



Advances in GC/MS Technology: Improving Analytical Efficiency and Reducing Cost of Operation for Volatile and Semi-Volatile Organic Compound Analysis

Craig Marvin Environmental Industry Manager Agilent Technologies



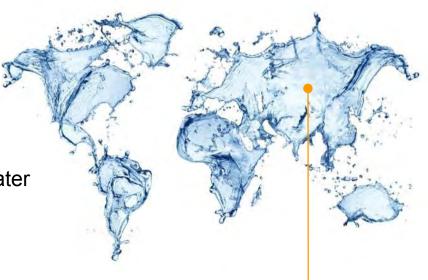
# Presentation Overview

### Topics

- Introduction and general market overview
- Introduction to the Model 5977B with High Efficiency Source (HES)
- Volatiles Organic Compounds (VOC) analysis by HSP/GC/MS HES
- Semi-Volatile Compounds (SVOCs) analysis by GC/MS HES
- Nitrosamines in Drinking Water by GC/MS/MS with HES






# Environmental issues in the headlines What's important?

### Each year worldwide

- Millions of acute/chronic respiratory illnesses
- Millions live without water sanitation
- Billions of dollars lost due to unsafe drinking water
- Thousands of plant/animal species threatened

## Why?

- Population growth: 7 billion people and counting
- New chemical pollutants identified
- Clean air/water a lower priority than food/jobs/energy
- Natural/man-made catastrophes



### Opportunity

The demand for new applications is growing quickly – especially in the areas of potable water and water reuse



# Core Environmental Monitoring Applications Demand for lower MRLs drives method update



## Pharmaceutical and personal care products (PPCP)

• LC/MS/MS: low nanogram per liter or parts per trillion (ppt) levels



## **Pesticides/endocrine disrupters**

- Quantification of known pesticides
- Identification/quantification of new pesticides and metabolites



## Volatile and semi-volatile hydrocarbons

• Conformity with global regulators for continuous monitoring



## **Industrial contaminants (perchlorates)**

• Sensitive detection for drinking and surface water testing

#### The challenge

Increase speed and sensitivity while decreasing cost

> Environmental Market Overview July 7, 2016



# Emerging Environmental Monitoring Applications New targets lead to new or updated regulations



### **Nanoparticles**

• Fate of organic and metallic nanomaterials in the environment



## Hormones in water

 Identify and quantitate compounds and metabolites which affect marine organism physiology



# Persistent toxic pollutants

Monitoring trace-level residues in abiotic and biotic materials



## **Disinfection by-products**

 Balancing the benefits of disinfection (microbial control) with potential risks



## **Trace inorganics**

Identify and quantitate metals and non-metallic elements



## **Perfluorinated chemicals**

 Selective and specific analysis of trace-level residues

|   |   |   | - | - | _ |    |
|---|---|---|---|---|---|----|
| - | - |   |   | - |   |    |
|   |   |   |   |   | - | 10 |
| - |   | - |   |   | _ |    |
|   | _ | - |   | _ | _ |    |
|   |   |   |   |   |   |    |
|   |   |   |   | - | _ |    |
| - |   | _ |   | - | - |    |
|   |   |   |   | _ |   |    |
|   |   |   |   |   | - |    |
|   |   |   |   |   |   | 12 |

## Indoor air testing

 Fast screening for solvents, paints, and other volatile organics in buildings and vehicle cabins



## **Non-targeted screening**

 Identification of trace level "unknowns" in environmental matrices



# Volatiles Analysis





# Environmental Monitoring Requirements Volatiles Analysis

#### Overview

- Volatile organic analysis (VOA) monitors compounds with a wide range of boiling points
- Requires particularly challenging sample extraction
- Response factors for the many potential analytes vary widely.

#### **Project Scope**

- Survey select compounds of environmental interest as an indication of what may be achieved with the new 5977B GC/MSD in this approach.
- Determine if High Efficiency Source increases ion current created that may lead to improvement in sensitivity and significant improvements in detection limits for VOC targets.
- Determine overall stability of the analysis through replicate injection of local tap water to monitor some naturally occurring compounds.

