
1

Seven
Automation
Fails

2

It started with what should have been a simple

Chef recipe:

“At 14:20 PDT Opsmatic went down in flames.

The Chef run restarted every single instance in

our infrastructure.”

Automation often faces the same problems

once contended with under traditional server

administration. One such issue is the assumption,

before making a change, that everything is the

way it should be. When Opsmatic’s routine server

maintenance ended up shutting down their whole

operation, it was because things weren’t exactly

as they had thought.

“After a bit more digging, we sorted out that

chef-metal had been relying on the Ubuntu user

being present on all our machines along with

a specific private key. Something had caused

the home directory for the Ubuntu user to be

deleted.”

But how could a standard user like this have been

missing from production systems? Any system

administrator can tell you the horror of finding

out that something you did a long time ago as

a test was not completely removed from the

environment, later causing unexpected changes.

In Opsmatic’s case, a Chef recipe called “remove_

default_users” had been created during the early

stages of the company’s AWS experimentation.

Now, long after the test, that recipe was

somehow still running against the production

servers, unbeknownst to the staff maintaining

them.

“The remove_default_users recipe was clearly

dead weight; we had gotten a little sloppy and

let a bit of invisible technical debt accumulate. In

order to prevent the same thing happening again,

we immediately deleted the recipe.”

Like many major outages, this incident was the

result of a long, causal sequence of mistakes,

none of which were caught until they added up to

a giant problem.

Opsmatic
Sep 24, 2014

C A S E O N E

3

If Opsmatic had instituted an UpGuard policy

for which users should be on servers, it would

have been immediately apparent that the Ubuntu

user was missing from the production servers. A

proactive alert would have been generated from

UpGuard, informing the relevant people that the

actual users on the servers did not match their

expectations.

From here, the sysadmins would have began

troubleshooting, and likely discovered the legacy

Chef recipe that caused it, before anything had

gone down unexpectedly. More importantly, they

would have known that kicking off chef-metal

would take down their servers, and could have

avoided doing so until they had found the root

cause of the problem among the Chef recipes.

What if they had
UpGuard...

4

“SMARS is an automated, high speed, algorithmic

router that sends orders into the market for

execution.”

Knight Capital not only automated its

administrative IT processes, but algorithmic

trading itself. This means that changes and

unplanned errors happen very quickly, affecting

the transit of real money. This is why in 2012

a single error caused Knight Capital to lose

$172,222 per second for 45 minutes straight.

When operating a data center at scale, whole

clusters of servers often run a single function.

This distributes the load across more computing

resources and provides better performance for

high traffic applications. However, this model

depends on all of the servers in the cluster (or

grouping, if not an actual cluster) having the

same configurations, so that applications behave

the same -- no matter which particular server in

the cluster they are using. But configurations,

even if identical at provisioning, always drift

apart.

“During the deployment of the new code,

however, one of Knight’s technicians did not

copy the new code to one of the eight SMARS

computer servers.”

Despite all of its automation, Knight Capital

was still manually deploying code across server

banks. An inevitable human error caused one of

its eight servers to have a different configuration

 from the others. From this point forward, the IT

staff were operating under the misconception

that these servers were identical, when in fact

they were not.

Furthermore, decommissioned Power Peg code

that Knight Capital had long abandoned sat

available on the misconfigured server. Artifacts

of previous experiments and methods often

outlast their implementations, sitting dormant

long after IT staff have forgotten about it.

“Orders sent with the repurposed flag to the

eighth server triggered the defective Power Peg

code still present on that server. As a result, this

server began sending child orders to certain

trading centers for execution.”

Unfortunately for Knight, these

misconfigurations were all tied to their core

business processes—algorithmic stock trading—

and when the triggering event, a repurposed flag,

finally occurred, caught by the Power Peg code,

money began changing hands immediately. The

error ultimately cost Knight Capital $465 million

dollars in trading loss.

Knight Capital
Aug 01, 2012

C A S E T W O

5

With UpGuard, Knight would have established

a policy that the 8 SMARS servers had to be

identical. They would have used a known good

configuration of those servers to generate the

policy by which all of other assets are judged.

When the eighth server was overlooked by

the sysadmin, the policy would have failed,

and the error would have been caught before

the triggering event occurred. Furthermore,

UpGuard would have detected the presence of

the defunct Power Peg code, alerting IT staff to

the potential security risk posed by such code

before it ever executed.

What if they had
UpGuard...

