
  
 
 
 
ONLINE COURSE 

 

Introduction to GIS  
Manipulating and Mapping 
Geospatial Data in R 

Feedback, questions, comments or requests? 
Email us at humansofdata@atlan.com   
 

 

mailto:humansofdata@atlan.com


 
 
This lesson was written by Sean Angiolillo and was last updated on 29 Jan. 2019. 

 

When you hear "geospatial data", what comes to your mind? For many people, it's 
ordinary maps, either of physical or human geography. Maps are one important 
output of geospatial data, but they can be used for so much more. In fact, geospatial 
data is an overlooked and underappreciated aspect of today's "big data" revolution. 

Geospatial Data Is Everywhere 

Many of today's "big data" innovations and ideas are rooted in geospatial data 
sources. Most people always carry at least one device, such as a smartphone, that 
tracks their location — the result is geospatial data. Entire industries like the Internet 
of Things (IoT), drones, and autonomous cars rely on this sort of reliable, real-time 
geospatial data. Similarly, entire concepts like "smart cities" are built around the idea 
of using geospatial data. 
 
The growth of geospatial data is fairly recent, but its effect can already be seen in 
many of the products we use on a daily basis. Google search results are more local, 
Ubers arrive faster, and we can even track the exact location of our Grubhub or 
Zomato order for free. All of these products and services use geospatial data to tailor 
the product experience to each user. 
 
Before we dive into working with geospatial data in R, let’s talk about why you should 
even be interested in learning about geospatial data by highlighting a quick overview 
of both business and public use cases. 
 

 
1 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

LEARN MORE: 

The greater accessibility of geospatial data has helped spur a wide variety of 
use cases. One very enthusiastic website  has a list of over 1,000 use cases 
of geospatial data, including fields like retail, health care, transportation, and 
governance. ESRI also maintains a catalogue of interesting case studies 
using geospatial data. 

 
 

How Businesses Use Geospatial Data 

If you're familiar with how businesses use data to make better-informed decisions, 
it's not a far leap to imagine how geospatial data fits into this picture. 
 
Perhaps the most obvious place to start when discussing how businesses can use 
geospatial data is improved transportation and logistics planning . Companies can 
use real-time geospatial data to optimize their supply chains and thereby reduce 
costs. In addition, geospatial data allows businesses to not just react to weather and 
climate patterns in real time, but also make predictions. For instance, analyzing 
historical weather trends can help a retailer better anticipate customer demand and 
adjust supply accordingly. 
 
In another sense, geospatial data can significantly improve market segmentation 
efforts. All businesses care about refining their sales and marketing to more 
effectively reach customers. For example, many businesses rely on predictive 
models that try to identify likely customers based on factors such as purchase history 
or demographic information. The ability to add location to these models can 
significantly increase returns by increasing customer retention, reducing churn, and 
finding new customers. 
 
Next, geospatial data can play a key role in a business’ risk analysis efforts. The 
idea of modeling risk to mitigate potential exposure is important in many industries, 
and geospatial data fits well into such models. For example, it can be used to more 
accurately assess which properties may be at greater risk due to environmental 
damage and extreme weather events, such as flooding. 
 
In a similar vein to risk analysis is fraud detection and prevention. Fraud detection, 
particularly in industries like credit cards, is one area where machine learning models 
made an early contribution for their ability to sift through huge mounds of data and 

 
2 

https://gisgeography.com/gis-applications-uses/
https://www.esri.com/en-us/arcgis/big-data/use-cases


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
flag irregular or suspicious transactions. Incorporating geospatial data into these 
kinds of models can help further identify the signal in the noise. 
 

 
One example of geospatial data is this road data for Pune, a city in India, color-coded to show which 

roads are well-lit at night. (Source: Atlan .) 
 
Lastly, geospatial data can play a role in almost any kind of optimization exercise. 
Take the example of identifying new locations for a business. Whether determining 
where to open the next branch of a chain restaurant or Amazon HQ2 , it would be 
foolish to ignore geospatial data. It allows companies to spatially visualize 
simultaneous layers of analysis, such as target market size, number of competitors, 
public amenities and infrastructure, and environmental risk factors. 
 

LEARN MORE: 

Many people have explained how businesses are incorporating geospatial 
data into analytics solutions, but Fern Halper’s TDWI bulletin  on use cases of 
geospatial analytics is an especially useful place to begin. 

 

How the Public Sector Uses Geospatial Data 

Many of the business use cases have a similar corollary in the public or nonprofit 
domain. 

 
3 

https://www.atlan.com/?__hstc=35441662.3712502b9c2543c198cb6df7da86af7a.1545900000133.1549969171237.1550208647288.99&__hssc=35441662.4.1550208647288&__hsfp=3552524946
https://en.wikipedia.org/wiki/Amazon_HQ2
https://www.victa.nl/alteryx/wp-content/uploads/TDWI-Checklist-Webinar-on-Data-Discovery.PDF


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
While a business may use geospatial data for logistics planning, a public agency can 
use geospatial data for better urban and rural planning  to improve land use, 
environmental protection, pollution levels, and liveability. If a business can optimize 
its fleet of delivery trucks, a public agency can optimize emergency response teams 
and evacuation routes after a natural disaster. Even basic public functions like trash 
collection or the rates charged for parking spaces can be optimized based on some 
level of geospatial data. 
 
Businesses may use geospatial data for market segmentation, but public agencies 
can use the same principles to better target constituents . For example, public 
agencies can work with geospatial data to better identify at-risk populations for 
mosquito-borne diseases based on proximity to areas with poor water drainage. 
Public health missions can then more accurately target their outreach to these 
populations. Alternatively, much like a business targeting customers, political parties 
have used geospatial data to target potential voters. 
 

 
An example of geospatial data is this Damage Proxy Map (DPM) of areas in Hokkaido, Japan, that 

were likely damaged by the M6.6 earthquake on September 5, 2018. (Source: NASA's Jet Propulsion 
Laboratory.) 

 
Like a business, a public agency may want to assess risk to the public and 
infrastructure . A new use case, known as predictive policing, is under trial in certain 
parts of the world. The idea is for police agencies to assess the risk of crime in a 
given area through geospatial and temporal analysis of past crimes, and thereby 

 
4 

https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA22696
https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA22696


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
adjust how many police are on call and where they are stationed. While this raises a 
number of important ethical concerns, it highlights the far-reaching implications of 
geospatial data. 
 
A business might use geospatial data in its fraud detection efforts, but a public 
agency might use geospatial data to track illegal construction. The Delhi 
Government in fact had a project to achieve just this by creating what is called the 
Delhi State Spatial Data Infrastructure (DSSDI). 
 
If businesses can use geospatial data to find strategic locations, public agencies can 
do the same to determine the location of important public infrastructure  like new 
roads, hospitals, schools and voting booths. We even used geospatial data in our 
effort to locate where to position 10,000 new LPG (liquefied petroleum gas) 
distribution centers across India. 
 
One last use case in the public sector is the idea of investing in geospatial data as 
a public good. For example, one important form of geospatial data is weather data. 
More accurate, localized, and accessible weather reports can have a large impact on 
the agricultural sector. By publishing digitized and spatially-mapped land records, 
governments can mitigate land acquisition disputes. Geospatial data on 
environmental metrics like air quality or carbon emissions is another example of a 
public good. In the case of India, major government initiatives like Digital India and 
Smart Cities rely on these geospatial technologies. 
 

LEARN MORE: 

One useful resource on how GIS technology can improve city services is this 
McKinsey brief. Or for analysis focused on the Indian context, this FICCI 
report highlights 40 cases on geospatial technologies in different sectors. 

 
 

Final Thoughts 

If this brief overview of geospatial data use cases has piqued your interest, be sure 
to keep reading. Starting in the next lesson, you'll quickly get your hands dirty 
working directly with geospatial data in R. 
 

 
 

5 

https://darpg.gov.in/sites/default/files/DSSDI_Case%20Study_v1.0.pdf
https://www.mckinsey.com/~/media/McKinsey/dotcom/client_service/Public%20Sector/GDNT/GDNT_Coordinates_for_change_GIS_FINAL.ashx
http://ficci.in/spdocument/20195/FICCI-GT-Empowering-India-through-Geospatial-Technologies.pdf
http://ficci.in/spdocument/20195/FICCI-GT-Empowering-India-through-Geospatial-Technologies.pdf
https://atlan.com/courses/introduction-to-gis-r/lesson1-usecases/


 
 

This lesson was written by Sean Angiolillo and was last updated on 29 Jan. 2019. 
 
The previous lesson looked at the many growing use cases for geospatial data. Now 
we'll get started manipulating geospatial data in R using the sf package. You'll learn 
how to import spatial data, combine attribute data into existing geospatial objects, 
calculate area, and simplify spatial dataframes before plotting them (which is the 
subject of the next lesson). 

Using R as a GIS 

Until recently, serious work with geospatial data required an often-proprietary 
desktop GIS (Geographic Information System), such as ArcGIS. Now, however, GIS 
capabilities in R have greatly advanced. 
 
In many ways, the benefits of using R over a desktop GIS are similar to the benefits 
of using R over Excel for data analysis. 
 

● R is free and open source , which makes it easier and cheaper to get started, 
compared to the expensive licenses needed for many desktop GIS. This has 
helped spread geospatial data analysis beyond the domain of only GIS 
specialists, thereby opening opportunity to a wider ecosystem of contributors. 

● As a full-fledged programming language, the command line interface of R has 
greater flexibility  than the point-and-click interface of a desktop GIS. This 
means there's no restriction on what's ultimately achievable. 

● R is reproducible in a way that point-and-click interfaces are not. This is, of 
course, key to the scientific process. 

