

Sampling and analysis of mercaptans

Kurt Haerens

Emissions and Odours from Materials 2015 09/10/2015

Overview

- Introduction
- Materials and methods
- Sampling of mercaptans
- Analysis of mercaptans
- Stability of mercaptans
- Analysis of sulphur compounds in complex matrices
- Conclusion

Introduction

OLFASCAN

- Environmental consultancy around odours
- Chemical analysis of air by:
 - TD-GC-MS
 - TD-GC-MS/Sniffing
 - TD-GC-MS/FPD

Introduction

Mercaptan or thiol:

R-SH sulphur analogue of alcohol strong odour

Odour threshold of mercaptans/thiols

CAS no	Name	OTV ^(1,2) (μg/m³)
74-93-1	methyl mercaptan	0.1 . 2
75-08-1	ethyl mercaptan	0.03 . 3
107-03-9	1-propyl mercaptan	0.04 - 4
75-33-2	2-propyl mercaptan	0.02 . 1.1
513-44-0	2-methyl-1-propyl mercaptan	0.03 . 4
75-66-1	2-methyl-2-propyl mercaptan	0.03 . 1.3
109-79-5	1-butyl mercaptan	0.01 . 5
513-53-1	2-butyl mercaptan	0.1 . 0.7

Very reactive, not thermally stable and very volatile

Materials and methods

Analysis:

- Markes TD100 or Shimadzu TD20
- Shimadzu GC 2010
- Shimadzu MS GP2010 SE/Plus

Sampling:

- Stainless steel
- Deactivated stainless steel (deactivated or siltek treated)
- Teflon

Materials and methods

Deactivation of stainless steel:

 15% BSTFA (N,O-Bis(trimethylsilyl)trifluoracetamide) in hexane*

Sorbent tubes:

- Tenax TA (Markes Ltd) stainless steel or inert coated
- Sulficarb (Markes Ltd) inert coated

Sampling of mercaptans

Bag inlet:

- Stainless steel
- Deactivated stainless steel
- Teflon

Union:

- Stainless steel
- Siltek treated steel

Results sampling

Chromatogram of a deactivated metal connector (pink) and a normal metal connector (black)

- 1 ethyl mercaptane (RT 4.85)
- 2 2-proyl mercaptane (RT 5.68)
- 3 2-methyl-2-propyl mercaptane (RT 6.47)
- 4 1-proyl mercaptane (RT 6.98)

Results of teflon similar to deactivated metal

Results sampling

Chromatogram of a desactivated metal connector (pink) and a normal metal connector (black)

Disulfide peaks

Use of stainless steel union and Siltek steel gives similar results

Disulfides formed due to presence of metal

TD conditions were altered

- Lower trap desorption temperatures
- Lower temperature of transfer line (as higher temperatures lead to formation of disulfides)

GC program: 33 to 220 ° C at 15° C/min

MS SIM. target ions of the different mercaptans combined with SCAN (28.5-100)

Special calibration standard (10 ppm of 8 mercaptans) (Air Products)

Selection of sorbent:

Breaktrough for Tenax TA (100 ml) < SulfiCarb (200 ml)

- Sometimes strange peak shape when using

SulfiCarb

Chromatogram of ethyl mercaptan and 2-propyl mercaptan for Tenax TA (black) and SulfiCarb (pink)

Influence of temperature program of GC

Black: 33° C \rightarrow 42° C (1° C/min) \rightarrow 50° C (2° C/min)

Pink: 33° C \rightarrow 220° C (10° C/min)

Blue: 33° C \rightarrow 220° C (15° C/min)

Limit of Detection for different mercaptans

CAS no	Name	OTV ^(1,2) (μg/m³)	LOD (µg/m³)
74-93-1	methyl mercaptan	0.1 . 2	1.5
75-08-1	ethyl mercaptan	0.03 . 3	0.4
107-03-9	1-propyl mercaptan	0.04 - 4	0.5
75-33-2	2-propyl mercaptan	0.02 . 1.1	0.5
513-44-0	2-methyl-1-propyl mercaptan	0.03 . 4	0.7
75-66-1	2-methyl-2-propyl mercaptan	0.03 . 1.3	0.9
109-79-5	1-butyl mercaptan	0.01 . 5	0.5
513-53-1	2-butyl mercaptan	0.1 . 0.7	0.6

Stability of mercaptans in bag

Concentration 10 ppm in Nalofane bag

Recovery (%)

	1h	2h	3h	4h	5h	8h
Methyl mercaptan	93	78	80	59	49	51
Ethyl mercaptan	100	98	100	84	85	91
2-propyl mercaptan	101	101	105	92	95	101
2-methyl-2-propyl mercaptan	101	97	105	89	91	99
1-propyl mercaptan	100	102	104	92	96	100
2-butyl mercaptan	101	102	105	95	98	103
2-methyl-1-propyl mercaptan	102	101	105	95	98	103
1-butyl mercaptan	101	100	103	92	96	100

Stability of mercaptans

Also on sorbent tube after 1 day decrease in recovery:

- Methyl mercaptan: 57%

- Ethyl mercaptan: 54%

- 2-propyl mercaptan: 87%

No recollection possible

What with lower concentrations?

Alternative sampling using canisters for longer sample stability?

Analysis of sulphur compounds in complex matrices

Example:

- Headspace of crude oil analysed by TD-GCMS

=> almost no sulphur compounds detected

Analysis of sulphur compounds in complex matrices

Use of GC-MS/FPD
MS-chromatogram (black) and FPD-chromatogram (pink)

Analysis of sulphur compounds in complex matrices

Now database based on RT and target ions for identification

6	RT (min)	CODE (S,M,T,A)	Component	lon 1	lon 2	lon 3	ION	Area (fragment)	Concentratie µg/m ³
7	4.839	M	ethaanthiol	62	29	47	62	89256	51.8
8	5.057	S	dimethylsulfide	62	47	45	62	56895	22.4
9	5.375	S	carbondisulfide	76	44	-	44	21456	19.7
10	5.673	M	2-propaanthiol	76	43	61	43	36987	13.7
11	6.238	S	ethyleensulfide	45	60	59	45	105896	33.9
12	6.971	M	1-propaanthiol	76	41	47	76	47856	
13	9.385	T	thiofeen	84	58	45	58	58468	19.4
14	13.901	S	dimethyldisulfide	94	45	79	94	89752	21.4
15	15.856	T	2-methylthiofeen	97	98	45	98	200458	60.9
16	16.423	S	methylethyldisulfide	108	80	29	108	68754	40.8
47				#NI/D	#NI/D	40170			1

Usefull analysis to detect sulphur compounds in complex matrices

Conclusions mercaptans

Sampling:

- " Use of stainless steel => formation of disulfides
- Teflon, deactivated SS or Silco treated steel should be used

Detection limit is close to the odour threshold of the mercaptans

Stability:

- For high concentrations only 1 hour in bag and up to 1 day on sorbent tube
- To be tested for lower concentrations (ppb-level)
- " Use of canisters for sampling for better stability?

Thank you for your attention!

OLFASCAN nv Industrieweg 114H 9032 Gent (Wondelgem)

- t 09/265.74.00
- f 09/265.74.05
- e info@olfascan.com www.olfascan.com