
1

DevOps
Toolchain



2

DevOps may need little introduction these days, 

but many are still at a loss to explain precisely 

what the movement entails. Some emphasize the 

portmanteau of the two terms, stating that the 

heart of DevOps is the collaboration between 

developers and operations staff. Others choose 

to focus on the tools and the problems they solve, 

singing the praises of DevOps for fixing their 

respective infrastructure woes. Tools—though 

crucial enablers of the movement—only form part 

of the equation. DevOps encompasses cultural 

innovation, a breaking down of walls and silos 

between software development, operations, 

and QA/ testing—in addition to the tools and 

methodologies enabling this transformation.

Ultimately, the definition of DevOps varies per 

organization. Since its meaning depends heavily 

on the audience and context in question, general 

discussions around the true definition of DevOps 

are for the most part inconsequential. If you is 

specifically concerned about what is/not DevOps, 

check out our ebook “DevOps for Cynics” and 

our blog post “Defining DevOps.” If you want to 

know about tools that can make your life easier, 

what makes each one unique, and how they fit 

together, read on.

Hybridization of Roles
A discussion regarding tools and DevOps should 

therefore begin by considering the individuals 

who will be utilizing the tools. The rise of so-

called “polyglot programmers” and systems 

administrators with coding proficiency reflects 

a general trend inIT towards despecialization. 

Developers these days are adept in a number 

of languages and approaches, applying each 

accordingly based on the problem at hand. 

Similarly, most systems administrators possess 

competent programming abilities for traversing 

the stack—on top of the requisite skills for 

managing IT operations. The industry has 

been quick in attaching new labels to these 

emerging hybrid roles: DevOps Engineer and 

DevOps Specialist being the most common. 

Notwithstanding, the key takeaway is that no 

single IT skill is more important or valuable than 

another; subsequently, many different tools are 

required to do the job effectively. So as DevOps 

is comprised of a group of concepts clustered 

around the premise of continuous software 

delivery, these concepts in turn encompass a 

range of associated tools for fulfilling particular 

functions.

All in all, these complementary tools fill out the 

DevOps toolchain, unifying the best elements 

from development and operations. Keep in 

mind that both tools and cultural innovation 

are required for DevOps; adopting a popular 

solution on its own as a magic on- ramp to 

DevOps is a quick path to disillusioned, as there 

are no “DevOps” tools, per se. The combination 

of cultural changes, information de-siloing, and 

tooling implemented along way is what enables 

an organization to recognize ROI from DevOps. 

In a sentence, it’s not just about the tools, but the 

people as well.

Introduction



3

Agile Roots
At first glance, DevOps may seem like an 

evolutionor extension of Agile and Lean 

methodologies that have gained prominence 

in the last decade. While this is certainly true 

in many respects, an important distinction 

lies in scope: while Agile deals primarily on 

the development side of affairs, DevOps 

stresses a unified approach that covers the 

entire scope of software delivery. So as Agile 

stresses cross-functional collaboration to 

aid incremental, continuous development of 

quality software, DevOps expands this ideal to 

include development, IT operations, and QA/

Testing teams as interdependent cogs of the 

same software delivery mechanism. Indeed, 

many of the Agile tools and methodologies 

find their way into the DevOps toolchain and 

workflow, as the two promote the same style 

of collaboration. Furthermore, as software 

development ultimately depends on operations 

for deployment, a closer integration of the two 

groups will naturally boost quality and efficiency.

Infrastructure as Code
With Agile software teams becoming 

commonplace, IT operations needs a way to 

keep up infrastructure with this rapid pace 

of development. Furthermore, as virtualized 

environments and cloud infrastructures 

become more commonplace, the operations 

side needs a more dynamic, flexible approach 

to managing systems. Borrowing from 

their software development counterparts, 

systems administrators can now manage their 

infrastructures as code—automating and tracking 

configurations like source code. This enables 

the ability for version control, rolling back 

of changes, as well as integrated testing and 

deployment to production of necessary software

and server components. This unification of all 

sides of the software delivery puzzle is also 

referred to as “programmable infrastructure,” 

and is central to practicing DevOps.