 
6 

https://atlan.com/courses/introduction-to-gis-r/lesson1-usecases/
https://atlan.com/courses/introduction-to-gis-r/lesson3-static-maps/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

● The greater shareability  of R scripts and packages encourages a faster 
development cycle and a more collaborative workflow. 

 
Many of these advantages apply to any open-source programming language, such 
as Python, which shares an API with many desktop GIS. However, R, designed as 
an environment for statistical computing, is particularly well-suited for spatial 
statistics and offers unmatched access to a huge ecosystem of statistical libraries. 
R’s data visualization libraries in particular are a key advantage when it comes to 
mapping geospatial data. 
 

LEARN MORE: 

See "Why Geocomputation with R?" for a greater discussion of the merits of 
R for GIS. 

 
 

Getting Started with R as a GIS 

Before working with a new domain area in R, it's useful to check its associated 
CRAN Task View  for an overview of relevant packages. The CRAN Task View for 
Analysis of Spatial Data lists dozens of packages relating to geospatial data. Until 
recently, the first package mentioned was sp, but now it first shows the sf package 
and notes that maintenance of sp will continue. 
 
What package should you use for geospatial data? The answer could differ based on 
your objectives, but the sf package is likely the best place to get started. The sf 
(Simple Features) package provides a class system for geographic vector data. It is 
the successor to the sp package and is quickly being adopted by many other 
packages for geospatial data. 
 
Let's start exploring some of the package's features with simple state-level Indian 
population and economic data. 
 

LEARN MORE: 

Never used the sf package? Get started with the recently completed open 
source book under development, Geocomputation with R by Robin Lovelace, 

 
7 

https://geocompr.robinlovelace.net/intro.html#why-geocomputation-with-r
https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/Spatial.html
https://geocompr.robinlovelace.net/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

Jakub Nowosad and Jannes Muenchow. In particular, Chapter 2  gives a 
great introduction to what simple features are and the structure of sf objects. 
 
Spatial data enthusiasts are also excited about the announcement that sf 
package authors Edzer Pebesma and Roger Bivand are currently working on 
an open source book of their own, Spatial Data Science. Drafts of the first 
eight chapters of what is sure to be a key resource for the field are now 
available. 

 

Creating sf Objects 

For tidyverse users, one of the most exciting aspects of the sf package is the ability 
to work with geospatial data in a tidy workflow. Unlike its predecessor package sp, 
with the sf package, geospatial and attribute data can be stored together in a 
spatial dataframe, where the object’s geometry occupies a special list-column. In 
addition to being faster, this lets you manipulate an sf object via magrittr pipes like 
an ordinary dataframe, or at least one with a few special characteristics. 
 
It's certainly possible to create your own sf objects with functions from the package 
like st_point(), st_linestring(), and st_polygon(). But in most cases we only 
have to read in existing spatial data. That is generally done with the st_read() 
function. 
 
The shapefiles used in this demonstration can be found in this blog’s associated 
GitHub repository. 
 

 

 
8 

https://geocompr.robinlovelace.net/spatial-class.html
https://keen-swartz-3146c4.netlify.com/index.html
https://github.com/seanangio/viz_india


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 

NOTE: 

All sf functions begin with st_* to help users identify them. 

 
In general, you can find administrative boundary data from GADM. It maintains 
open-source, current administrative boundary data for most countries. It's possible to 
download spatial data directly from the GADM website, but using the GADMTools 
package helps ensure your workflow is reproducible. Specifying level = 1 returns 
state-level boundaries. 
 

LEARN MORE: 

Robin Wilson’s website  provides a great list of free GIS data sources, 
covering both physical and human geography. 

 

 
The code below will download shapefiles for Indian states. However, since Kashmir 
isn't included in India’s borders, we'll use the shapefiles in the repository. 
 

 

 
9 

https://gadm.org/data.html
https://freegisdata.rtwilson.com/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

Inspecting Objects 
Before working with this sf object, let's briefly compare the sf and sp packages. 
 
First, we'll convert the sf object to a SpatialPolygonsDataFrame, an S4 class 
defined by the sp package. We can do this with sf::as(). 
 

 
 
Now we can briefly inspect the structure of a SpatialPolygonsDataFrame. 
 

 
 
We notice it has 5 "slots" (each prefaced by the @ symbol). The first slot should look 
familiar. The data slot holds a dataframe with 36 observations of 8 variables. We can 
extract any of these slots using the @ symbol like we'd normally do with the $ symbol. 
 

 

 
10 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 
The following slots hold polygons, plotOrder, bbox and proj4string. We'll return 
to these in the context of sf objects. For now, just note that the data and aspects of 
the object’s geometry are held in separate slots. This is not compatible with the 
tidyverse-style workflow to which many of us have grown accustomed. 
 
While we could continue working with this format, let’s convert it back to an sf object 
with the st_as_sf() function and inspect the difference. 
 

 
 
The former SpatialPolygonsDataFrame, a class defined by the sp package, now 
has two simultaneous classes: sf and data.frame. Printing the first few 
observations tells us a lot about the object. 

 
11 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 

● It has 36 features (depending on how many we print) and 8 fields (our 
attributes). 

● The geometry type is a multipolygon because the geometries represent the 
shapes of various areas. Other common geometry types include points, lines, 
and their “multi-” counterparts. 

● bbox gives the object’s bounding box dimensions. 

● epsg and proj4string describe the coordinate reference system (CRS). 
Note that this is a geographic CRS (measured in longitude and latitude) as 
opposed to a projected CRS. 

 

LEARN MORE: 

For more information on coordinate reference systems, see Section 2.4  of 
Geocomputation with R. 

 

 

 
12 

https://geocompr.robinlovelace.net/spatial-class.html#crs-intro


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
We could directly access information about the object’s spatial features with 
functions like st_geometry_type(), st_dimension(), st_bbox() and st_crs(). 
Moreover, familiar functions like glimpse() or View() that we'd use to explore a 
dataframe also work on sf objects. 
 
If you further inspect this object, you can see that it has a few attribute columns 
giving an abbreviation and bounding box for each state. Most importantly, the last 
column holds each state’s geometry in a list-column. 
 

 

Manipulating sf Objects 

Because spatial dataframes in the sf package are dataframes, we can manipulate 
them using our normal data manipulation tools, such as dplyr. Here we'll just select 
and rename the columns we want. 
 

 
13 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 

NOTE: 

This doesn't explicitly select the geometry column, but the geometry in sf 
objects is sticky . It remains in the object unless explicitly dropped with 
ind_sf%>% st_set_geometry(NULL). 

 

 
For those already familiar with the tidyverse, using normal dplyr verbs to manipulate 
sf objects is one of the great benefits of using the sf package. If we were working 
with the slots of the earlier SpatialPolygonsDataFrame, this wouldn't be possible. 
Moreover, note that these manipulations haven't affected the class of our object in 
any way. 
 

 

Preparing Attribute Data 

Now that we have a spatial dataframe, we need to prepare the associated attribute 
data for each state or union territory.  
 
Since we're focusing on the process rather than the data itself, we'll use population, 
economic, and region data from Wikipedia. If you are unfamiliar with data import 
using the googlesheets package, web scraping with rvest, and wrangling with 

 
14 

https://en.wikipedia.org/wiki/List_of_states_and_union_territories_of_India_by_population
https://en.wikipedia.org/wiki/List_of_Indian_states_and_union_territories_by_GDP
https://en.wikipedia.org/wiki/List_of_states_and_union_territories_of_India_by_area


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
dplyr, please refer to the prepare_data.R script in this GitHub repository to see 
how the attributes.rds data set was assembled. 
 

LEARN MORE: 

Unfamiliar with these packages? Check out the googlesheets package 
vignette  and the Data Transformation chapter of Hadley Wickham’s R for 

Data Science. 

 

 
Once we've prepared an attributes dataframe, we can join it to the spatial dataframe 
as with any two dataframes, as well as mutate two new variables. 
 

 
 

LEARN MORE: 

See the Relational Data chapter of R for Data Science if left_join() is 
unfamiliar. 

 

 
If we inspect this object once more, we can see that it has all of the expected 
attribute columns, and the last column holds each state’s geometry in a list. The 
same spatial attributes regarding the object’s bounding box and CRS remain as well. 
 

 

 
15 

https://github.com/seanangio/viz_india
https://cran.r-project.org/web/packages/googlesheets/vignettes/basic-usage.html
http://r4ds.had.co.nz/transform.html
http://r4ds.had.co.nz/
http://r4ds.had.co.nz/
http://r4ds.had.co.nz/relational-data.html


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

Calculating Area 

Our attribute data already has a column for area, pulled from Wikipedia. However, if 
this wasn't the case or we didn't trust the data, we could calculate the area of each 
observation in our spatial dataframe using the st_area() function. 
 
It's simple enough to do this, but we need to be careful with the units. In this case, 
we need to convert from square meters to square kilometers. 
 

 
16 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 

LEARN MORE: 

See this guide on units of measurement for R vectors for more information 
on unit conversion in R. 

 

 
In the output below, note the difference between the simple numeric class of 
area_km2 and the class of "units" for the area calculation resulting from st_area(). 
 

 
 
Moreover, we can see that the two figures are close but not exactly the same. 
 

 
17 

https://cran.r-project.org/web/packages/units/vignettes/units.html#setting-units-unit-conversion


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

Simplifying Geometry 

Before plotting sf objects (the subject of the next lesson), we should simplify the 
polygons in the spatial dataframe. 
 
For simple maps, there's no need to have the fine level of detail that comes with the 
GADM data or many other sources of geospatial data. Simplification can vastly 
reduce memory requirements while sacrificing very little in terms of visual output. 
Fortunately, there's an easy process to reduce the number of vertices in a polygon 
while retaining the same visible shape. 
 
