

by Todd Grabowsky

Data Scientist

April 2015

What’s so great about Shiny? ... 2
Communicating Insights/Model Deployment ... 2
Rapid Prototyping .. 3
Data Exploration/Visualization .. 3

Shiny Tips ... 4
Tip #1 .. 4
Tip #2 .. 4
Tip #3 .. 4
Tip #4 .. 5
Tip #5 .. 5

Beware of Bikeshedding ... 5

About the Author ... 6

“Numbers have an important story to tell. They rely on you to give them a clear and convincing voice.”
–Stephen Few

Every data scientist bears the burden of clearly and convincingly communicating results to a
client or decision maker. Putting analytic results in front of a client starts a dialogue that not

only prepares them to understand and see the results, but may also uncover bugs in your
logic, gaps in the data, or even misunderstandings about the problem or business goal. Data

visualization is an essential way to explain results in an intuitive way. But what if there was
an even better alternative?

The team that developed RStudio, an integrated development environment for the R
language, has created an R package called Shiny, which takes data visualization to the next

level. What is Shiny? It’s a web application framework for R that enables rapid

development of interactive web applications. That explanation though, is less helpful than

seeing a real Shiny web application in action. Click here to see a live Shiny app in all its
shiny glory.

The app displays a simple histogram plot, two checkboxes, and a drop down list that
determines the bin size of the histogram. Notice that when you change the number of bins

in the drop down list, the histogram plot updates automatically. This demonstrates the
interactive and dynamic nature of a Shiny app. Also, notice the code at the bottom of the

page. Web developers must juggle HTML, CSS, Javascript, and other programming
languages to develop similar web applications, but this app was created with just a few
dozen lines of R code!

Shiny seamlessly wraps your R code in the latest and greatest web technologies to create a

user-friendly graphical user interface (GUI). Users interact with input widgets such as text
boxes, sliders, and date range selectors, which dynamically update outputs such as values,

tables, and plots. With Shiny, a client sees an intuitive visualization of your analytic results,
and can also interact with the data on the fly.

Of the countless use cases for Shiny, I would like to highlight three that show how Shiny
can be used as a communication tool to foster meaningful interactions with clients, end

users, and subject matter experts.

The ability to dynamically interact with data through a Shiny app draws users in and, if

executed correctly, helps accelerate the communication of key insights. If a picture is worth
a thousand words, then an interactive Shiny app is worth a million.

The nuanced inner workings of a model can sometimes be opaque to the client or end
consumer. This can lead to confusion and mistrust, which makes thoughtful model

deployment a critical part of every data science project. This is where Shiny comes
in. Shiny allows a data scientist to quickly transform a model from an abstract concept into

http://www.rstudio.com/
http://shiny.rstudio.com/
http://shiny.rstudio.com/gallery/faithful.html

a concrete application that an end user can see and manipulate. They can ask questions of
the data by simply dragging a slider or clicking a radio button, and then immediately get

feedback rendered as a chart or data table. Shiny gives clients a window into your analysis
and gives them an opportunity to validate your findings or possibly even uncover new

insights.

Shiny is a great platform for rapid prototyping because app iterations can be developed and

tested very quickly. In my experience as a data scientist and as a systems engineer, it is not
uncommon to work on projects where the problem you are tasked to solve is vaguely
defined. In these circumstances, an agile approach can be helpful. When the requirements

for an analytic capability or model deployment platform are unclear, Shiny can be used as a

rapid prototyping tool to quickly validate new features or capabilities.

On one of my current projects, Shiny is used in precisely this capacity. We deployed a

production software tool to a team of analysts and are using Shiny as a “proving ground”
for new analytic capabilities. We pilot new analytic capabilities as Shiny apps for the
analysts, and if the capability helps them fulfill their mission, it is then rolled into the

production software tool. Using Shiny apps to communicate our analysis helps us to
quickly get feedback and identify new requirements. Sometimes the analysts are not even

aware of certain requirements until they’ve seen it packaged into a Shiny app. In this way,
building a prototype Shiny app and discussing it with a client can be an effective

requirements elicitation technique.