6

“Delta teams are expeditiously working to fix a

systems outage that has resulted in departure

delays for flights on the ground.”

Large logistics operations rely on automated

systems to achieve the necessary speed to

perform at scale. Ideally, these automation

systems produce resilient services. But airline

companies have struggled in recent years to keep

those systems functional, costing them hundreds

of millions of dollars and customer goodwill.

“Delta Air Lines grounded its domestic flights for

hours late Sunday due to what was described as

automation issues.”

Such dysfunction is possible because automation

is not a solution to operational problems, but

merely a way to make them happen faster and

at a larger scale. Just like traditional, manual

methods of systems administration, automated

systems suffer from misconfigurations.

“Delta told investors the glitch cost the airline

more than $150 million.”

When these misconfigurations occur, entire

systems go down, because the changes are

pushed out quickly through the automated

mechanisms. This interrupts flight operations,

delays planes, and siphons money out of the

business.

Delta Airlines
Jan 29, 2017

C A S E T H R E E

7

For years, UpGuard has helped businesses deploy

automation effectively, by first answering key

operational questions that often fly under the

radar: do you know what you have, and can you

control it?

With better visibility into their operations,

Delta could reduce the risk to their business

when making planned changes. Furthermore, if

they understood which unplanned changes were

happening in their environment, they would be

able to shore up any misconfigurations before

they cascade into a major outage.

What if they had
UpGuard...

8

Even technology giants have the occasional

automation related outage. An hour of downtime

might not seem like a lot, but when it’s Google on

the line, that hour is highly visible.

“Thanks to a bug in “an internal system that

generates configuration”, Gmail was down for at

least 20 (and up to 50) minutes on Friday.”

Google has always been on the bleeding edge of

technology, so it’s no surprise that they automate

configuration management. When they make a

change, they have to make that change across

thousands of servers. However, when the wrong

change is executed, it also propagates far and

wide within a matter of seconds.

“The incorrect configuration was sent to live

services..., caused users’ requests for their

data to be ignored, and those services, in turn,

generated errors.”

The lesson here is that configuration automation

is not the same as configuration management.

Automation ensures that changes get pushed out

across all systems. It does not necessarily ensure

that those changes are good.

Understanding whether or not a change is good

can be more difficult than it sounds. With the

increasing complexity of modern data centers

and the hybridization between cloud platforms,

on-site servers, SaaS providers, and other

technologies, getting a handle on what exactly

is happening—and whether or not it’s supposed

to be happening—requires technology that

can glean insights from a massive data set and

present those insights to the business so that

they can be acted upon quickly.

Gmail
Jan 24, 2014

C A S E F O U R

9

For years, UpGuard has helped businesses deploy

automation effectively, by first answering key

operational questions that often fly under the

radar: do you know what you have, and can you

control it?

With better visibility into their operations,

Delta could reduce the risk to their business

when making planned changes. Furthermore, if

they understood which unplanned changes were

happening in their environment, they would be

able to shore up any misconfigurations before

they cascade into a major outage.

What if they had
UpGuard...

10

“We use thousands of databases to run Dropbox.

Each database has one master and two replica

machines for redundancy. In addition, we perform

full and incremental data backups and store them

in a separate environment.”

Dropbox went down for three hours when a

planned upgrade went awry. A “buggy script”

caused updates to be applied to production

servers, causing live services to fail.

“A subtle bug in the script caused the command

to reinstall a small number of active machines.

Unfortunately, some master-slave pairs were

impacted which resulted in the site going down.”

Fortunately for Dropbox, their backup and

recovery strategy allowed them to restore most

services within three hours. However, no IT team

likes to scramble under an outage and race to

implement emergency procedures that should

work, in theory.

“To restore service as fast as possible, we

performed the recovery from our backups. We

were able to restore most functionality within 3

hours, but the large size of some of our databases

slowed recovery, and it took until 4:40 PM PT

today for core service to fully return.”

But could the outage have been prevented

altogether? If we look at the conclusions reached

by Dropbox in their post mortem, we can see that

continuous, improved state verification was the

 first key practice mentioned to avoid this type of

outage in the future.

“We’ve added an additional layer of checks

that require machines to locally verify their

state before executing incoming commands.

This enables machines that self-identify as

running critical processes to refuse potentially

destructive operations.”

Dropbox
Jan 10, 2014

C A S E F I V E

11

UpGuard provides advanced state verification at

the largest scales and unlike homebrew scripts

or domain specific languages, we’ve created

a platform where the whole team can see the

distributed state of a whole system in one place.