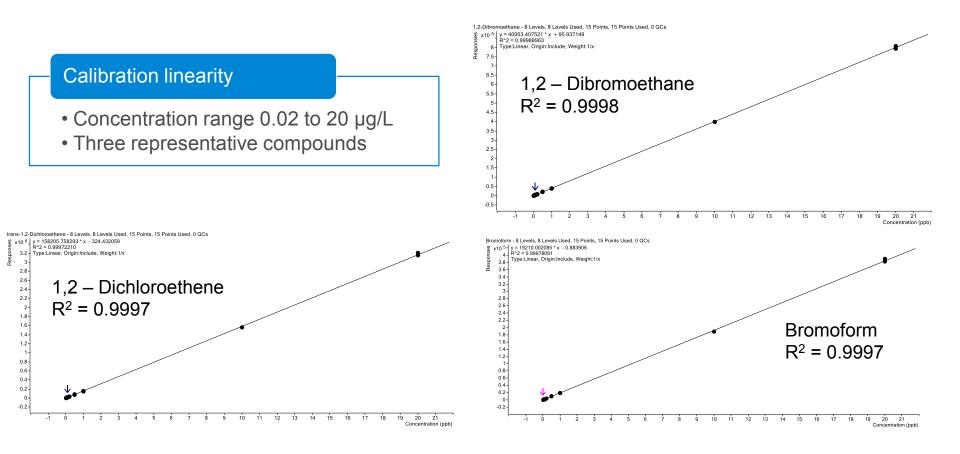


## Experimental Design: Volatiles Analysis Headspace Sample Preparation: 7890B GC and 5977B MSD HES

## **Overview of Analytical Conditions**

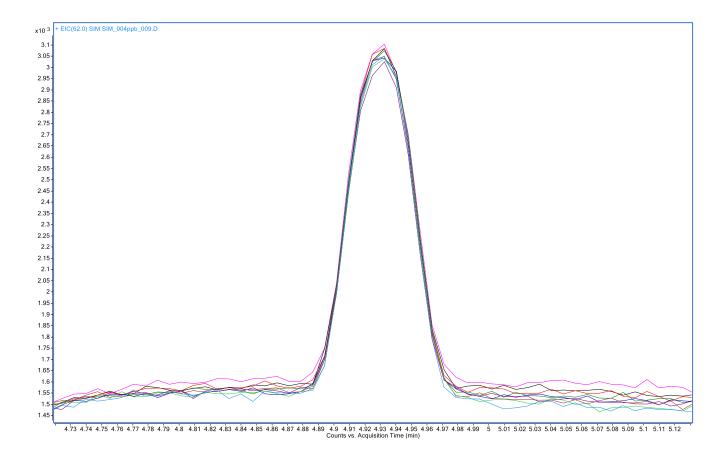
- Standards
  - 10 mL water spiked with 48 compounds at 0.02 20  $\mu\text{g/L}$
- Injection
  - Split mode using a 15:1 split
- GC Column
- Dimensions: 60 m x 0.25 mm id x 1.4  $\mu m$  with a 6% cyanopropylphenyl phase
- Oven Ramp
  - 32°C to 220°C
- Source and Quadrupole
  - Temperatures: 300°C and 150°C, respectively
  - Detector gain was 3
  - Tune: Autotune
- MDL Calculations and Sample Analysis
  - Nine replicate injections
  - $\bullet$  MDLs were calculated using 0.04  $\mu\text{g/L}$  standard.
  - Tap water samples were injected 20 times, consecutively




## Operating Parameters: Volatiles Analysis Headspace Sample Preparation: 7890B GC and 5977B MSD HES

|                             | Headspace Parameters      | Agilent 7697A Headspace Sampler  |
|-----------------------------|---------------------------|----------------------------------|
| <sup>r</sup> ument Settings | Loop Size                 | 1 mL                             |
|                             | Transfer Line Type        | Fused Silica, deactivated,       |
|                             |                           | (PN 160-2535-5)                  |
|                             | Transfer Line Diameter    | 0.53 mm                          |
|                             | HSS-GC coupling           | Transfer Line Interface (G3520A) |
|                             | Carrier Control           | GC Instrument                    |
|                             | Pressurization gas        | Helium                           |
|                             | Vial standby flow         | 20ml/min                         |
| perature Settings           | Oven Temperature          | 75 °C                            |
|                             | Loop Temperature          | 75 °C                            |
|                             | Transfer Line Temperature | 110 °C                           |
|                             | Transfer Line Interface   | 115 °C                           |
| ng Settings                 | Vial Equilibration Time   | 12 min                           |
|                             | Injection Duration        | 0.3 min                          |
|                             | GC Cycle Time             | 30 min                           |
| and Loop Settings           | Vial Size                 | 20 mL                            |
|                             | Vial Shaking              | Level 7                          |
|                             | Fill Pressure             | 10 psi                           |
|                             | Fill Time                 | 0.2 min                          |
|                             | Loop Ramp Rate            | 20 psi/min                       |
|                             | Loop Final Pressure       | 7 psi                            |
|                             | Loop Equilibration Time   | 0.01 min                         |
|                             | Post Injection Purge      | 100 ml/min for 2 min             |
|                             | Leak Check                | Default 0.2 ml/min               |
|                             |                           |                                  |

