
PostGIS 3.0 Deep Dive

paul.ramsey@crunchydata.ca
PostGIS Day STL - November 14, 2019

https://is.gd/1uzKi5



What’s in 
a Number?



PostGIS 0.X ● All coordinates stored 3D 
(24 bytes per coordinate)

● Double aligned storage 
fields for
○ 3D bounding box 

(48 bytes)
○ object count

(4 bytes)
○ type

(4 bytes)
○ dimensionality flag

(1 byte)
● 2D Point > 81 bytes

● First release in May 2001
● Proof of concept

○ Can PostgreSQL store GIS data?
○ Will it perform?

● Release of Mapserver driver shortly after

● Used in roads and 
watersheds project work



● Header in just one byte!
○ Bit flags for 

dimensions, box, 
SRID

○ 4 bits for geometry 
type

● Non-aligned storage
● Optional float bounding 

box
(16 bytes)

● Optional SRID
(4 bytes)

● Higher dimensionality 
optional 
(16 bytes per coordinate)

● 2D Point = 17 bytes!

PostGIS 1.X

● Released in April 2005
● Arnulf Christl

○ “Just release 1.0 so the users aren’t scared!”
● Response to operational experience

○ Lots of points, and short lines
○ Not much use of 3D
○ Header and 3D overhead weighted down 

performance
● 0.X was “heavyweight”, so 1.X became 

“lightweight”
○ LWGEOM structures
○ lw* naming prefix

● Upgrade from 0.X required dump and restore
○ On-disk format change



● Header in eight bytes!
○ 1 byte for flags
○ 3 bytes for 

(mandatory) SRID
○ 4 bytes for type 

number
● Aligned storage

○ Direct access to 
coordinates

● Optional float bounding 
box
(16 bytes)

● Higher dimensionality 
optional 
(16 bytes per 2D 
coordinate)

● 2D Point = 28 bytes

PostGIS 2.X

● Released in April 2012
● Support for PostgreSQL extension framework

○ “CREATE EXTENSION postgis”
● Response to limitations in 1.X

○ Out of space for type numbers
4 bits means max of 16 types

○ Unaligned coordinates mean all accesses 
require copying to aligned memory

○ Mixture of direct and indirect access to 
storage structures in code base

○ “Optional” SRID was always there
● Upgrade from 1.X required dump and restore

○ On-disk format change



● Header in eight bytes!
○ 1 byte for flags
○ 3 bytes for 

(mandatory) SRID
○ 4 bytes for type 

number
● Aligned storage
● Optional float bounding 

box
(16 bytes)

● Optional extra flag space 
(8 bytes)

● Higher dimensionality 
optional 
(16 bytes per 2D 
coordinate)

● 2D Point = 28 bytes
● 2D Point = 20 bytes???

PostGIS 3.X

● Released in September 2019
● Response to limitations in 2.X

○ Out of space for flags!
■ 2 bits for version
■ 1 bit for bounding box
■ 2 bits for dimensionality
■ 1 bit for geography
■ 1 bit for solid
■ 1 bit for readonly

○ Solid? Readonly?
● Re-organize flags

○ Bump version number
○ Move solid flag to extra flag space

● Upgrade from 2.X does not require dump and 
restore

● Reorganize extensions



Semantic Versioning (Major.Minor.Patch)

Increment: 

● MAJOR version when you 
make incompatible API 
changes,

● MINOR version when you 
add functionality in a 
backwards compatible 
manner, and

● PATCH version when you 
make backwards compatible 
bug fixes.

For PostGIS, increment: 

● MAJOR version for on-disk 
format changes and major 
operational changes,

● MINOR version for batches 
of new functionality, annual 
release, and

● PATCH version for fixes that 
do not change behaviour or 
API.



Major Changes
in PostGIS 3?



