LIRS

v X
SR

Opsmatic
sep 24, 2014

It started with what should have been a simple

Chef recipe:

“At 14:20 PDT Opsmatic went down in flames.
The Chef run restarted every single instance in

our infrastructure.”

Automation often faces the same problems

once contended with under traditional server
administration. One such issue is the assumption,
before making a change, that everything is the
way it should be. When Opsmatic’s routine server
maintenance ended up shutting down their whole
operation, it was because things weren’t exactly
as they had thought.

“After a bit more digging, we sorted out that
chef-metal had been relying on the Ubuntu user
being present on all our machines along with

a specific private key. Something had caused
the home directory for the Ubuntu user to be
deleted.”

But how could a standard user like this have been
missing from production systems? Any system
administrator can tell you the horror of finding
out that something you did a long time ago as

a test was not completely removed from the
environment, later causing unexpected changes.
In Opsmatic’s case, a Chef recipe called “remove_
default_users” had been created during the early
stages of the company’s AWS experimentation.
Now, long after the test, that recipe was
somehow still running against the production
servers, unbeknownst to the staff maintaining

them.

“The remove_default_users recipe was clearly
dead weight; we had gotten a little sloppy and
let a bit of invisible technical debt accumulate. In
order to prevent the same thing happening again,

we immediately deleted the recipe.”

Like many major outages, this incident was the
result of a long, causal sequence of mistakes,
none of which were caught until they added up to

a giant problem.

What if they had
JpGuard...

If Opsmatic had instituted an UpGuard policy
for which users should be on servers, it would
have been immediately apparent that the Ubuntu
user was missing from the production servers. A
proactive alert would have been generated from
UpGuard, informing the relevant people that the
actual users on the servers did not match their

expectations.

From here, the sysadmins would have began
troubleshooting, and likely discovered the legacy
Chef recipe that caused it, before anything had
gone down unexpectedly. More importantly, they
would have known that kicking off chef-metal
would take down their servers, and could have
avoided doing so until they had found the root

cause of the problem among the Chef recipes.

CASE TWO

<night Capita
Aug 01, 20172

“SMARS is an automated, high speed, algorithmic
router that sends orders into the market for

execution.”

Knight Capital not only automated its
administrative IT processes, but algorithmic
trading itself. This means that changes and
unplanned errors happen very quickly, affecting
the transit of real money. This is why in 2012

a single error caused Knight Capital to lose
$172,222 per second for 45 minutes straight.

When operating a data center at scale, whole
clusters of servers often run a single function.
This distributes the load across more computing
resources and provides better performance for
high traffic applications. However, this model
depends on all of the servers in the cluster (or
grouping, if not an actual cluster) having the
same configurations, so that applications behave
the same -- no matter which particular server in
the cluster they are using. But configurations,
even if identical at provisioning, always drift

apart.

“During the deployment of the new code,
however, one of Knight's technicians did not
copy the new code to one of the eight SMARS
computer servers.”

Despite all of its automation, Knight Capital
was still manually deploying code across server
banks. An inevitable human error caused one of

its eight servers to have a different configuration

from the others. From this point forward, the IT
staff were operating under the misconception
that these servers were identical, when in fact

they were not.

Furthermore, decommissioned Power Peg code
that Knight Capital had long abandoned sat
available on the misconfigured server. Artifacts
of previous experiments and methods often
outlast their implementations, sitting dormant

long after IT staff have forgotten about it.

“Orders sent with the repurposed flag to the
eighth server triggered the defective Power Peg
code still present on that server. As a result, this
server began sending child orders to certain

trading centers for execution.”

Unfortunately for Knight, these
misconfigurations were all tied to their core
business processes—algorithmic stock trading—
and when the triggering event, a repurposed flag,
finally occurred, caught by the Power Peg code,
money began changing hands immediately. The
error ultimately cost Knight Capital $465 million

dollars in trading loss.

What if they had
JpGuard...

With UpGuard, Knight would have established
a policy that the 8 SMARS servers had to be
identical. They would have used a known good
configuration of those servers to generate the
policy by which all of other assets are judged.
When the eighth server was overlooked by
the sysadmin, the policy would have failed,
and the error would have been caught before
the triggering event occurred. Furthermore,
UpGuard would have detected the presence of
the defunct Power Peg code, alerting IT staff to
the potential security risk posed by such code

before it ever executed.

