Coating Data Sheet

Providing versatile coatings ideal for corrosion and durability, chemical inertness, and anti-stick properties.

Overview

The Dursan® process deposits a chemically protective barrier of amorphous silicon, oxygen and carbon that is further functionalized to resist adsorption of corrosive, reactive, and otherwise unwanted molecules (patent info at www.silcotek.com/IP). Applied via chemical vapor deposition (CVD), the Dursan® process is required when both a robust and chemically inert surface are critical.

Key Applications and Benefits

- Achieve corrosive performance similar to exotic • materials at a fraction of the price
- Increase system durability
- Improve instrument accuracy and response time
- Easy release and cleaning

Chemical Process

Oil & Gas/Refining

Hydrophobicity

Lab Analysis

Dursan® Properties

Coating Structure:	Functionalized silica-like coating (a-SiO _x :CH _y)
Deposition Process:	Thermal chemical vapor deposition (not plasma-enhanced)
Maximum Temperature:*	Max for functionalization: 450° C (oxidative) 500° C (inert) Melting: 1275° C
Substrate:	Compatibility:Stainless steel, exotic alloys, ceramicsSize:Typical parts up to 80" (203 cm), contact us for larger jobs.Geometry:Any shape, including complex geometries
Typical Thickness:	400 - 1600 nm
Hydrophobicity (contact angle):	<u>≥</u> 81°
Allowable pH Exposure:	0 - 14

CHEMICAL COMPATIBILITY

The silica-like structure provided by the Dursan process is a robust and inert barrier suitable for several process environments.

CORROSION RESISTANCE

Coating with the Dursan process can provide exotic alloy performance at a fraction of the price.

INERTNESS

Flow paths coated with the Dursan process enable low parts-per-million sensitivity to sulfur compounds.

HYDROPHOBICITY

Coatings produced by the Dursan process are hydrophobic, non-stick, and easy to clean.

TEMPERATURE STABILITY

The Dursan process produces versatile properties that are stable at temperatures well above the limits of fluoropolymers.

Properties Change

Melting Point

- 1. Dursan®
- 2. Dursox[®]
- 3. SilcoNert1000®
- 4. SilcoNert2000® and
- SilcoKlean®
- 5. Silcolloy[®] and
- SilcoGuard®
- 6. Notak™

DURABILITY

The Dursan process (top row) doubles the wear resistance of 304 stainless steel and creates resistance to cracking and flaking, which plague PTFE (bottom row).

Dursan[®] (top row) and PTFE (bottom row) after cleaning and sonication.