PostGIS 2.5 PostGIS 3.0

CREATE EXTENSION postgis;
  → postgis-2.5.so
  → rtpostgis-2.5.so
CREATE EXTENSION postgis_sfcgal;
  → postgis-2.5.so
CREATE EXTENSION postgis_topology;
CREATE EXTENSION address_standardizer;
  → address_standardizer-2.5.so
CREATE EXTENSION postgis_geocoder;

CREATE EXTENSION postgis;
  → postgis-3.so
CREATE EXTENSION postgis_raster;
  → postgis_raster-3.so
CREATE EXTENSION postgis_sfcgal;
  → postgis-3.so
CREATE EXTENSION postgis_topology;
CREATE EXTENSION address_standardizer;
  → address_standardizer-3.so
CREATE EXTENSION postgis_geocoder;

Raster Extension Split



# systemctl stop postgresql-11
# rpm -e postgis25_11 postgis25_11-client
# yum install postgis30_11 postgis30_11-client
# systemctl start postgresql-11

Raster Extension Split
Upgrade Software

extension postgis 2.5

postgis-2.5.so

PostGIS

Before

extension postgis 2.5

postgis-3.so

PostGIS

After

postgis_raster-3.so

???



> ALTER EXTENSION postgis UPDATE TO '3.0.0';
WARNING:  unpackaging raster
WARNING:  PostGIS Raster functionality has been unpackaged
HINT:  type `SELECT postgis_extensions_upgrade(); to finish the upgrade. After upgrading, if you 
want to drop raster, run: DROP EXTENSION postgis_raster;
ALTER EXTENSION

> SELECT postgis_extensions_upgrade();
NOTICE:  Packaging extension postgis_raster
NOTICE:  Extension postgis_topology is not available or not packagable for some reason
NOTICE:  Extension postgis_tiger_geocoder is not available or not packagable for some reason
                    postgis_extensions_upgrade                     
-------------------------------------------------------------------
 Upgrade completed, run SELECT postgis_full_version(); for details

> SELECT postgis_full_version();
POSTGIS="3.0.0 r17983" [EXTENSION] PGSQL="110" GEOS="3.8.0-CAPI-1.11.0 " PROJ="6.2.0" GDAL="GDAL 
2.4.0dev-c3279e1, released 2018/06/18" LIBXML="2.9.4" LIBJSON="0.13" LIBPROTOBUF="1.3.1" 
WAGYU="0.4.3 (Internal)" RASTER

Raster Extension Split
Upgrade Database SQL



Major-only Library Version Number 

extension postgis 2.4

postgis-2.4.so

PostGIS

Before

extension postgis 2.4

postgis-2.5.so

PostGIS

After

# systemctl stop postgresql-11
# rpm -e postgis24_11 postgis24_11-client
# yum install postgis25_11 postgis25_11-client
# systemctl start postgresql-11

Upgrade 2.4 to 2.5

Action:

ALTER EXTENSION 
UPDATE to fix your 
broken system.



Major-only Library Version Number

extension postgis 3.0

postgis-3.so

PostGIS

Before

extension postgis 3.0

postgis-3.so

PostGIS

After

# systemctl stop postgresql-11
# rpm -e postgis30_11 postgis30_11-client
# yum install postgis31_11 postgis31_11-client
# systemctl start postgresql-11

Upgrade 3.0 to 3.1

Action:

ALTER EXTENSION 
UPDATE to add the 
new functions to 
your system.



● No new features
● No operational implications

○ Old format is still read
○ New writes use new 

format

● “Light point”
(20 bytes!)

● Accelerated spatial joins 
against large geometries

● Optional sidecar index 
structures

● Specialized geometry 
compression

Serialization (aka “on disk format”)

“But in the future…!”



CREATE FUNCTION 

  ST_Intersects(g1 geometry, g2 geometry)

    RETURNS boolean AS 

    'SELECT $1 && $2 AND 

            _ST_Intersects($1,$2)'

    LANGUAGE 'sql' 

    IMMUTABLE 

    PARALLEL SAFE;

CREATE FUNCTION

  _ST_Intersects(g1 geometry, g2 geometry)

    RETURNS boolean

    AS '$libdir/postgis-2.5','ST_Intersects'

    LANGUAGE 'c' 

    IMMUTABLE STRICT     

    PARALLEL SAFE

    COST 10000;

PostgreSQL 12 “Support Functions”

CREATE FUNCTION 

  ST_Intersects(g1 geometry, g2 geometry)

    RETURNS boolean

    AS '$libdir/postgis-3','ST_Intersects'

    SUPPORT postgis_index_supportfn

    LANGUAGE 'c' 

    IMMUTABLE STRICT

    PARALLEL SAFE

    COST 10000;

PostGIS 2.5 PostGIS 3.0 + PostgreSQL 12



PostgreSQL 12 Parallel Spatial Scan

SELECT Sum(ST_Area(geom)) FROM pd;



PostgreSQL 12 Parallel Spatial Join
SELECT * FROM pd JOIN pts_10 pts 
  ON ST_Intersects(pd.geom, pts.geom);



Smaller Changes
in PostGIS 3?