CASE THREE

Delta Airlines
Jan 29, 201/

“Delta teams are expeditiously working to fix a
systems outage that has resulted in departure

delays for flights on the ground.”

Large logistics operations rely on automated
systems to achieve the necessary speed to
perform at scale. Ideally, these automation
systems produce resilient services. But airline
companies have struggled in recent years to keep
those systems functional, costing them hundreds

of millions of dollars and customer goodwill.

“Delta Air Lines grounded its domestic flights for
hours late Sunday due to what was described as

automation issues.”

Such dysfunction is possible because automation
is not a solution to operational problems, but
merely a way to make them happen faster and

at alarger scale. Just like traditional, manual
methods of systems administration, automated

systems suffer from misconfigurations.

“Delta told investors the glitch cost the airline

more than $150 million.”

When these misconfigurations occur, entire
systems go down, because the changes are
pushed out quickly through the automated
mechanisms. This interrupts flight operations,

delays planes, and siphons money out of the

business.

What if they had
JpGuard...

For years, UpGuard has helped businesses deploy
automation effectively, by first answering key
operational questions that often fly under the
radar: do you know what you have, and can you
control it?

With better visibility into their operations,
Delta could reduce the risk to their business
when making planned changes. Furthermore, if
they understood which unplanned changes were
happening in their environment, they would be

able to shore up any misconfigurations before

they cascade into a major outage.

CASE FOUR

Gmall
Jan 24, 7014

Even technology giants have the occasional
automation related outage. An hour of downtime
might not seem like a lot, but when it's Google on

the line, that hour is highly visible.

“Thanks to a bugin “an internal system that
generates configuration”, Gmail was down for at

least 20 (and up to 50) minutes on Friday.”

Google has always been on the bleeding edge of
technology, so it’s no surprise that they automate
configuration management. When they make a
change, they have to make that change across
thousands of servers. However, when the wrong
change is executed, it also propagates far and

wide within a matter of seconds.

“The incorrect configuration was sent to live
services..., caused users’ requests for their
data to be ignored, and those services, in turn,

generated errors.”

The lesson here is that configuration automation
is not the same as configuration management.

Automation ensures that changes get pushed out
across all systems. It does not necessarily ensure

that those changes are good.

Understanding whether or not a change is good
can be more difficult than it sounds. With the
increasing complexity of modern data centers
and the hybridization between cloud platforms,
on-site servers, SaaS providers, and other

technologies, getting a handle on what exactly

is happening—and whether or not it’s supposed
to be happening—requires technology that

can glean insights from a massive data set and
present those insights to the business so that
they can be acted upon quickly.

VWhat IT they hac
JpGuard...

For years, UpGuard has helped businesses deploy
automation effectively, by first answering key
operational questions that often fly under the
radar: do you know what you have, and can you

control it?

With better visibility into their operations,
Delta could reduce the risk to their business
when making planned changes. Furthermore, if
they understood which unplanned changes were
happening in their environment, they would be
able to shore up any misconfigurations before

they cascade into a major outage.

CASE FIVE

Dropbox
Jan 10, 2014

“We use thousands of databases to run Dropbox.
Each database has one master and two replica
machines for redundancy. In addition, we perform
full and incremental data backups and store them

in a separate environment.”

Dropbox went down for three hours when a
planned upgrade went awry. A “buggy script”
caused updates to be applied to production

servers, causing live services to fail.

“A subtle bug in the script caused the command
to reinstall a small number of active machines.
Unfortunately, some master-slave pairs were

impacted which resulted in the site going down.”

Fortunately for Dropbox, their backup and
recovery strategy allowed them to restore most
services within three hours. However, no IT team
likes to scramble under an outage and race to
implement emergency procedures that should

work, in theory.

“To restore service as fast as possible, we
performed the recovery from our backups. We
were able to restore most functionality within 3
hours, but the large size of some of our databases
slowed recovery, and it took until 4:40 PM PT

today for core service to fully return.”

But could the outage have been prevented
altogether? If we look at the conclusions reached
by Dropbox in their post mortem, we can see that

continuous, improved state verification was the

10

first key practice mentioned to avoid this type of

outage in the future.

“We've added an additional layer of checks
that require machines to locally verify their
state before executing incoming commands.
This enables machines that self-identify as
running critical processes to refuse potentially

destructive operations.”

VWhat IT they hac
JpGuard...

UpGuard provides advanced state verification at
the largest scales and unlike homebrew scripts
or domain specific languages, we've created

a platform where the whole team can see the

distributed state of a whole system in one place.