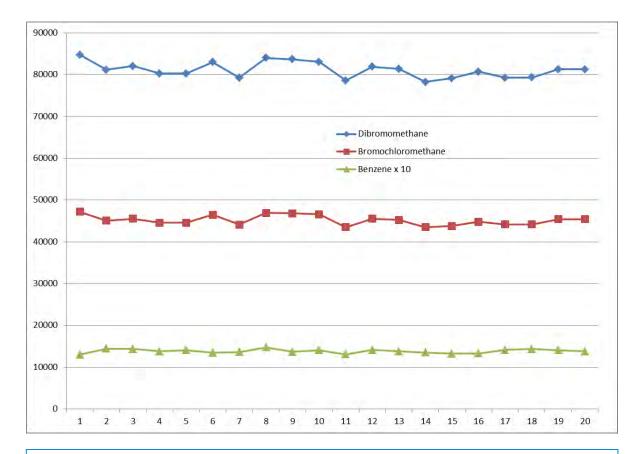
| Gas Chromatograph Parameters       | Agilent 7890B GC                        |
|------------------------------------|-----------------------------------------|
| Inlet Type                         | Split/Splitless Inlet (SSL)             |
| Mode                               | Split                                   |
| Inlet Liner                        | Straight, 2mm ID 250 μl (PN 5181-8818)  |
| Heater                             | 125°C                                   |
| Column Flow                        | 1.5 ml/min constant flow                |
| Total Flow                         | 25 mL/min                               |
| Septum Purge Flow                  | 1.0 ml/min                              |
| Gas Saver                          | OFF                                     |
| Split Ratio                        | 15:1                                    |
| Split Flow                         | 22.5 ml/min                             |
| Column                             | Agilent VF-624 MS                       |
| Column Dimensions                  | 60 m x 0.25 mm x 1.4 μm                 |
| Equilibration Time                 | 0.25 min                                |
| Temperature Program                | 32°C (2 min), 12°C/min to 220°C (5 min) |
| Mass Selectice Detector Parameters | Agilent 5977B                           |
| Source Type                        | High Efficiency Source (HES EI)         |
| Source Temperature                 | 300°C                                   |
| Quad Temperature                   | 150°C                                   |
| Transfer Line Temperature          | 280°C                                   |
| Tune File                          | HES Auto Tune (HES_Atune.u)             |
| Acquisition Type                   | SIM                                     |
| Solvent Delay                      | 2 Q5 min                                |




## Linearity: Volatiles Analysis Headspace Sample Preparation: 7890B GC and 5977B MSD HES






## Reproducibility: Volatiles Analysis Headspace Sample Preparation: 7890B GC and 5977B MSD HES



Overlay of nine extracted ion chromatograms (EIC), which shows stability obtained in the case of vinyl chloride, a particularly challenging analyte.



## Linearity: Volatiles Analysis in Tap Water Headspace Sample Preparation: 7890B GC and 5977B MSD HES



Response over 20 injections of incurred dibromomethane (blue), bromochloromethane (red) and benzene, multiplied by 10 (green), in local tap water.



