubbles” over each plane) with each iteration. 

 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

 