One option is sf::st_simplify(), but here we'll use the ms_simplify() function 
from the rmapshaper package. Below we keep only 1% of the object’s vertices while 
maintaining the same number of shapes. 
 

NOTE: 

Another useful function is sf::st_geometry(). When passing it an sf 
object, it will return just the geometry. This allows us to create a quick plot of 
only the geometry to check if everything looks right. 
 
We also stripped the units class for the area we calculated because it 
created a problem for ms_simplify(). We can always add it after 
simplification. 

 

 

 
18 

https://atlan.com/courses/introduction-to-gis-r/lesson3-static-maps/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 
 
The original map is above on the left, and the simplified version is on the right. The 
simplified version looks no different despite having only 1% of the vertices. In fact, it 
looks even better because the border lines are cleaner. 
 
Moreover, simplification reduced the geometry size from 9.56 MB to just 150 KB. 
 

 
 

19 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 
Finally, let’s save the simplified spatial dataframe for the next lesson. 
 

 
 

LEARN MORE: 

For more information on simplification, see Section 5.2.1  of Geocomputation 

with R. 

 

Final Thoughts 
After briefly introducing the context of using R as a GIS, this lesson showed how the 
sf package creates a class structure for storing geospatial and attribute data 
together in an object that fits into a tidyverse workflow. We can clearly see the 
benefits of this structure when it comes to manipulating a spatial dataframe with our 
familiar dplyr verbs. 
 
Now that you know how to manipulate geospatial data, the natural next step is 
visualization or mapping. Here again, we'll see the benefit of a tidy workflow, now 
that ggplot2’s geom_sf() is available to us. Though, as you'll see in the next 
lesson, ggplot2 is just one of many excellent package options when it comes to 
visualizing geospatial data in R. 
 

 
 

20 

https://geocompr.robinlovelace.net/geometric-operations.html
https://atlan.com/courses/introduction-to-gis-r/lesson2-manipulating-geospatial-data/


 
 
This lesson was written by Sean Angiolillo and was last updated on 29 Jan. 2019. 
 
In the previous lesson, we briefly explored the structure of spatial dataframes as 
defined by the sf package. The next step is visualization, or more specifically in the 
case of geospatial data, mapping. As with any kind of data, visualization is an 
important step before diving into any kind of statistical analysis. 
 
This lesson introduces how to use some of the most well-known R packages to 
create static maps, such as tmap and ggplot2. We’ll also explore a few other 
packages like cartogram, geogrid and geofacet for some more unique spatial 
visualizations. (We'll tackle creating animated and interactive maps in the next 
lesson .) 

Resources on Visualizing Geospatial Data 

Before diving into different R packages for mapping, let's review a few excellent 
resources that will help you get started. 
 
Below are two excellent open source resources on the principles of data 
visualization. Both include chapters on geospatial data visualization. 
 

● Data Visualization: A practical introduction by Kieran Healy. (This even 
includes a dedicated chapter on maps.) 

● Fundamentals of Data Visualization by Claus O. Wilke 
 

 
21 

https://atlan.com/courses/introduction-to-gis-r/lesson2-manipulating-geospatial-data/
https://atlan.com/courses/introduction-to-gis-r/lesson4-animated-interactive-maps/
https://atlan.com/courses/introduction-to-gis-r/lesson4-animated-interactive-maps/
http://socviz.co/
http://socviz.co/maps.html#maps
https://serialmentor.com/dataviz/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
Here are two resources focused more narrowly on the mechanics of mapping 
specifically in R, rather than larger principles of good design: 
 

● "Making Maps with R" chapter of the previously-mentioned Geocomputation 

with R 

● Bhaskar V. Karambelkar’s tutorial  at useR 2017 on "Geospatial Data 
Visualization in R" 

Choosing the Right Visualization 

Recent advances in software have made many different types of geospatial data 
visualizations — such as choropleths, dot density maps and cartograms — easily 
available. However, the correct visualization often begins with the type of data you 
have. 
 
Before choosing a visualization, we should be sure about the nature of our data. Is 
the data numeric? And if so, is it a raw count, such as population, or is it 
standardized, such as population density? If the data isn't numeric, is it nominal (or 
categorical), such as linguistic or religion data, or ordinal, such as satisfaction 
rankings? 
 
One point Healy makes clear in his book is that it's important to consider whether or 
not a truly geospatial visualization is the best choice for your data. In our case, and 
in many cases concerning choropleths, the data is only partly geospatial — it really 
represents counts of some value in an arbitrary unit. 
 
The spatial object we created in the previous lesson has attributes like population, 
GDP, and sex ratio. It is certainly possible to visualize this data through barplots, 
ignoring the data’s geospatial qualities. Alternatively, instead of ignoring the 
geospatial elements, we could show some of this information through a proxy — for 
example, mapping different colors to a variable like region. 
 
In fact, focusing on geospatial elements can sometimes misrepresent the data 
because of vastly unequal areas between different regions and the populations they 
hold — as is the case for Indian states. If we were working with district-level (as 
opposed to state-level) data, then a choropleth might be necessary because we can't 
show hundreds of bars on a single barplot. 
 
Nevertheless, because of its simplicity, we'll use state-level data to test out different 
approaches for geospatial visualization. With this goal in mind, hopefully none of the 

 
22 

https://geocompr.robinlovelace.net/adv-map.html
https://geocompr.robinlovelace.net/index.html
https://geocompr.robinlovelace.net/index.html
https://bhaskarvk.github.io/user2017.geodataviz/
https://atlan.com/courses/introduction-to-gis-r/lesson2-manipulating-geospatial-data/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
visualizations below are "bad", but whether or not they are the "best" visualization for 
this data would depend on the specific objectives at hand. 

Static Maps 

Although a number of R packages have made it easy to make attractive interactive 
and animated maps, they haven't removed the need for effective static maps. This 
section looks at how to create static maps in base R, tmap, and ggplot2. 
 

NOTE: 

While tmap and ggplot2 are two of the most popular packages for creating 
maps, they aren't the only options. The cartography package is another 
interesting tool, particularly for certain kinds of maps, such as choropleths 
contained in proportional symbols. See the package vignette  and cheat 
sheet to get started. 

 

Base Plotting 

As demonstrated in the previous lesson's plots of geometry, the sf package provides 
a plot() method for visualizing geographic data. Plotting the object itself will 
produce a grid of faceted plots, one for each attribute. Choosing a variable produces 
a single map. 
 
This plot demonstrates how quick and easy plotting base maps can be, but there are 
reasons why this default choropleth may not be an effective visualization. Hopefully, 
by the end of this lesson, it will be clear why and what other types of visualization 
may be more effective in this case. 
 

 

 
23 

https://github.com/riatelab/cartography
https://cran.r-project.org/web/packages/cartography/vignettes/cartography.html
https://raw.githubusercontent.com/riatelab/cartography/master/img/cheat_sheet.png
https://raw.githubusercontent.com/riatelab/cartography/master/img/cheat_sheet.png
https://atlan.com/courses/introduction-to-gis-r/lesson2-manipulating-geospatial-data/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

Thematic Maps (tmap) 

The tmap package from Martijn Tennekes has been a standard-bearer for mapping 
in R for some time. As the name "thematic" suggests, it's especially well-suited for 
choropleths, but it can produce a wide range of geospatial visualizations. 
 
It brings a ggplot2-style syntax tailored to geospatial data. Like ggplot2, it 
emphasizes sequentially adding layers to a plot. You can pass a spatial dataframe to 
the tm_shape() function much like you'd pass a dataframe to the ggplot() function. 
 
Moreover, because spatial dataframes in the sf package are also dataframes, you 
can filter out any particular features (like "Andaman & Nicobar Islands" below) and 
directly proceed with piping the object into a tm_shape() chain. 
 

LEARN MORE: 

Guides to tweaking other aspects of the map can be found in the 
documentation, which includes a number of tutorials and vignettes. 

 

 
24 

https://github.com/mtennekes/tmap
https://github.com/mtennekes/tmap


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
After filtering out union territories, the choropleth below maps India’s GDP density, a 
measure of economic activity by area. Measured here in units of nominal GDP per 
square kilometer, GDP density has no clear midpoint, and so it requires a sequential 
color scale as opposed to a diverging or categorical color scale. 
 

 

 
 

 
25 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

LEARN MORE: 

There is a great deal of theory and advice about using color in data 
visualization, including maps. Wilke’s book in particular has excellent 
chapters on color scales and color pitfalls. 

 

Arranging tmap Objects 

tmap also has a helpful function, tmap_arrange(), for lining up multiple tmap 
objects next to each other. 
 
For example, if we filter out the small union territories to get a fairer distribution, we 
can separately create tmap objects of population growth and density. Then we can 
arrange them next to each other for comparison. 
 
Like GDP density, values like population growth and population density are 
standardized data, and so they are well-suited for a choropleth. 
 

 

 
26 

https://serialmentor.com/dataviz/color-basics.html
https://serialmentor.com/dataviz/color-pitfalls.html


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 
 

LEARN MORE: 

Axis Maps’ cartography guide directly addresses the question of 
standardizing data with respect to geospatial data. 

 

Inset Maps 

tmap is also particularly useful for creating inset maps , those that include a small 
window providing the wider geographic context for the main map. 
 
The first step is creating a base or primary map. We have done this for sex ratio in 
Northeast India. 
 

 
27 

https://www.axismaps.com/guide/data/standardizing-data/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

NOTE: 

One trick from tmap_tricks() is reversing the color scale by placing a - in 
front of the palette name. This makes sense because our concern should 
increase as sex ratio decreases. 

 

 

 
 
Next, we created the smaller inset map, which will provide the wider geographic 
context. For the small map, we wanted to highlight the Northeast region on the larger 
map of India. 
 