## MDL: Volatiles Analysis Headspace Sample Preparation: 7890B GC and 5977B MSD HES

|                                                                                                           | Name                      | RT     | Quant<br>Ion | MDL   | Name                        | RT     | Quant<br>Ion | MDL   |
|-----------------------------------------------------------------------------------------------------------|---------------------------|--------|--------------|-------|-----------------------------|--------|--------------|-------|
|                                                                                                           | Vinyl chloride            | 4.934  | 62           | 0.004 | 1,2-Dibromoethane           | 13.427 | 106.9        | 0.006 |
|                                                                                                           | Bromomethane              | 5.611  | 93.9         | 0.003 | Chlorobenzene               | 13.969 | 112          | 0.015 |
|                                                                                                           | Chloroethane              | 5.806  | 64           | 0.003 | Ethylbenzene                | 14.03  | 91           | 0.014 |
| MDL study                                                                                                 | 1,1-Dichloroethene        | 7.007  | 95.9         | 0.008 | 1,1,1,2-Tetrachloroethane   | 14.049 | 130.9        | 0.005 |
|                                                                                                           | trans-1,2-Dichloroethene  | 8.007  | 95.9         | 0.009 | o-Xylene                    | 14.664 | 91           | 0.018 |
| Nine replicate injections                                                                                 | 1,1-Dichloroethane        | 8.554  | 63           | 0.004 | Styrene                     | 14.683 | 104          | 0.015 |
| •Calculated using 0.04 µg/L standard.                                                                     | cis-1,2-Dichloroethene    | 9.19   | 95.9         | 0.011 | Bromoform                   | 14.975 | 170.8        | 0.006 |
| <ul> <li>All MDLs are below 0.025 µg/L or 25 ppt</li> <li>Two exceptions: which have MDLs ≤ 41</li> </ul> | 2,2-Dichloropropane       | 9.208  | 77           | 0.013 | 1,1,2,2-Tetrachloroethane   | 15.45  | 82.9         | 0.041 |
| ppt.                                                                                                      | Bromochloromethane        | 9.47   | 127.8        | 0.004 | 1,2,3-Trichloropropane      | 15.567 | 110          | 0.007 |
|                                                                                                           | 1,1,1-Trichloroethane     | 9.769  | 96.9         | 0.005 | Bromobenzene                | 15.573 | 155.9        | 0.017 |
| Majority of MDLs below 0.015 µg/L                                                                         | 1,1-Dichloro-1-propene    | 9.921  | 75           | 0.012 | n-Propylbenzene             | 15.63  | 91           | 0.017 |
|                                                                                                           | Carbon tetrachloride      | 9.94   | 116.9        | 0.003 | 2-Chlorotoluene             | 15.768 | 91           | 0.016 |
| <ul> <li>including some compounds with</li> </ul>                                                         | Benzene * (blank issue)   | 10.165 | 78           | 0.009 | 1,3,5-Trimethylbenzene      | 15.84  | 105          | 0.018 |
| relatively low response.                                                                                  | 1,2-Dichloroethane        | 10.202 | 62           | 0.006 | 4-Chlorotoluene             | 15.914 | 91           | 0.018 |
|                                                                                                           | Trichloroethene           | 10.848 | 129.9        | 0.009 | tert-Butylbenzene           | 16.225 | 134          | 0.017 |
| Tap water samples                                                                                         | 1,2-Dichloropropane       | 11.165 | 63           | 0.005 | sec-Butylbenzene            | 16.499 | 105          | 0.016 |
|                                                                                                           | Dibromomethane            | 11.275 | 173.8        | 0.006 | 4-Isopropyltoluene          | 16.67  | 119          | 0.017 |
| <ul> <li>Injected 20 times, consecutively</li> </ul>                                                      | Bromodichloromethane      | 11.421 | 82.9         | 0.005 | 1,3-Dichlorobenzene         | 16.719 | 145.9        | 0.02  |
|                                                                                                           | cis-1,3-Dichloropropene   | 11.89  | 75           | 0.014 | 1,4-Dichlorobenzene         | 16.841 | 145.9        | 0.023 |
|                                                                                                           | trans-1,3-Dichloropropene | 12.506 | 75           | 0.013 | n-Butylbenzene              | 17.194 | 134          | 0.02  |
|                                                                                                           | 1,1,2-Trichloroethane     | 12.762 | 96.9         | 0.011 | 1,2-Dichlorobenzene         | 17.316 | 145.9        | 0.021 |
|                                                                                                           | Tetrachloroethene         | 12.884 | 163.8        | 0.009 | 1,2-Dibromo-3-chloropropane | 18.334 | 154.9        | 0.01  |