4

The DevOps 
Toolchain

Project 

Management

Requirements 

Gathering

Versioning

Continuous 

Integration

Configuration 

Management

Monitoring

Discovery

New Baseline

Standardize

Examples: 

Jira, Asana, Pivotal

Examples: 

Word, Wikis, Spreadsheets

Examples: 

Git, SVN

Examples: 

Jenkins, Team City, Travis, 

CircleCI, Drone.io

Examples:

Puppet, Chef, Ansible

Examples: 

Shell Scripts

Examples: 

CMDBs

Examples: 

None

Examples: 

None

Infrastructure changes are tracked as tickets in UpGuard 

and sent to your project management tool of choice.

The requirements of current applications are avaliable in 

UpGuard’s system state documentation.

Artifacts Code and UpGuard policies are versioned and 

checked in to be used in build and deployment process

Continuous integration and deployment tools use 

UpGuard policies to validate environments before 

and after deployment.

UpGuard generates manifests for configuration 

management tools like Puppert, Chef, Powershell DSC, 

Ansible, Salt and more.

Configuration state is continuously checked for deviation 

from baseline, much like you would with 

performance monitoring. 

Complete configuration state is documented and 

accessible for anomaly analysis and troubleshooting.

After confirming the system state’s health, 

UpGuard documents the new baseline 

for development.

UpGuard provides the feedback mechanism from the 

end of one development cycle to the beginning of the next.



5

Versioning and Source Control 
Tracking code level changes is a common 

and necessary activity of today’s software 

developers. Doing so enables concurrent 

development, merging, and rollback capabilities 

for applications/ software. Source Control 

Management (SCM) tools are popular options for 

keeping track of software code; many DevOps 

practitioners also track versions of their systems 

configuration with these tools, essentially 

managing their infrastructure “as code.” For 

example, it’s a common practice for systems 

administrators to store and manage their Puppet 

Manifests or Chef Cookbooks in GitHub.

Continuous Integration
and Orchestration
Continuous integration (CI) and

orchestration tools enable the integration of 

development code into the overall software 

product frequently and early in order to mitigate 

potential conflicts down the line. Typically, these 

tools are employed to automate software builds 

and testing, and are crucial for applying quality 

control on a continual basis (as opposed to after 

the software has been developed and released). 

These tools can also be used to track and manage 

changes for CM—for example, Chef Cookbooks 

can also be stored in version control with Github. 

The appropriate CI tool can then be used to test 

cookbooks for bugs and errors, and set up to 

automatically to do so every time infrastructure 

changes are committed and merged.This is an 

area where the automation side of DevOps 

really comes into play. Automated deployment, 

automated testing and continuous integration 

are key. When managing environments and 

moving applications through them consistency 

is what you want. The first step towards that is 

consistent builds. Automated deployment tools 

are a must. No PM wants to hear that it will take

Testing and Validation
Tools and frameworks for testing and validation 

are important for ensuring quality at all phases 

of development. In many cases, unique solutions 

are applied to a specific aspect of testing—

for example, one tool may be used for unit 

testing while another is used for integration 

testing. Solutions like UpGuard provide crucial 

functionality for testing/validating environments, 

and are indispensable for troubleshooting and 

debugging software applications. The platform 

allows one to anticipate changes and pre-validate 

every environment before deployment; by 

generating tests directly from development and 

running them against the target environment, 

DevOps practitioners can confidently release 

quality, error-free software. Combined, these 

testing and validation solutions provide a 

consistent mechanism and format for testing 

application features and behavior on both a 

micro and macro-level.

Configuration Management (CM)
CM tools allow one to define the desired state 

of a system and/or environment in regards to 

configuration files, software installed, users, 

groups and many other resource types. They 

also provide functionality to automatically 

push changes onto specific machines, also 

known as automation and orchestration. Tools 

like UpGuard can provide initial discovery and 

visibility into an infrastructure, create “golden 

images” for automation tools like Puppet and 

Chef, and validate that results are in line with 

expectations, post-automation.

Containerization
Containerization essentially allows one to 

package up or “containerize” an application in its 

own environment, making software easier



6

Application Performance
Management (APM)
In contrast to testing and validation on the 

code level, APM solutions allow one to test 

and troubleshoot a software application’s 

performance under various conditions. For 

example, SaaS applications are commonly tested 

and monitored with APM tools to ensure high 

availability, low response time, and quality of 

service. By gauging how efficiently an application 

is utilizing system resources, developers can 

more easily identify and resolve performance 

bottlenecks—the net result being superior 

service delivery of one’s software applications.