In order to do this, we first grouped the features by region. Using the same dplyr 
syntax, we can reduce the 36 features to 8 regions. 
 
These 8 regional features have a geometry reflecting the "sum" of their individual 
sub-components. It is quite interesting that this kind of geometric operation can be 
done so easily by using st_unify() behind the scenes. 
 

 

 
28 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 
Once we have a base map and an inset map, we can combine them with the 
following syntax, using some trial and error to get the placement right. 
 

 

 

Faceted Maps 

tmap also supports the creation of faceted maps, or small multiples. They can be 
useful for attributes with a fairly small number of levels. For instance, if we have 
population data for a few years, we could show a progression over time. In this case, 
region is a useful variable for faceting. Splitting up a map by region can sometimes 
highlight contrasts better than looking at one image of the entire area. 

 
29 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
 
The free.coords argument controls whether to show only the faceted map area or 
instead highlight the facet’s place in the original map. 
 
There is no inherent order to regions, but it's useful to impose one. Below we've 
ordered the facets in a roughly counter-clockwise order starting from "Northern". To 
do this, it helps to first make region an ordered factor. 
 
It's also important to pay attention to the nature of the distribution before making any 
plot. In India, per capita GDP is highly skewed because of outliers like Goa and 
Delhi. If you map this data on a linear scale, most states may end up the same color. 
This will conceal important differences in the bulk of the data. 
 
If you have highly skewed data, it may be helpful to perform a logarithmic 
transformation. This should add greater color differentiation in the map, though the 
legend may require more careful interpretation because the color bins aren't of equal 
width. 
 

LEARN MORE: 

For more information about statistical transformations in the context of data 
visualization, see Section 8.2  of Wilke's book. 

 

 

 

 
30 

https://serialmentor.com/dataviz/ecdf-qq.html


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 
 
In the example above, a log10() transformation has hopefully achieved a greater 
level of differentiation. You can, for instance, differentiate between the small bright 
yellow dots of Goa and Delhi, the blue of Uttar Pradesh and Jharkhand, the 
turquoise of Central India and Rajasthan, and the green of South India. 
 

 
31 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

NOTE: 

The free.coords() argument of tm_facets() is set to TRUE. If it was 
instead set to FALSE, the entire map of India would appear in each facet with 
the given region highlighted. 

 

Proportional Symbols Maps 

So far, all of our maps have been choropleths. This was convenient because our 
data was always standardized in some way — a density, percentage or ratio for 
example. Choropleths, however, are poorly suited to raw count data. When dealing 
with count data, such as population, a proportional symbols map can be more 
effective. 
 
Luckily, tmap is also well-suited to these types of visualizations. Here, a symbol 
(typically a circle) is drawn in proportion to the depicted variable on top of the original 
geography. We can use this kind of map to visualize both population and nominal 
GDP data. 
 

 

 
32 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 
 
The proportional symbols map retains the original geography, only obscured by the 
top layer of symbols. The symbols retain the correct spatial arrangement and are 
easy to interpret in relationship to each other. Still, judging the area of circles is more 
difficult than compared to a non-spatial representation, such as a barplot. 

geom_sf in ggplot2 

Hopefully these examples have demonstrated that tmap is a robust mapping tool. At 
the same time, the addition of geom_sf has made ggplot2 another attractive option. 
 
ggplot2 requires tidy data. Since spatial dataframes defined in the sf package are 
dataframes, it makes sense that we could expect to use ggplot2 to visualize sf 

 
33 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
objects. Recently, ggplot2 added support for sf objects with geom_sf(). The key 
advantage of geom_sf() is that tidyverse users are already familiar with ggplot2 
and its wider ecosystem of add-on packages. 
 
However, as this is a recent addition, you might expect a few bugs. For example, in 
the above faceted tmap object, setting free.coords = FALSE allowed for the entire 
object to be plotted in each facet. At this time, faceting an sf geom doesn't seem to 
allow setting scales = “free” to allow a similar outcome. 
 
Nevertheless, there are many benefits and cases where we can visualize sf objects 
with ggplot2. For instance, ggplot2 users will be familiar with the process of 
mapping data from dataframes to aesthetics, and layering additional dataframes on 
top of a plot. That same workflow holds for plotting sf objects. 
 
In the plot below, we want to add only the state name "Kerala" to the map. We could 
have done it with the annotate() function, but instead we created an sf object (also 
a dataframe) holding only the feature we wanted to annotate (Kerala). 
 
In order to do this successfully, however, we first need to find the geographic center 
of Kerala to know the point from which to draw the label. Geometric operations like 
calculating centroids, buffers and distance require a projected CRS as opposed to a 
geographic CRS, and so we've done so below using st_transform(). 
 
With a geographic CRS, st_centroid() does produce a result, but it produces a 
warning that "st_centroid doesn't give correct centroids for longitude/latitude data" 
because it assumes attributes are constant over geometries. The distance between 
longitudes, however, changes based on its given latitude. (Think of the distance 
between longitudes at the equator vs. at the North Pole.) 
 
The question then becomes choosing an appropriate projected CRS. Viewing 
crs_data = rgdal::make_EPSG() shows thousands of options. We also searched 
for "India" at EPSG.io . Ultimately we chose a CRS with EPSG code 24343, which 
notes "# Kalianpur 1975 / UTM zone 43N" since UTM zone 43N covers Kerala. (You 
might also find Projection Wizard useful.) 
 
Using this CRS, we were able to use st_transform() to project both sf objects 
onto the same projected CRS. Once that was done, we could add the Kerala label 
using geom_text_repel() like we'd normally do in ggplot2. 
 

 
34 

https://epsg.io/
http://projectionwizard.org/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 
35 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

Dot Density Maps 

Proportional symbols maps are not the only option for raw count data. A dot density 
map can be an effective tool to spatially visualize count data, particularly when your 
goal is to find clusters and regional patterns instead of exact data values. 
 
Below we've created a dot density plot comparing rural and urban populations. To do 
this, first, we depart from a tidy data format and gather() urban and rural population 
data. Then we use the st_sample() function to draw sample points based on the 
respective urban and rural population data for each observation. 
 
This type of visualization would be much more effective if we had data at smaller 
levels of administration, such as districts. Instead, because we are sampling at the 
state level, our dots will be placed in locations counter to the actual population 
density. For example, Maharashtra’s urban population will be randomly spread 
throughout the state instead of clustering in metros like Mumbai. Nevertheless, it's 
still useful to see how such a map can be created. 
 

 
36 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 

 
37 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 
While we can't see population clusters around metros, we can still see relatively 
sparsely populated areas (Jammu & Kashmir and the Northeast), the extremely 
dense rural belt of Uttar Pradesh and Bihar, and the relatively more urban South 
India. 
 
Moreover, as we'll see in the next lesson, this is one example of a visualization 
where adding interactivity — specifically, the ability to separately plot urban and rural 
data — can be a real benefit. 
 

LEARN MORE: 

For more details on generating dot density plots in R, see these excellent 
blogs from Tarak and Paul Campbell. 

 

Partially Spatial Static Representations 

At the beginning of this lesson, we discussed how a choropleth can misrepresent 
data if there are large differences between the area of an observational unit (e.g. a 

 
38 

https://atlan.com/courses/introduction-to-gis-r/lesson4-animated-interactive-maps/
https://tarakc02.github.io/dot-density/
https://www.cultureofinsight.com/blog/2018/05/02/2018-04-08-multivariate-dot-density-maps-in-r-with-sf-ggplot2/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
state) and its population. When data is only partially spatial, a map may not always 
the best visualization, depending on your objectives. 
 
If you don't need a fully spatial representation of your data, there are other 
visualization options that communicate some spatial aspects of the data, but diverge 
in some aspect or another. Examples include cartograms, hexbin maps and 
geofaceted plots. 

Cartograms 

In a cartogram , we maintain the overall geospatial nature of an object, but distort 
the area of each observational unit so that each unit is scaled proportional to some 
chosen variable. 
 
Nominal GDP is a useful variable to demonstrate this relationship. For example, in 
relation to its very small geographic area, Delhi’s contribution to India’s GDP is very 
high. A traditional choropleth (shown on the left) fails to make this distinction. Using a 
cartogram (shown on the right), we can distort a state’s geographic area to match its 
contribution to India’s GDP. 
 

 
 

39 

https://en.wikipedia.org/wiki/Cartogram


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 
 
While still maintaining the overall geographic structure of India, we can vividly see 
which states shrink or expand when distorting geographic area by the size of 
nominal GDP. (For the same reasons discussed above, we need to use a projected 
CRS rather than a geographic one.) 
 
Above we created a continuous cartogram with the cartogram_cont() function. 
However, as shown below, we could have also just as easily chosen a 
non-continuous area cartogram using cartogram_ncont(), which would introduce 
separation between states, or a Dorling cartogram using cartogram_dorling(), 
which would represent each state as a circle. 
 

 

 
40 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 
 

 
41 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
Given that cartograms are already distorting the actual geographic shapes, it's often 
not necessary to keep one continuous unit. In such cases, a non-continuous 
cartogram may be preferable. Alternatively, we can go even more abstract and 
replace all geographic shapes with a simple circle, scaled to the parameter of 
interest. 
 

NOTE: 

The Dorling cartogram is essentially the proportional symbols map without 
the underlying map. 

 

Hexbin Maps 

Similar to a Dorling cartogram, a hexbin map  also replaces exact spatial boundaries 
with a rough spatial arrangement. However, instead of mapping the variable of 
interest to size, it's mapped to color. 
 
Hexbin grids for the United States and a few other countries are well established, but 
geogrid is a new package under development that tries to generate automatic 
hexbin grids given any set of geospatial polygons. Although the package lets you 
generate a number of possible grids and select the best option, we had trouble 
generating a map that adequately placed certain states, the Northeast and 
non-contiguous territories in particular. 
 