## Conclusions: Volatiles Analysis Headspace Sample Preparation: 7890B GC and 5977B MSD HES

### 5977B HES Performance

- Preliminary results suggest a significant improvement in detection limits is possible in VOA applications
- Signal improvement provided is not complicated by interferences, and results in clear enhancements in detection.
- Performance with Headspace addresses VOC applications not requiring Purge-and-Trap sample preconcentration



## Volatiles Analysis: Trichloroethylene Purge-and-Trap Sample Preparation: 7890B GC and 7010 HES





## Volatiles Analysis: 1,2 dichloro-Ethane Purge-and-Trap Sample Preparation: 7890B GC and 7010 HES

| ۲<br>۲                                                      | P 10.0 ug/L<br>Data File<br>03 ugL .D                                                       | Sample                                                                                                                                                                    | Type: <all></all>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                              | Compound: 辆                   |                                                                                                                                                                              |                                                                              |                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                      |                 |                          |                    |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|-----------------|--------------------------|--------------------|
| ۲<br>۲                                                      | Data File                                                                                   | Sample                                                                                                                                                                    | if per stats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                               |                                                                                                                                                                              | 🔻 📫 IST                                                                      | : 1,4 difluorober              | nzene                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                      |                 | Sample/Compound Gr       | roun: <all></all>  |
| ,<br>PI                                                     |                                                                                             |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2-dichl                                      |                               | hloro-Ethane Results                                                                                                                                                         |                                                                              | Qualifie 1.4 dif               |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                      |                 | + Sample, compound of    | o upri cranz       |
|                                                             | 03 ugL .D                                                                                   | Type Level Acq. Date-Tim                                                                                                                                                  | ne 🛆 Amt. Tot. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amt. Exp. Conc. RT                             | Resp. MI                      | Calc. Conc. Final Conc                                                                                                                                                       | c. Accuracy Ratio                                                            | Ratio RT                       | Resp. R                                                                                                                                                                                                                                                                                                                                                                                                                                             | atio    |                      |                 |                          |                    |
|                                                             |                                                                                             | Cal P1 4/16/2016 4:27 PN                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0300 6.15                                    |                               | 0.0304 0.0304                                                                                                                                                                |                                                                              | 31.7 6.611                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3     |                      |                 |                          |                    |
|                                                             | 075 ugL.D                                                                                   | Cal P2 4/16/2016 4:56 PN<br>Cal P3 4/16/2016 5:25 PN                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0750 6.15                                    |                               | 0.0748 0.0748 0.0748 0.1900 0.1900                                                                                                                                           |                                                                              | 23.4 6.611<br>25.4 6.611       | 1789483<br>1708177                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3     |                      |                 |                          |                    |
|                                                             | 02 ugL.D<br>05 ugL.D                                                                        | Cal P3 4/16/2016 5:25 PM<br>Cal P4 4/16/2016 5:54 PM                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5000 6.15                                    |                               | 0.1900 0.1900                                                                                                                                                                |                                                                              |                                | 1696320                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3     |                      |                 |                          |                    |
|                                                             | 1 ugL.D                                                                                     | Cal P5 4/16/2016 6:22 PM                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000 6.15                                    |                               | 0.9068 0.906                                                                                                                                                                 |                                                                              |                                | 1678855                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4     |                      |                 |                          |                    |
|                                                             |                                                                                             | Cal P6 4/16/2016 6:51 PN                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0000 6.15                                    |                               | 2.5875 2.5875                                                                                                                                                                |                                                                              | 25.4 6.611                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3     |                      |                 |                          |                    |
|                                                             | 10 ugL.D<br>30 ugL.D                                                                        | Cal P7 4/16/2016 7:20 PN<br>Cal P8 4/16/2016 7:49 PN                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.0000 6.15<br>30.0000 6.15                   |                               | 9.9305 9.930<br>34.5745 34.5745                                                                                                                                              |                                                                              | 25.6 6.611<br>26.1 6.611       | 1672165<br>1751605                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4     |                      |                 |                          |                    |
|                                                             |                                                                                             | Cal P9 4/16/2016 7:49 PM                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.0000 6.15                                  |                               | 34.5/45 34.5/45<br>98.5136 98.5136                                                                                                                                           |                                                                              |                                | 1/51605                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4     |                      |                 |                          |                    |