● New library API
● Old API to be deprecated with 

Proj 7 
● Direct geographic 

transformation
○ No more pivot on WGS84

● Vertical datum transformations
○ Real problem!

● Time-dependent datums
○ Real problem!

Proj 6.0 and up

Updated Support Libraries



● GEOS is a port of JTS
● GEOS is infrastructure and 

boring to most developers
● GEOS is really important!

● Community revitalization
● Active maintainership
● Crunchy hires JTS developer

○ Martin Davis
● All back-logged JTS 

improvements ported to GEOS

GEOS 3.8

Updated Support Libraries



● Remove Java-isms in favour of 
C++isms
○ Stack over heap
○ C++11 renovation

● Performance improvements
○ Profiler hot spots
○ JTS algorithmic 

improvements
● Have seen 30-50% 

improvements on some 
workloads
○ Buffer building

GEOS 3.8

Updated Support Libraries



● Profile and improve simplification 
code (points and lines)

● Replace GEOS rectangle clipping 
with wagyu implementation
○ Fixed-precision clipping 

routine
○ Does not produce invalid 

outputs
○ Validity checking can be 

skipped
○ GEOS 3.9 could replace 

wagyu in turn

MVT Performance



Enhanced GeoJSON Support

GeoJSON has a very stupid structure for handling attributes.

GeoJSON specifies:

● Geometry ✅
● Feature ❌
● FeatureCollection  ❌

PostGIS has long had support for ST_AsGeoJSON(geometry)



Enhanced GeoJSON Support

GeoJSON has a very stupid structure for handling attributes.

name geometry

Didagat Islands POINT(125.6 10.1)

Discovery Islands POINT(-123.4 48.4)

Each table row looks like a dictionary entry with two properties, 
right? So JSON structure is obvious...



Enhanced GeoJSON Support

GeoJSON for a “feature” should look like row_to_json() output, 
using the GeoJSON encoding for geometry.

{
  "type": "Feature",
  "geometry": {
    "type": "Point",
    "coordinates": [125.6, 10.1]
    },
  "name": "Dinagat Islands"
}

↑ But this is not what GeoJSON specifies!



Enhanced GeoJSON Support

GeoJSON has a very stupid structure for handling attributes.

{
  "type": "Feature",
  "geometry": {
    "type": "Point",
    "coordinates": [125.6, 10.1]
  },
  "properties": {
    "name": "Dinagat Islands"
  }
} ↑ It does this! (This is your brain on GIS!)



● geometry::json cast
● geometry::jsonb cast

○ Allows row_to_json(row) 
function to handle 
geography columns 
transparently

Enhanced GeoJSON Support

SELECT ST_AsGeoJSON(r.*) 
FROM r
WHERE r.name = 'foobar';

● ST_AsGeoJSON(row)
○ Returns GeoJSON 

“Feature”



ORDER BY geometry (2.x)



ORDER BY geometry (3.x)



Dropped Functions!!!!

● THIS NEVER HAPPENS!
● But it’s a major version number change, so…
● ST_Accum()

○ use array_agg()
● ST_AsGeoJSON(version, geometry)
● ST_AsKML(version, geometry)
● SFCGAL bindings for 

○ ST_Area, ST_Distance, ST_Intersection, ST_Difference, 
ST_Union, ST_Intersects



What about
PostGIS 3.1?



● Accelerated spatial join for large objects
○ Hash key for object identity

● Surface analysis functions
○ Weighted surface (point density)
○ Kriged surface (point intensity)
○ Interpolation and contouring of surfaces

● GEOS 3.9
○ Robust overlay
○ Geometry cleaning
○ Deterministic precision reduction

PostGIS 3.1?



Questions?
paul.ramsey@crunchydata.ca

https://is.gd/1uzKi5