Nevertheless, the hexbin map below gives a sense of why reducing geospatial 
polygons to a hexagon can be more useful, in certain cases, than the original 
geometry. 
 

 

 
42 

https://github.com/jbaileyh/geogrid


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 
 
The downside of this visualization is that it gives equal area to all states. Tiny union 
territories are represented by the same area as Uttar Pradesh. However, if we 
understand that context in advance, this can be a useful visualization if we only want 
a distribution of per capita GDP across states, regardless of population or area. 
 

 
43 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

NOTE: 

The package’s README documents the process for generating geogrids 
using an sp class, but it's even simpler for an sf object (as shown above). 

 
 

Geofaceted Plots 

Similar to a hexbin map, a geofaceted plot  sacrifices exact spatial characteristics in 
favor of a loose spatial arrangement. It strongly prioritizes accurate presentation of 
the attribute data at obvious cost to the geospatial representation. 
 
The geofacet package makes it easy to design a custom grid and use it to facet 
data across the grid. 
 

 

 
44 

https://github.com/jbaileyh/geogrid
https://hafen.github.io/geofacet/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 
Although it doesn't look much like an Indian state map anymore, this visualization 
does vividly communicate the vast differences in urban and rural populations across 
states. It also highlights how the choice of visualization affects our interpretation. 
 

NOTE: 

The dot density map created above comes from the exact same data. 

 

 
45 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

Final Thoughts 
With the help of packages tmap, ggplot2, cartogram, geogrid and geofacet, this 
lesson has introduced some of the most common methods for creating various kinds 
of static geospatial visualizations in R, such as choropleths, dot density maps and 
cartograms. 
 
Interested in going beyond static maps and exploring the world of animated or 
interactive maps? Check out the next lesson in this course. 
 
 

 
 
 
 
 
  

 
46 

https://atlan.com/courses/introduction-to-gis-r/lesson3-static-maps/


 
 
This lesson was written by Sean Angiolillo and was last updated on 29 Jan. 2019. 
 
Now that we've completed an overview of static mapping in R in the previous lesson, 
let’s explore how to create animated and interactive maps. We'll then conclude by 
creating a Shiny app to show the potential of visualizing geospatial data through 
interactive web applications in R. 
 
Adding animation or interaction to a static map creates opportunities for stories and 
experiences that are not otherwise possible in a static world. Despite this power, it’s 
important to introduce these elements in the right circumstances. Animated and 
interactive maps both demand a higher level of attention from the user; without this, 
the visualization won't be as clear or meaningful. 

Animated Maps 

Animated maps are particularly well-suited for spatio-temporal data as they can 
show change of a variable over time, but they certainly have other uses as well. 
 
This lesson introduces two methods for making animated maps: animated tmaps and 
the gganimate package. We’ll also need the packages and objects from the 
previous lesson. 
 

 
 

 
47 

https://atlan.com/courses/introduction-to-gis-r/lesson3-static-maps/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

Animation with tmap 

Perhaps the simplest way to create basic animated maps is through a slight 
modification to a faceted tmap plot. Simply change the tm_facets() argument by to 
along. (ImageMagick is required.) Then, providing the generated output to the 
tmap_animation() function loops each faceted plot into a gif or mpeg animation. 
You can specify further details like the delay of each frame and the output 
dimensions. 
 
We can see an example of how this works by turning the earlier faceted plot of per 
capita GDP by region into an animated gif. Instead of showing all facets at once in a 
grid, we've looped each image into a gif, displaying them one at a time. 
 

 
 

48 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 

Animation with gganimate 

For more robust animations (not only geospatial), look to the recently rewritten 
gganimate package from Thomas Lin Pedersen. The package allows not just for 
looping of facets but also a huge array of possibilities. This leads to some really 
creative plots, as found in the package’s wiki . 
 

LEARN MORE: 

Check out Pedersen's theory on establishing a grammar of animation in a 
useR keynote here . 

 

 
Let's mimic an example that Pederson used in his keynote. After binding together 
transformed data sets into one object, we can achieve the animation below with just 
one additional line to our plot: transition_states(), which mimics 

 
49 

https://github.com/thomasp85/gganimate
https://github.com/thomasp85/gganimate/wiki
https://www.youtube.com/watch?v=21ZWDrTukEs
https://gist.github.com/thomasp85/c36ab5cfe387dec9d5e99a85a776bfa0


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
ggplot2::facet_wrap() by splitting the data into multiple panels, tweening 
between defined states and pausing at each state for a specified period. 
 
Instead of visualizing per capita GDP as the previous animation did, let’s visualize 
nominal GDP. Each frame may not be the most effective visualization, but animating 
them together is certainly attention-grabbing. 
 

 

 
50 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

Interactive Maps 

Interactive maps have perhaps even greater storytelling potential than animations as 
they allow the user, in some respects, to create their own narrative. Certain features, 
such as panning and zooming, allow a level of freedom just not possible with a static 
or even animated map. 
 
Nevertheless, it's important to be careful to only use them when necessary. An 
interactive map requires a higher level of attention from the user than a static or an 
animated map. The users must interact with the visualization! If they don't (or not in 
the way intended), then what the map’s designer was trying to communicate is lost.  
That's why it's important to think about what you're trying to achieve and why a static 
(or even animated) map isn't sufficient. 
 
If you need interaction, there are many levels of interaction to consider. In the case 
of choropleths, often a simple tooltip with the exact value the color represents can 
add value. But, of course, interaction can accomplish much more. For example, we 
can change base maps to plot different kinds of geography. We can let users select 

 
51 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
and filter their own data to be plotted. Users can also modify other aspects of a plot, 
such as the color scheme or statistical transformations. Interactive maps also give 
users opportunities for brushing and linking. Based on user input or selection, we 
can design a reaction in another view. These are just a few of the possibilities, and 
so it's important to think carefully about what you actually need. 
 
This section introduces the ggiraph package, tmap’s view mode, mapview, 
leaflet, and plotly. 

Interactivity with ggiraph 

Let’s start simple. In some cases, we may only want to add a minimal amount of 
interactivity (such as a hover or tooltip effect). In that case, we could turn to the 
plotly or ggiraph packages. 
 
The plotly package is a popular choice for adding interactivity to ggplot2 plots. 
The ggplotly() function handles geospatial data in the same way as non-spatial 
data. You might, however, find this strategy to be a bit of a hassle, often introducing 
slight distortions, when you're only after a simple tooltip on hover. However, its more 
advanced features (discussed later) are quite useful. 
 
For simple interactivity, you might try the ggiraph package from David Gohel. The 
basic idea is to pass ggplot() an interactive geom in place of a traditional geom. In 
the case of maps, this means using geom_sf_interactive() instead of geom_sf(). 
After specifying additional arguments like tooltip, onclick and data_id, simply 
call ggiraph on the saved gg object. 
 
The code below adds a simple tooltip that includes state name and sex ratio when 
hovering over the previous sex ratio map. 
 

 

 
52 

https://davidgohel.github.io/ggiraph/index.html


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 
Click here to view the interactive map in a separate window. 

 
53 

https://s3.amazonaws.com/gis-blog-website/gis_map/my_ggiraph.html


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

Interactive tmaps 

One of the strongest reasons to add interactivity to a static map is the ability to layer 
geospatial data (such as points or polygons) on top of base maps that depict 
physical or human geography. Perhaps the easiest way to achieve this advantage is 
by plotting tmap objects in tmap’s "view" mode. 
 
By default, tmap_mode() is set to "plot", but changing this argument to "view" can 
make any tmap object an interactive plot. This option builds on top of Leaflet, which 
we'll cover below. 
 
Alternatively, it's possible to convert tmap objects to Leaflet objects via the 
tmap_leaflet() function. This interactivity also applies to tmap_arrange objects, 
which is nice for having side-by-side interactive maps. 
 
However, interactive tmap objects, particularly arranged tmap objects, seem to be 
difficult to modify after creation. For instance, the tooltip took the first column by 
default, so we edited the first column to include the tooltip we wanted. Legends also 
seemed difficult to move from the top right for some reason. Because of small issues 
like this, you might be better off directly building in Leaflet for more polished projects. 
 

 

 
54 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
Click here to view the interactive map in a separate window. 

 

Interactivity with mapview 

Another package for interactive viewing of spatial data is mapview. It too is built on 
top of Leaflet. Its primary role is to create quick interactive geospatial visualizations, 
rather than presentation-quality visualizations — but its functionality may be growing. 
If we wanted to quickly compare a number of choropleths for different variables, it 
could be a good option. 
 

 

 
55 

https://s3.amazonaws.com/gis-blog-website/gis_map/my_tmap.html
https://r-spatial.github.io/mapview/index.html


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
Click here to view the interactive map in a separate window. 

 

NOTE: 

Select one data layer at a time to view the correct choropleth. 

 

Interactivity with Leaflet 

Both mapview and the interactive mode of tmap rely on Leaflet under the hood. 
Eventually, you'll likely want to build directly in Leaflet. 
 
Leaflet is a Javascript library for interactive maps. An R wrapper package of the 
same name from RStudio has made it very easy to create Leaflet maps in R. The 
leaflet package has a rich array of features including fully interactive panning and 
zooming, maps built from customizable tiles, and plotted layers and groups of 

 
56 

https://s3.amazonaws.com/gis-blog-website/gis_map/my_mapview.html
https://rstudio.github.io/leaflet/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
markers, polygons and popups. It is also very easy to embed Leaflet map widgets 
into RMarkdown documents, web pages or Shiny apps. 
 
One of the key advantages of Leaflet is the ability to draw on a huge range of map 
tiles (which might include roads or natural features) that can lie underneath your data 
set. Moreover, if you want to represent layers of spatial data, for instance as points 
on top of polygons, then Leaflet is there for you. 
 
