Overview

The Dursan® process deposits a chemically protective barrier of amorphous silicon, oxygen and carbon that is further functionalized to resist adsorption of corrosive, reactive, and otherwise unwanted molecules (patent info at www.silcotek.com/IP). Applied via chemical vapor deposition (CVD), the Dursan® process is required when both a robust and chemically inert surface are critical.

Key Applications and Benefits

- Achieve corrosive performance similar to exotic materials at a fraction of the price
- Increase system durability
- Improve instrument accuracy and response time
- Easy release and cleaning

Dursan® Properties

<table>
<thead>
<tr>
<th>Coating Structure:</th>
<th>Functionalized silica-like coating (a-SiO$_x$·CH$_y$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposition Process:</td>
<td>Thermal chemical vapor deposition (not plasma-enhanced)</td>
</tr>
</tbody>
</table>
| Maximum Temperature:* | Max for functionalization: 450°C (oxidative) 500°C (inert)
Melting: 1275°C |
| Substrate: | Stainless steel, exotic alloys, ceramics |
| Size: | Typical parts up to 80” (203 cm), contact us for larger jobs. |
| Geometry: | Any shape, including complex geometries |
| Typical Thickness: | 400 - 1600 nm |
| Hydrophobicity (contact angle): | ≥81° |
| Allowable pH Exposure: | 0 - 14 |

Contact technical service
CHEMICAL COMPATIBILITY
The silica-like structure provided by the Dursan process is a robust and inert barrier suitable for several process environments.

HYDROPHOBICITY
Coatings produced by the Dursan process are hydrophobic, non-stick, and easy to clean.

CORROSION RESISTANCE
Coating with the Dursan process can provide exotic alloy performance at a fraction of the price.

TEMPERATURE STABILITY
The Dursan process produces versatile properties that are stable at temperatures well above the limits of fluoropolymers.

INERTNESS
Flow paths coated with the Dursan process enable low parts-per-million sensitivity to sulfur compounds.

DURABILITY
The Dursan process (top row) doubles the wear resistance of 304 stainless steel and creates resistance to cracking and flaking, which plague PTFE (bottom row).

"Dursan® refers to the Dursan® process, which is a thermal chemical vapor deposition process that we perform to enable your parts to have the properties identified above.