Continuous Security Testing and
Monitoring
The importance of continually testing 

and monitoring one’s infrastructure for 

vulnerabilities, configuration changes, and drift 

cannot be stressed enough. Developers may be 

savvy enough to avoid code-level security issues 

in an application, but ultimately the software 

is as vulnerable as its underlying systems and 

infrastructure. Detecting and remediating 

security flaws at all levels of the application 

and technology stack is therefore crucial to 

bolstering a software application against security 

threats and potential compromise. Implemented 

as part of the continuous integration process in 

ongoing software iterations, continuous security 

testing and monitoring help to maintain a 

strong security posture throughout all phases of 

development. UpGuard provides comprehensive 

vulnerability scanning and monitoring to 

ensure that one’s infrastructure and systems 

are optimally poised against an evolving threat 

landscape.

System of Record
The cross-functional collaboration and 

information “un-siloing” promoted by DevOps 

is deceptively straightforward in theory but can 

be quite challenging in practice. Much of this 

is due to the sheer volume of disparate moving 

parts required to make the DevOps machinery 

operate: developers checking in/out and merging 

application code, operations staff bringing up/

down and patching systems, and any number of 

continuous integration activities. These factors—

along with the natural tendency for system 

configurations to drift over time—make a single 

system of record for DevOps crucial for a myriad 

of critical functions. This mechanism ensures 

the validity and consistency of environment-

wide configuration information, and provides 

a common datasource for CM activities, 

automation, and continuous security monitoring, 

among others.

Consider activities instrumental to CM and 

automation like baselining or “golden image” 

creation: to attain a specified desired state, one 

must have a correct reference model to work 

from. This can be for any number of purposes: 

to harden one’s infrastructure security posture, 

replicate environments for testing, or to 

confidently automate provisioning; referencing 

a common datasource for systems information 

is necessary in these and many other scenarios. 

Having a single system of record enables proper 

visibility and validation for consistent delivery of 

quality software and services.

As mentioned previously, UpGuard performs 

a critical role in capturing desired system and 

environment states. In this capacity, it serves as 

the single source of record for CM, testing, and 

other constituent components of the DevOps



7

toolchain. UpGuard closes the feedback loop 

to ensure that developers begin from the same 

state as production, post- automation states are 

in line with expectations, and infrastructures are 

monitored against an up-to-date, secure “golden 

image.”

A typical DevOps toolchain might consist of 

the following: UpGuard to discover and track 

what you have and to determine what your 

environment should look like. The platform can 

then output to a tool like Chef, Puppet, or Ansible 

for provisioning and automation—or directly to 

Docker for creating containers or Vagrant for 

creating development and test environments. 

Once systems changes and applications have 

been deployed to production, UpGuard can 

validate that the changes have indeed been 

rolled out successfully, as well as provide further 

validation that any deployed applications and 

systems are free of vulnerabilities through 

comprehensive vulnerability scanning.

In the context of DevOps, the whole is truly 

greater than the sum of its parts. One must 

be equipped with the proper range of tools 

to address the unique, ongoing challenges of 

continuous integration and software delivery, 

and no one tool can do the job alone. DevOps 

is about delivering higher quality applications 

quicker and with less errors; this is accomplished 

by breaking down silos between development and 

operations and creating a smoother path towards 

software delivery. DevOps and its underlying 

concepts provide undisputed benefits to any 

forward-thinking organization, and the DevOps 

toolchain provides mechanisms to realize these 

benefits.

Conclusion



8

Businesses depend on trust, but breaches and outages 

erode that trust. UpGuard is the world’s first cyber 

resilience platform, designed to proactively assess and 

manage the business risks posed by technology.

UpGuard gathers complete information across 

every digital surface, stores it in a single, searchable 

repository, and provides continuous validation and 

insightful visualizations so companies can make 

informed decisions.

909 San Rafael Ave.
Mountain View, CA 94043

+1 888 882 3223
www.UpGuard.com

UNKNOWN

© 2017 UpGuard, Inc. All rights reserved. UpGuard and the 
UpGuard logo are registered trademarks of UpGuard, Inc. All other 
products or services mentioned herein are trademarks of their 
respective companies. Information subject to change without notice.