The ability to interact with layers of spatial data comes in handy for enhancing our 
earlier dot density map of rural and urban population. To address the overplotting of 
dots, it can be useful to toggle between urban and rural populations, as shown 
below. 
 
In order to achieve this effect in Leaflet, we first need to use the st_cast() function 
to convert our earlier multi-points into individual points because Leaflet doesn't 
support multi-point objects at this time. We also need to transform the projected CRS 
to a geographic CRS (longitude and latitude coordinates) for plotting in Leaflet. Then 
we establish each respective layer as a "group". Remember, here one dot equals 
one lakh (100,000) people. 
 

 

 
57 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 
Click here to view the interactive map in a separate window. 

 
58 

https://s3.amazonaws.com/gis-blog-website/gis_map/my_leaf.html


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

Interactivity with plotly 

Like Leaflet, plotly is an R wrapper package for a JavaScript visualization API — in 
this case, it's the plot.ly JavaScript library. plotly is another robust and 
well-documented option for adding interactivity to any kind of plot. 
 

LEARN MORE: 

In addition to the official documentation, there are a number of excellent 
resources for plotting geospatial data with plotly. 
 

● There is now a cookbook-style handbook, which includes a dedicated 
section for maps. 

● This blog post explores improving ggplotly() conversions for maps. 

● This blog post covers visualizing geospatial data with sf and plotly. 

 
Using plotly syntax, we can easily construct interactive choropleths similar to the 
one we created with ggiraph. Here is one for population density. 
 

 

 
59 

https://plot.ly/r/
http://plotly-book.cpsievert.me/index.html
http://plotly-book.cpsievert.me/maps.html
https://blog.cpsievert.me/2018/01/30/learning-improving-ggplotly-geom-sf/
https://blog.cpsievert.me/2018/03/30/visualizing-geo-spatial-data-with-sf-and-plotly/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
Click here to view the interactive map in a separate window. 

 
Beyond simple choropleths, plotly really shines at more complex levels of 
interaction, implementing effects more commonly reserved for Shiny apps. Like 
Leaflet, plotly can also take advantage of customizable base map tiles via the 
plot_mapbox() function. 
 

NOTE: 

Using the plot_mapbox() function will require setting up a public access 
Mapbox token. 

 

 
plotly can also be used for brushing and linking views. Brushing  refers to 
subsetting data based on some kind of user input like a box selection. This user 
selection is then linked to a part of the visualization, which reacts to the selection. 
 

 
60 

https://s3.amazonaws.com/gis-blog-website/gis_map/my_plotly.html
https://infovis-wiki.net/wiki/Linking_and_Brushing


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
For example, we can design visualizations with multiple views that interact with each 
other. The crosstalk package lets HTML widgets share data and "talk" to each 
other. Taking advantage of the crosstalk package, plotly is able to "link views". 
The crosstalk::bscols() function arranges HTML elements or widgets in 
Bootstrap columns. This allows for persistent or generalized selection across 
elements. 
 
Below, after creating a SharedData object and specifying region as a key 
argument, we can make selections on a map that generate changes in a data table. 
This is still a fairly simple effect, but it demonstrates a kind of linking framework only 
possible with interactive maps. 
 
Click anywhere on the map to see the table filter by region. 
 

 

 
61 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
Click here to view the interactive map in a separate window. 

 
We can even aggregate brush selections into a "persistent selection". For instance, 
we can examine the distribution of a variable like sex ratio in a histogram; then select 
points at the low or high end of the distribution, and watch the map highlight which 
states fall into the selected bin(s). 
 

 

 
62 

https://s3.amazonaws.com/gis-blog-website/gis_map/my_crosstalk.html


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
Click here to view the interactive map in a separate window. 

 
There may be simpler ways to more effectively communicate this data, but it helped 
us get an idea of what is possible with plotly. 

Mapping Applications in Shiny 

These approaches for creating interactive maps can be quite powerful, but they do 
have their limitations. The interactive maps shown above allow some degree of user 
interactivity, but the code is ultimately static and so the user interface is largely fixed. 
While packages like plotly can be used for linking views, there are better ways to 
achieve high levels of interaction between maps and plots. 
 
As shown in this gallery, there are now more than 100 registered HTML widgets for 
R. Communicating the full extent of their capabilities is often best done through a 
web application. In general, a complete application affords more possibilities that 
aren't possible with only the techniques above, such as downloading output after 
some kind of interaction. 
 
Building a complete web application is the final step for interactivity. Within R, Shiny 
is the way to achieve this. Shiny is an R package that makes it easy to build 
interactive web apps straight from R without any knowledge of web development 
languages like HTML, CSS or JavaScript. 
 

LEARN MORE: 

The Shiny documentation is the best place to get started. It includes a 
number of sample apps, articles, and webinars. Shiny also has a gallery of 
sophisticated and simple apps to learn and seek inspiration from. 

 
 

 

 
63 

https://s3.amazonaws.com/gis-blog-website/gis_map/my_crosstalk2.html
http://gallery.htmlwidgets.org/
https://shiny.rstudio.com/
https://shiny.rstudio.com/gallery/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

The Basics of Shiny Apps 

Essentially, Shiny apps have two parts: a front end and a back end. When creating a 
Shiny app, you can choose to build it as a single file (in which case, the front end 
and back end are housed in two functions, ui() and server()) or two files (in which 
case, the front end and back end are found in separate files, ui.R and server.R). 
 
ui.R controls the app’s appearance, while server.R contains the logic that 
transforms a list of user inputs, such as dropdown menus or radio buttons, into 
various kinds of outputs, like plots or tables. 
 
Beyond these minimum two files, larger projects often involve a few other important 
components. One is a separate data folder that holds all of the data read into the 
app. Another is a file, perhaps named global.R, that reads in data files, sets global 
variables, and contains functions to be used in server.R. 
 
Particularly as complexity increases, it's helpful to pare down the server.R file to 
only the reactive logic of Shiny. Setting variables, reading in data, and functions 
describing how to build objects can all be handled in a global.R file. Removing 
these elements allows you to better focus on the reactivity in server.R. 
 
Lastly, you might add a styles.css file for custom styling. I chose to add 
includeCSS(styles.css) inside the header tag within my ui.R file. This allowed 
us to override any of the app’s default styling in a separate file without distracting 
from the structure of ui.R. 
 

LEARN MORE: 

After you get a handle on these concepts, it can be helpful to view the code 
for mapping applications in Shiny. Examples include those found in the 
Leaflet documentation, Geocomputation with R, tmap , and the Shiny gallery 
itself. The Shiny documentation also includes an example of an interactive 
choropleth. Finally, this blog post is also aimed at beginners starting to learn 
Shiny and Leaflet. 

 

Example of a Geospatial Shiny App 

Leaflet is the most robust option for mapping in Shiny, especially when the data is 
truly geospatial. However, because our data set focuses more on attributes than 

 
64 

https://rstudio.github.io/leaflet/shiny.html
https://github.com/Robinlovelace/geocompr/blob/master/coffeeApp/app.R
https://github.com/mtennekes/tmap/blob/master/demo/tutorials/shiny_tmap.R
https://shiny.rstudio.com/gallery/superzip-example.html
https://shiny.rstudio.com/tutorial/written-tutorial/lesson5/
https://www.datascience.com/blog/beginners-guide-to-shiny-and-leaflet-for-interactive-mapping


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
geometry, we chose to explore different geospatial representations without the 
underlying base maps using a ggiraph object. 
 
In the Shiny app below, you can construct a choropleth of any variable in the data 
set for any subset of India’s regions. You can also compare how this choropleth 
changes across a number of geographic representations, such as cartograms and 
hexbin maps. Further, you can cross-check the data presented in the choropleth with 
its corresponding dotplot and table in the adjacent tabs. 
 
You can try the app out for yourself here. 
 

 
 

LEARN MORE: 

Check out Sean Angiolillo's R User Meetup talk and blog about how he built 
a much more complex Shiny app — an interactive data visualization of the 
1991-2011 Indian Census data depicting “Households Classified by Source 
and Location of Drinking Water and Availability of Electricity and Latrine”. 

 
The gif below also shows some of the visualizations the app can generate. 
 

 
65 

https://shiny.socialcops.com/indiastates/
https://shiny.socialcops.com/indiastates/
https://shiny.socialcops.com/indiastates/
https://humansofdata.atlan.com/2019/01/shiny-electricity-latrine-water-india/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 
As far as what Shiny is capable of, this app is still quite simple, but hopefully it 
demonstrates some of Shiny’s potential for communicating interesting geospatial 
data stories. 

Final Thoughts 

This lesson and the previous one together have only scratched the surface of R’s 
mapping capabilities. R is well-known for its visualization libraries, and this reputation 
holds for geospatial data as well. Whether you're creating static, animated or 
interactive maps, there's an R package ready to help you create high-quality 
visualizations. Just remember to keep in mind your objectives and goals for any 
visualization before designing either a static, animated or interactive map. 
 
 

 

 

 

 

 
66 

https://atlan.com/courses/introduction-to-gis-r/lesson4-animated-interactive-maps/


 

This lesson was written by Sean Angiolillo and was last updated on 29 Jan. 2019. 
 
So far in this GIS course, we've introduced the following ideas: 

 

● use cases for geospatial data 

● getting started with the sf package 

● manipulating attributes of geospatial data in a tidy workflow 

● visualizing geospatial data through a wide array of static, interactive and 

animated maps 

 

However, we've yet to really do anything useful with the actual geometry of our 

geospatial data. In this lesson, we'll introduce spatial subsetting, an important 

family of operations applicable to geospatial data. 