13 14 1§

| T
\ ;

CASE SIX

AWS & DynamoDB

Sep 20, 2015

“On Sunday, at 2:19 AM PDT, there was a brief
network disruption that impacted a portion of
DynamoDB’s storage servers. Normally, this type
of networking disruption is handled seamlessly
and without change to the performance of
DynamoDB. But, on Sunday morning, a portion
of the metadata service responses exceeded

the retrieval and transmission time allowed by
storage servers. As a result, some of the storage
servers were unable to obtain their membership
data, and removed themselves from taking

requests.”

Amazon’s AWS cloud platform suffered an outage
that cascaded from a simple network disruption
into broad service failure when some automated
processes timed out. Amazon has built a very
advanced, integrated cloud platform, but still
suffers from network outages like traditional on-

premise data centers.

“When the network disruption occurred on
Sunday morning, and a number of storage servers
simultaneously requested their membership
data, the metadata service was processing some
membership lists that were now large enough
that their processing time was near the time limit
for retrieval. Multiple, simultaneous requests for
these large memberships caused processing to
slow further and eventually exceed the allotted
time limit. This resulted in the disrupted storage
servers failing to complete their membership
renewal, becoming unavailable for requests, and

retrying these requests.”

12

While it was a DynamoDB timeout issue that
ultimately caused the problem users experienced,
the network disruption was the precipitating
incident that kicked off the whole event. Digital
services depend on digital infrastructure, just

as physical services, such as freight haulage,

requires physical infrastructure, such as roads.

The service and everything it depends on to
function successfully form a single system of risk
that must be analyzed and maintained to ensure

the service works.

What if they had
JpGuard...

Amazon, like Google, has an extremely advanced,
large scale infrastructure, and nonetheless still
has unexpected outages that impact business.
UpGuard helps IT teams build resilience against
the risks posed by digital infrastructure. We scan
network devices (and everything else) to ensure
that they meet business expectations at all times.
When a change violates those expectations, we
let you know, so you can fix it before it becomes

an outage.

CASE SEVEN

Healthcare.gov
Oct 01, 2013

“During the two years before the disastrous
opening of HealthCare.gov, federal officials

in charge of creating the online insurance
marketplace received 18 written warnings that
the mammoth project was mismanaged and off
course but never considered postponing its

launch’”

The government experienced the fallout from

a major software failure when they rolled out
Healthcare.gov, the Affordable Care Act (ACA)
web enrollment tool. Everyone knew that this
was a massive undertaking and that the stakes
were high, as the delivery of many people’s
healthcare insurance was on the line. But the
project had significant problems all the way up
to the release date, and beyond, due to a lack of

integration, visibility, and testing.

“In the summer of 2013, CMS officials asked

CGI Federal, the main contractor building
HealthCare.gov, to demonstrate a simple feature
called Account Lite, intended to let consumers
create accounts before enrollment began. CGI
was behind schedule and, when it finally did

the demonstration, federal workers found 105
defects.”

One crucial piece of Healthcare.gov was Account
Lite, the mechanism by which people would
create their accounts and gain access to their
healthcare options. This particular module had
so many problems that it was clear to almost

everyone that they had a disaster waiting to

14

happen. Yet contractors moved forward anyway.

“Before the site opened, CMS had not tested it
end to end to see how the parts worked together.
“You can’t test what is not built,” a contractor

told the investigators.”

Modern software delivery methods have
evolved to address these exact problems. The
DevOps movement was formed to unify silos
that had formed among the various subgroups
of an IT department, with all eyes focused on
achieving the big picture result. As Healthcare.
gov had huge, complex deliverables which took
along time to complete, the testing phase was

completely ignored until the very last minute.

“HealthCare.gov crashed within two hours of its

launch.”

Unsurprisingly, the software release failed
miserably, and millions of people were unable

to sign up for their healthcare. This outage

had political implications, with critics of the
ACA using the outage as evidence of the
administration’s incompetence in delivering a
healthcare program. The site was eventually
stabilized, but only after all the work that should
have been integrated before the release was

accomplished—after the crash.

What if they had
JpGuard...

UpGuard validates every piece of the DevOps
toolchain. Automating software delivery requires
speed and precision, as well as continuous testing
so that feedback loops are as small as possible.
Shortened release cycles break obstacles down
into smaller pieces and help bugs and other
problems stand out and get fixed continuously
inside the development cycle, instead of the day

of release, in one lump sum.