What if they had
UpGuard...

12

“On Sunday, at 2:19 AM PDT, there was a brief

network disruption that impacted a portion of

DynamoDB’s storage servers. Normally, this type

of networking disruption is handled seamlessly

and without change to the performance of

DynamoDB. But, on Sunday morning, a portion

of the metadata service responses exceeded

the retrieval and transmission time allowed by

storage servers. As a result, some of the storage

servers were unable to obtain their membership

data, and removed themselves from taking

requests.”

Amazon’s AWS cloud platform suffered an outage

that cascaded from a simple network disruption

into broad service failure when some automated

processes timed out. Amazon has built a very

advanced, integrated cloud platform, but still

suffers from network outages like traditional on-

premise data centers.

“When the network disruption occurred on

Sunday morning, and a number of storage servers

simultaneously requested their membership

data, the metadata service was processing some

membership lists that were now large enough

that their processing time was near the time limit

for retrieval. Multiple, simultaneous requests for

these large memberships caused processing to

slow further and eventually exceed the allotted

time limit. This resulted in the disrupted storage

servers failing to complete their membership

renewal, becoming unavailable for requests, and

retrying these requests.”

While it was a DynamoDB timeout issue that

ultimately caused the problem users experienced,

the network disruption was the precipitating

incident that kicked off the whole event. Digital

services depend on digital infrastructure, just

as physical services, such as freight haulage,

requires physical infrastructure, such as roads.

The service and everything it depends on to

function successfully form a single system of risk

that must be analyzed and maintained to ensure

the service works.

AWS & DynamoDB
Sep 20, 2015

C A S E S I X

13

Amazon, like Google, has an extremely advanced,

large scale infrastructure, and nonetheless still

has unexpected outages that impact business.

UpGuard helps IT teams build resilience against

the risks posed by digital infrastructure. We scan

network devices (and everything else) to ensure

that they meet business expectations at all times.

When a change violates those expectations, we

let you know, so you can fix it before it becomes

an outage.

What if they had
UpGuard...

14

“During the two years before the disastrous

opening of HealthCare.gov, federal officials

in charge of creating the online insurance

marketplace received 18 written warnings that

the mammoth project was mismanaged and off

course but never considered postponing its

launch.”

The government experienced the fallout from

a major software failure when they rolled out

Healthcare.gov, the Affordable Care Act (ACA)

web enrollment tool. Everyone knew that this

was a massive undertaking and that the stakes

were high, as the delivery of many people’s

healthcare insurance was on the line. But the

project had significant problems all the way up

to the release date, and beyond, due to a lack of

integration, visibility, and testing.

“In the summer of 2013, CMS officials asked

CGI Federal, the main contractor building

HealthCare.gov, to demonstrate a simple feature

called Account Lite, intended to let consumers

create accounts before enrollment began. CGI

was behind schedule and, when it finally did

the demonstration, federal workers found 105

defects.”

One crucial piece of Healthcare.gov was Account

Lite, the mechanism by which people would

create their accounts and gain access to their

healthcare options. This particular module had

so many problems that it was clear to almost

everyone that they had a disaster waiting to

 happen. Yet contractors moved forward anyway.

“Before the site opened, CMS had not tested it

end to end to see how the parts worked together.

“You can’t test what is not built,” a contractor

told the investigators.”

Modern software delivery methods have

evolved to address these exact problems. The

DevOps movement was formed to unify silos

that had formed among the various subgroups

of an IT department, with all eyes focused on

achieving the big picture result. As Healthcare.

gov had huge, complex deliverables which took

a long time to complete, the testing phase was

completely ignored until the very last minute.

“HealthCare.gov crashed within two hours of its

launch.”

Unsurprisingly, the software release failed

miserably, and millions of people were unable

to sign up for their healthcare. This outage

had political implications, with critics of the

ACA using the outage as evidence of the

administration’s incompetence in delivering a

healthcare program. The site was eventually

stabilized, but only after all the work that should

have been integrated before the release was

accomplished—after the crash.

Healthcare.gov
Oct 01, 2013

C A S E S E V E N

15

UpGuard validates every piece of the DevOps

toolchain. Automating software delivery requires

speed and precision, as well as continuous testing

so that feedback loops are as small as possible.

Shortened release cycles break obstacles down

into smaller pieces and help bugs and other

problems stand out and get fixed continuously

inside the development cycle, instead of the day

of release, in one lump sum.

What if they had
UpGuard...