What Is Spatial Subsetting? 

We've seen how to manipulate sf spatial dataframes through their attributes, as we'd 

do with normal dataframes. For instance, with dplyr, we can filter a spatial 

dataframe to keep only observations that match certain factor levels or have a 

numeric variable above or below a certain threshold. Similarly, we can also filter 

observations using the geometry column of our geospatial data. 

 

As defined in Geocomputation with R, “Spatial subsetting is the process of selecting 

features of a spatial object based on whether or not they in some way relate in space 

to another object.” 

 

67 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

LEARN MORE: 

Chapter 4, "Spatial data operations", of Geocomputation with R is the place 
to start learning about spatial subsetting in R. 

 

 
To take an example using our previous data set of Indian states, we might wish to 
filter for only states that share a border with Delhi NCR. Or, rather than filtering by 
attributes like states or districts, we may only care about states or districts within a 
certain distance from a particular point. Spatial subsetting operations allow us to 
perform these kinds of manipulations. 

Topological Relations 

Many types of spatial subsetting operations are available at our fingertips. Different 
types of spatial relations are more formally called topological relations . The two 
examples given above describe different topological relations. The former is looking 
for a common border, or perhaps areas that "touch", whereas the latter is looking for 
areas "within" another area. 
 
As implemented in the sf package, you'll find these operations in functions like 
st_intersects(), st_disjoint(), st_within(), st_contains(), 
st_touches(), st_crosses() and more. The documentation for any of these 
functions includes the complete list. 
 
These functions require a pair of sf geometry sets — a target object and a selecting 
object. Before diving into the specific syntax, let’s first get a sense of how these 
relations are defined. 
 
The simplest is st_intersects() and its inverse st_disjoint(). Giving two sf 
objects to st_intersects() will return all observations that intersect with each 
other in any way. Conversely, st_disjoint() returns observations with no 
intersection. 
 
Another pair of operators is st_within() and st_contains(). Both of these 
operations return only observations that lie entirely within one object or another. The 
designation of "x" and "y" arguments determines whether st_within() or 
st_contains() is actually the operation you need. st_within() returns 
observations in "x" that fall entirely within "y". st_contains() returns observations 
in "x" that entirely contain "y". 

 
68 

https://geocompr.robinlovelace.net/spatial-operations.html


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

LEARN MORE: 

These relationships are much easier to understand with diagrams. GITTA 
has a useful introduction to topological relations, complete with Venn 
diagrams of each. More diagrams can also be found on Wikipedia. Another 
helpful resource is S Ogletree’s article, which uses toy data within R to look 
at the differences between relations. 

 

Preparing Data 

Before diving in to the syntax of spatial subsetting, we need some sample data. We'll 
use the tidycensus and tigris packages to download median household income 
data for the Philadelphia metro area at the census tract level. 
 

NOTE: 

In the US Census hierarchy, census tracts are below counties and above 
block groups. See Kyle Walker’s tigris slides for more information. 

 
 

LEARN MORE: 

The documentation is a good way to get started with Kyle Walker’s 
tidycensus and tigris packages. Note that you'll need to get an API key 
from the Census Bureau. 

 

 
 

69 

http://www.gitta.info/SpatialQueries/en/html/TopoBasedOps_learningObject1.html
https://en.wikipedia.org/wiki/DE-9IM
https://rpubs.com/sogletr/sf-ops
https://walkerke.github.io/tigris-webinar/#6
https://walkerke.github.io/tidycensus/articles/spatial-data.html


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
The tigris package does have a core_based_statistical_areas() function for 
downloading shapefiles of metro areas, but instead we'll start with a table of counties 
covering our area of interest. Then we'll demonstrate how to get a more narrow 
geographic area through spatial subsetting. 
 

 

 
 

We now have 1,186 census tracts covering the Philadelphia metropolitan area. This 
is a larger area than we want to cover so we'll spatially subset this data set to a 

 
70 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
smaller area based on distance from a central point of interest, in this case 
Philadelphia’s City Hall. 
 
Before we can do this, however, it's important to pay attention to the coordinate 
reference system (CRS) of our geospatial data. The commands below show that the 
data has a geographic CRS with EPSG code 4269. 

 

 

 

 

 
 
In order to use spatial subsetting operations, we need to reproject our data from a 
geographic CRS to a projected CRS. In this case, we’ve chosen to use EPSG code 
2272. 
 

 

 
 
 

 
71 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

LEARN MORE: 

For more information on coordinate reference systems, see Chapter 2  and 
Chapter 6 of Geocomputation with R. 

 

 
Now that we have projected census tracts, we'll define a circle and use it as the 
second geometry feature set by which we'll subset the census tracts. 
 

 

 
 

As shown in the map below, with these two simple feature geometry sets in the 
same projected CRS, we are ready to spatially subset. 
 

 
72 

https://geocompr.robinlovelace.net/spatial-class.html
https://geocompr.robinlovelace.net/reproj-geo-data.html


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

Spatial Subsetting Syntax 

In R, there are often multiple ways to achieve the same result. For subsetting, we 
have a base R method using the square bracket [ and a tidyverse method using 
filter(). Spatial subsetting is no exception — both options are available within the 
sf package. 
 
The syntax is remarkably simple with the square bracket method. It's very similar to 
bracket subsetting of a dataframe. But inside the square bracket, where a logical 
expression would filter rows, you just need to place the selecting simple feature 
geometry (i.e. a spatial dataframe, sfc_POLYGON, etc). 
 
In the example below, we subset the original 1,186 census tracts by those that 
intersect the circle we defined. The result is a new sf spatial dataframe with 617 
observations. 
 

 

 
73 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 
By default, st_intersects() is the unspoken topological operator when using the 
square bracket for spatial subsetting. Setting the "op" argument allows us to choose 
any topological relation instead of the default st_intersects. In the example below, 
we’ve chosen st_disjoint(). 
 

NOTE: 

The 617 observations returned from the intersection plus the 569 
observations returned from st_disjoint() sum to the original 1,186 tracts. 

 

 

 

 
 
A second method of spatial subsetting involves creating an intermediary object of the 
class "sparse geometry binary predicate" (sgbp), which is essentially a list of 
matching indices we can use to subset the target object. Under this method, rather 
than setting an "op" argument, we use a different topological operator beginning with 
st_*. 
 

 
74 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
Moreover, we have the option of returning a sparse or a dense matrix , which 
slightly affects the syntax as shown below. This method fits more easily into a tidy 
workflow, as evidenced by the use of dplyr. 
 

 
 
Regardless of which method you choose, all three methods should return the same 
number of observations in a spatial dataframe of the same CRS. 
 
To give one example of this tidy workflow, note below how we can start with our 
original spatial dataframe, perform a spatial subset (in this case st_within), and 
directly pipe the result into ggplot2. As we'd expect, the result is a much smaller 
and more circular shape, fitting just inside the boundaries of our circle. 
 

 

 
75 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

Explore Spatial Subsetting via Shiny 

While seeing the syntax and a few diagrams can be useful, it's even better to 
practice with different operations and quickly see the results. This Shiny app  will let 
you quickly explore spatial subsetting through different topological relations. 
 

 
 

76 

https://shiny.socialcops.com/spatialsubset/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
 
It shows the same map of census tracts for the Philadelphia metropolitan area. After 
choosing a topological relation, you can position a circle of any size over the map of 
census tracts and click to perform a spatial subset. 
 
After a click, you'll see several results: 
 

● The syntax of the given spatial subset, in both square bracket and dense 
matrix methods, appears in the right-hand panel. 

● The histogram for the selection is plotted against the original distribution of 
census tracts. 

● The choropleth color scale and legend adjusts to the selection’s domain. This 
can be used to reveal more detailed variation within a region. For example, 
income levels vary widely between wealthier suburbs and core urban areas in 
the Philadelphia metro region. Spatially subsetting a smaller, more 
homogenous geographic area can show new patterns. 

Final Thoughts 

With this lesson and the Shiny apps as tools, you've hopefully learned: 
 

● the concept of spatial subsetting and when it may be useful 

● differences in topological relations 

● multiple ways to spatially subset your own data 
 
Hopefully, now you are well on your way to becoming as comfortable spatially 
subsetting your data as if it were simply attribute data. 
 
Keep reading for one final lesson on how to explore satellite images, one of the best 
forms of geospatial data today! 
 
 

 
 
  

 
77 

https://atlan.com/courses/introduction-to-gis-r/lesson5-spatial-subsetting/


 
 

This lesson was written by Himanshu Sikaria and was last updated on 29 Jan. 2019. 

 
In the previous lessons, we talked about how to handle basic geospatial data — any 
data with a geographic component. Our previous examples used data sets with 
several economic indicators for each Indian state. 
 
However, there's a more complex form of geospatial data — raster images, which is 
data captured by satellites orbiting the Earth. Raster images can be far more difficult 
to find and process, but their high level of detail and frequent updates make them 
incredibly valuable for analysis. 
 
This lesson focuses on the basics of raster images — what they are, where to get 
them, how to extract and process them, and what basic operations and analysis you 
can do on them. We'll illustrate all of this by examining satellite data for a rural region 
of Karnataka, a state in south India. 

The Basics of Rasters 

Imagine if you had the power to click images of any location on Earth from space. 
Today, thanks to satellites, we do. 
 
A raster file  is an image of the Earth, which is geotagged. (That means that we can 
find the exact location of any of raster image on the world map.) Like any other 
image, raster images are made up of cells (pixels), and each cell has a value 
associated with it. 
 

 
78 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

LEARN MORE: 

Looking for more information about raster images? This blog  by ArcGIS 
explains raster images perfectly, and these flashcards explain the jargon of 
raster imagery. 

 
 

Raster Attributes 

Every raster scene has various attributes, or parameters. These can be accessed by 
@ — for example, rastername@extent. 
 