Shiny apps also have myriad applications outside of data science. A friend of mine, an

interactive designer at the New York Times, was interested in using Shiny as a platform for
rapid prototyping or “sketching” for new visualizations before deploying them in a more

polished form. The International Arctic Research Center at the University of Alaska
Fairbanks uses Shiny for their production analysis tools which they have posted on

their public-facing website.

Shiny allows a data scientist to build a kind of “exploration harness” for automating
repetitive data exploration tasks. This is especially useful when exploring data

visually. Shiny integrates with many of the most powerful data visualization packages
available for R. This makes it easy to develop reusable data exploration apps to accelerate

the process of understanding your data. If you uncover an aberrant finding during
exploration, the app can then be used as a communication tool with subject matter experts

to gain a better understanding of the aberration.

Twitter recently released the R code for their BreakoutDetection package, which detects

change points in a time series. The core function within this package is called “breakout”
and uses up to 9 input parameters. The impact of these parameters on the function’s output

(i.e., where the change points occur) is not immediately clear from the documentation, so I
decided to create a Shiny app to quickly observe the impact of tweaking each input. I could

https://www.snap.uaf.edu/tools-and-data/all-analysis-tools
https://github.com/twitter/BreakoutDetection

have manually changed the input parameters in the R console and incrementally plotted the
results, but the exploration was a lot faster when I could simply drag a slider or click a

toggle and immediately see the effect on where the change points occurred in
time). Furthermore, I was later able to share the app with a colleague, which gave her an

easy way to explore the breakout function for herself. You can see the app here and view the
code on my github page.

I see Shiny as a great tool in a data scientist’s toolbox. I’d like to share a few tips that will

help accelerate learning of this tool.

You can create your first Shiny app in less than 30 seconds using RStudio. I also use
this method when I just need a starting point for a new app. Here are the instructions:

 Open RStudio

 Go to File > New Project…

 Click “New Directory”

 Click “Shiny Web Application”

 Type a Directory Name, select a location for the app and click “Create Project”

 In the upper right corner of the “Source” pane, click “Run App”

 Voila! You just created your first Shiny app

Shiny integrates with many of the most powerful R data visualization packages. My

“go-to” visualization packages are ggplot2 and rCharts. ggplot2 has nearly
comprehensive plotting options, but only renders static plot images. rCharts is a
collection of multiple javascript charting libraries that allow you to create interactive

plots with features like mouseover tooltips and responsive legends. The rCharts plots
look great and have nice interactive features (see examples here), but can have trouble

rendering large amounts of data. If you notice that an rChart is rendering slowly (or not
at all), then you may want to consider using ggplot2 instead. Here are links to four

additional data visualization packages that integrate with Shiny:

 MetricsGraphics(for scatter plots, line plots, and histograms)

 dygraphs(for time series plots)

 networkD3(for network graphs)

 Leaflet(for geospatial maps)

Two nice UI features offered by Shiny are validation and progress

indicators. The validation feature allows you to catch and throw user-friendly

https://toddaboo.shinyapps.io/shinyBreakoutDetection/
https://github.com/toddaboo/shinyBreakoutDetection
http://www.rstudio.com/
http://ggplot2.org/
http://rcharts.io/
http://ramnathv.github.io/rCharts/
http://hrbrmstr.github.io/metricsgraphics/
http://rstudio.github.io/dygraphs/
http://christophergandrud.github.io/networkD3/
http://rstudio.github.io/leaflet/
http://shiny.rstudio.com/articles/validation.html

errors. Without this feature, any R errors that occur will display just as they would in

the R console (not very user-friendly) and in bright red letters. Progress indicators allow

you to give the user feedback about how far along a given computation is and how much

of the computation remains. Without the progress indicators, a user will not know if the

app froze, had an error, or is just churning on a complex computation. Both of these

features can be implemented with Shiny using just a few lines of code.