Here are some attributes you should know: 

1. class: There are three options — RasterLayer, RasterStack or RasterBrick. A 
RasterLayer object represents single-layer (variable) raster data. A 
RasterStack is a collection of RasterLayer objects with the same spatial 
extent and resolution. A RasterBrick is truly a multilayered object, and 
processing a RasterBrick can be more efficient than processing a 
RasterStack. 

2. resolution: The size of each cell (or pixel) that makes up the entire image. 
This value is in degrees for the example below (1 degree ~ 110 kms). 

3. extent: The latitude and longitude of the image's top right point and bottom 
left point. 

4. coord. ref.: This is the current raster file's projection. The Earth is a sphere, 
and it needs to be projected to be converted to 2D. 

5. values: The minimum and maximum values among all the cells in the raster. 
 

LEARN MORE: 

Learn more about geographic projections with this video  from Vox. 

 
 

 
79 

http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/what-is-raster-data.htm
https://quizlet.com/45074366/basics-of-raster-data-flash-cards/
https://www.youtube.com/watch?v=kIID5FDi2JQ


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

The "Hello World" of Rasters 

 

 

 

 

 

 
80 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

Exploring Karnataka and the Impact of 
Droughts 
Let’s get started with raster data in R by exploring Landsat 8 data for Karnataka, a 
state in south India. 

What Is Landsat 8? 

Landsat  is without a doubt one of the best sources of free satellite data today. 
Managed by NASA and the United States Geological Survey, the Landsat satellites 
have been capturing multi-spectral imagery for over 40 years. 
 
The latest satellite, Landsat 8 , orbits the Earth every 16 days and captures more 
than 700 satellite images per day across 9 spectral bands and 2 thermal bands. Its 
imagery has been used for everything from finding drought-prone areas and 
monitoring coastal erosion to analyzing an area’s fire probability and setting the best 
routes for electricity lines. 
 
Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) 
images consist of nine spectral bands. Bands 1 to 7 and 9 have a spatial resolution 
of 30 meters, Band 8 (panchromatic) is 15 meters, and Bands 10 and 11 are 100 
meters. The ultra blue Band 1 is useful for coastal and aerosol studies. Band 9 is 
useful for cirrus cloud detection. Thermal Bands 10 and 11 are useful for providing 
more accurate surface temperatures. 
 

 
Table from USGS 

 
81 

https://www.usgs.gov/media/images/landsat-8-band-designations


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
USGS gives free, public access to both its raw and processed satellite images. Raw 
images are available on AWS S3 and Google Cloud Storage, where they can be 
downloaded immediately. Processed images are available with the EROS Science 
Processing Architecture (ESPA). Images are also available through a variety of data 
products, such as SR (Surface Reflectance), TOA (Top of Atmosphere) and BR 
(Brightness Temperature). 
 
Accessing the processed Landsat 8 data can be tricky. There are two different APIs 
— one by Development Seed for searching (called sat-api ) and one by USGS for 
downloading (called espa-api). Download requests have to include the product ID, 
projection, and format of the data, then they must be approved by USGS, which can 
take anywhere from a couple minutes to a couple days. To make matters worse, the 
APIs input and output data with different structures. 
 

LEARN MORE: 

New to Landsat 8 data? Here's lots more information to get you started: 
 

● Read about the Landsat Collection (Pre-Collection and Collection 1) 
here . 

● Watch this video  to understand the difference between the data on 
ESPA and AWS S3/Google Cloud Storage, and why using ESPA is 
preferred over AWS’s Digital Numbers (DN). 

● Watch a video on how Landsat data is captured here . 

● Read about over 120 applications of Landsat 8 data here . 

 

Downloading Raster Images from the Landsat 
Satellite 

Our open-source package rLandsat can be used to easily download the latest 
Landsat raster images — no Python or API knowledge needed! (You can read more 
about rLandsat here .) 
 
Landsat divides the entire earth into grids, each with a unique row and path. This tool 
from USGS can be used to convert a latitude and longitude to a path and row. 
 

 
82 

https://landsat.usgs.gov/landsat-collections
https://www.youtube.com/watch?v=R5_XHqlNDc4
https://www.youtube.com/watch?v=xBhorGs8uy8
http://grindgis.com/blog/120-landsat-data-applications
https://blog.atlan.com/announcements/announcing-rlandsat-landsat-8-data/
https://landsat.usgs.gov/wrs-2-pathrow-latitudelongitude-converter


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
A part of Karnataka that had a major drought lies in path 145 and row 49. Let’s 
download the latest imagery for this grid using rLandsat functions. 
 

 
 

NOTE: 

To run any of the functions starting with espa_, you need valid login 
credentials from ESPA-LSRD , and you need to input them in your 
environment with espa_creds(username, password) (as above) for the 
functions to work properly. 

 
 

Reading the Files in R 

Once the download is complete and the TAR files extracted, there will be a GeoTIFF 
file for each Landsat band. Each band represents the light reflected at different 
frequencies. Bands 2, 3 and 4 represent the light visible to the human eye. 

 
83 

https://espa.cr.usgs.gov/


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
The next step is to load the rasters to R using the raster library. The file size of 
rasters are generally huge (one Landsat tile has about 60 million pixels), so the 
raster library doesn't load the entire data to memory; only when required, the 
functions call the values and processes them in chunks. As a result, the raster 
library saves every intermediate variable in the temp folder. 
 

LEARN MORE: 

Read detailed information about the raster library in its CRAN 
documentation. 

 

 
First, let’s try to load the data for different bands in R using the raster library, and 
then we'll plot any one of them. To read a single raster image, we can use the 
raster() function. To read a stack (multiple) of rasters at once, we can use the 
stack() function. Printing the raster/stack file will give brief information about the 
raster. 
 

 

 

 

 
84 

https://cran.r-project.org/web/packages/raster/vignettes/Raster.pdf
https://cran.r-project.org/web/packages/raster/vignettes/Raster.pdf


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

Plotting a Raster Image 

Plotting a single band's raster is simple — just use the plot function. We can also 
modify the color range of the plot using the col parameter. 
 

 

 

Plotting a Stack of Raster Images 

A RasterLayer is a single band raster file, which means that each pixel in the raster 
has a single value attached to it. We can create a RasterStack by combining 
different RasterLayers. This would assign multiple values to a single pixel. 

 
85 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 
Plotting a RasterStack with the visible bands gives an image of exactly how the 
human eye would see this piece of Earth from space. 
 

 

 

 
86 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

Cropping Raster Images 

As you can see, this Landsat scene covers a lot of area, and it's difficult to actually 
get insights from it. Let's try to crop the scene to only the east region for more clarity. 
 
The upper-left and bottom-right coordinates are specified in the extent() function. 
The RasterStack is passed to the crop() function with the specified extent to be 
cropped. 
 

 

 
87 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 

 

 

 
88 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 
 
In these images, we can clearly see the change in greenery over the years — 2014 
is the most green, and 2017 is the least. In fact, in 2017, Karnataka faced the worst 
drought in 42 years. 
 
In the next section, let’s see how we can quantify this change and check which 
regions were worst affected by the drought. 

Vegetation Quality In and Around the Region 

A combination of other bands can be super helpful too. If we combine infrared, red 
and green (Bands 5, 4 and 3), we can create a plot where the vegetation is red. The 
more vibrant the color, the healthier the crop. 
 

 

 
89 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 

 

 

 
90 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

Basic Operations 

Doing raster operations is easy — most of the time, it can be treated as a numeric 
vector. By doing basic algebraic operations on different bands, we can create indices 
that better explain the characteristics of the region. 
 
Let’s try to create one of the most extensively used indices from Landsat — NDVI 
(Normalized Difference Vegetation Index). NDVI is defined as (Band 5 - Band 
4)/(Band 5 + Band 4). 
 
Negative values of NDVI (values approaching -1) correspond to water. Values close 
to zero (-0.1 to 0.1) generally correspond to barren areas of rock, sand or snow. 
Low, positive values (approximately 0.2 to 0.4) represent shrub and grassland, while 
high positive values (values approaching 1) indicate temperate and tropical 
rainforests. 
 

LEARN MORE: 

This document from Landsat gives more information about NVDI and all the 
other spectral indices you can create using Landsat data. 

 
91 

https://landsat.usgs.gov/sites/default/files/documents/si_product_guide.pdf


Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 

 

 
92 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 

 

Which Regions Are Most Affected? 

With this data, we can quantify the exact change in NDVI and look for the most 
affected regions in this rural part of Karnataka. 
 

 
93 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

 

 

 

 
 
2017 was definitely a bad year with a massive decrease in NDVI, though 2018 
seems to be better with a positive NDVI change. 

 
94 



Introduction to GIS: Manipulating and Mapping Geospatial Data in R 
 
 

Final Thoughts 
The power of spatial data is immense, and this is just the beginning of the sort of 
work that you can do with satellite imagery. In this lesson, with a few basic 
operations and visualizations on freely available data, we analyzed how vegetation in 
Karnataka changed over time. With the same data and techniques, we can do more 
complex analysis and apply machine learning techniques to further classify land into 
different types. 
 
For example, at Atlan, we worked with Landsat 8 data in R to classify every piece of 
land in India into one of four categories: water, barren, green, or built-up regions. 
The results were really interesting — we could detect where and when new buildings 
and houses were being built, green regions turned into barren ones, and rivers dried 
up. 
 

 
Land classification for Karnataka. (Black is built-up, yellow is barren, blue is water, 

and green is green land.) 

 
Development in Karnataka. (Black is built-up, yellow is barren, and red is agricultural 

land.) 

 

 

 
95 

https://atlan.com/courses/introduction-to-gis-r/lesson6-raster-data/