If you need to build a dashboard that contains multiple displays and widgets, then you
will want to check out RStudio’s shinydashboard package. This package integrates

seamlessly with Shiny and includes features for creating beautiful dashboard
interfaces. You can read more at the shinydashboard website.

If you’d like to share your Shiny app online, then you can quickly deploy the app

via shinyapps.io. You can host up to 5 apps with 25 active hours per month for free, and
if you need to host more apps or have more active hours, then you can upgrade your

account to one of the three paid monthly subscription services.

The documentation on the RStudio website is also very informative. If you are new to

Shiny, then I highly recommend you take the Shiny tutorial to learn the core concepts of
developing Shiny apps. For more advanced subjects, I recommend searching through the

various Shiny articles to glean more technical insight.

A brief word of caution to future Shiny users. There will be an awful temptation as you
develop your apps, especially amongst the more aesthetically-minded, to fall prey to what’s
known as bikeshedding, or Parkinson’s Law of Triviality. This is when one spends much

more time than is warranted or deserved on trivial features because they are easy to
implement. Shiny gives you almost unlimited flexibility to customize the user interface (UI)

for your web application. From custom layouts to color schemes to font choices, the sky is
the limit for controlling the aesthetics of an app. This flexibility is useful for crafting a

coherent user experience, but can also eat up hours of time that could otherwise be spent on
actual data science. Shiny can and should be used to communicate insights about data and
deploy models, but if you are a data scientist try to resist the temptation to perfect the “look

and feel” of your app. Data scientists are usually hired for their ability to understand data
and build models, which are rare and expensive skills; so if you find yourself spending an

hour tweaking the style of a button or an afternoon messing with the colors of a plot, then
you’re probably bikeshedding and need to get back to the analytics! If you’re playing with

Shiny on your own time, however, then by all means make that UI as slick as possible. In
fact, here are a few links to galleries of interesting and beautiful Shiny apps to inspire your
efforts:

 http://shiny.rstudio.com/gallery/

http://shiny.rstudio.com/articles/progress.html
http://rstudio.github.io/shinydashboard/
http://www.shinyapps.io/
http://shiny.rstudio.com/tutorial/
http://shiny.rstudio.com/articles/
http://en.wikipedia.org/wiki/Parkinson%27s_law_of_triviality
http://shiny.rstudio.com/gallery/

 http://www.rstudio.com/products/shiny/shiny-user-showcase/
 http://www.showmeshiny.com/

Hopefully you’re chomping at the bit to give Shiny a try. If so, then go ahead

and download RStudio, install the Shiny R package (simply type install.packages(“shiny”) in

the R console), and start experimenting (see Tip #1 above).

Presenting analytic results to a client in an intuitive way is essential for validating your
analysis and ultimately providing value in the form of actionable insights. Static data

visualizations can get you part of the way there, but they lack the dynamic feedback and
interactivity afforded by Shiny web apps. Shiny enables a client to manipulate the data and

quickly see the outcomes of various “what-if” scenarios. This dynamic feedback can
accelerate client understanding and create opportunities for useful dialogue to refine your

analysis. Shiny fills the gap between spreadsheets/static visualizations and full-blown
software applications as a means of effectively communicating analytic results. So, whether
you’re explaining results to a team of fraud investigators or to the readers of your blog,

consider using Shiny to give your data a clear and convincing voice.

Elder Research Data Scientist Todd Grabowsky, enjoys making complex
subject matter accessible and understandable for end users and decision

makers. His technical interests include data visualization, anomaly
detection, and predictive analytics. Prior to joining Elder Research, Todd

worked as a systems engineer for clients in the intelligence community
and other federal government agencies. He earned a B.S. in Systems

Engineering from the University of Virginia.

http://www.rstudio.com/products/shiny/shiny-user-showcase/
http://www.showmeshiny.com/
http://www.rstudio.com/products/rstudio/download/