|                                                             | 200 ugL.D                                                                                   | Cal P10 4/16/2016 8:47 PM                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200.0000 6.15                                  |                               | 198.7622 198.7622                                                                                                                                                            |                                                                              |                                | 2185621                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3     |                      |                 |                          |                    |
|                                                             |                                                                                             | Cal P11 4/16/2016 9:15 PN                                                                                                                                                 | 4 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300.0000 6.15                                  | 54 1379701 🗖                  | 293.6364 293.6364                                                                                                                                                            | 4 97.9 36.5                                                                  | 27.6 6.611                     | 2377040                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.2     |                      |                 |                          |                    |
|                                                             |                                                                                             |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                               |                                                                                                                                                                              |                                                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                      |                 |                          |                    |
| ound Ir                                                     | nformation                                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                               |                                                                                                                                                                              |                                                                              | • ×                            | Calibration Cur                                                                                                                                                                                                                                                                                                                                                                                                                                     | ve      |                      |                 |                          |                    |
| -                                                           | nformation                                                                                  | <u>北五人</u> 日日 1 日 1 日                                                                                                                                                     | <u>È</u> 1 12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                | <u>▲ A  </u> 1                |                                                                                                                                                                              |                                                                              | <b>~</b> ×                     | Calibration Cur                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Type: Quadrati       | c 💌 (           | Origin: Ign 🛩 Weight: 1/ | × V ISTD QQ        |
| ] ↔<br>JgL.D 1                                              |                                                                                             | P 10 0 ug/l 62                                                                                                                                                            | 0 64 0 49 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                               | + Scan (6.109-6.246 min,                                                                                                                                                     |                                                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * 🔹 🛃 🖬 | and the state of the | tate 0 Detate ( |                          | x <b>v</b> 15TD QC |
| ] ↔<br>gL.D 1<br>0 <sup>2</sup> -                           |                                                                                             | P 10 0 ug/l 62                                                                                                                                                            | 0 64 0 49 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                               | + Scan (6.109-6.246 min,                                                                                                                                                     | 41 scans) P 10 ugL D<br>78.0                                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * 🔹 🛃 🖬 | and the state of the | tate 0 Detate ( |                          | K TISTO QC         |
| GL.D 1<br>0 2 -<br>0.8 -                                    |                                                                                             | P 10 0 ug/l 62                                                                                                                                                            | 0 64 0 49 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                               |                                                                                                                                                                              | 78.0                                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * 🔹 🛃 🖬 | and the state of the | tate 0 Detate ( |                          | x 🔻 ISTD Q(        |
| GL.D 1<br>0 2 -<br>0.8 -<br>0.6 -                           |                                                                                             | P 10 0 ug/l 62                                                                                                                                                            | 0 64 0 49 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                               | + Scan (6.109-6.246 min,                                                                                                                                                     | 78.0                                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * 🔹 🖬 🖬 | and the state of the | tate 0 Detate ( |                          | x 💌 15TD QQ        |
| gL.D 1<br>0 2 -<br>0.8 -<br>0.6 -<br>0.4 -                  |                                                                                             | P 10 0 ug/l 62                                                                                                                                                            | 0 64 0 49 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                               | + Scan (6.109-6.246 min,<br>을 x10 <sup>7 -</sup><br>3 - 62.0                                                                                                                 | 78.0                                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * 🔹 🖬 🖬 | and the state of the | tate 0 Detate ( |                          | < ISTO QC          |
| gL.D 1<br>0 2 -<br>0.8 -<br>0.6 -<br>0.4 -                  |                                                                                             | P 10 0 ug/l 62                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                               | + Scan (6.109-6.246 min,<br>************************************                                                                                                             | 78.0                                                                         |                                | 1,2-dichloro-Et<br>S x10 1 y =<br>R <sup>2</sup> 2<br>S 5.5- Typ<br>C 5-<br>-4tpag<br>4.5-<br>-4tpag<br>4-                                                                                                                                                                                                                                                                                                                                          | *       | and the state of the | tate 0 Detate ( |                          | <  ISTD QC         |
| gL.D 1<br>0 2 -<br>0.8 -<br>0.6 -<br>0.4 -<br>0.2 -         | 1,2-dichloro-Ethan<br>Name                                                                  | P 100 ug/L<br>RT-5 154 2.653E+006<br>1.2-d Ploto-Ethane<br>1 6.15 6/2 6.25 6/3                                                                                            | 0 , 64.0 , 49.0<br>x10 <sup>2</sup>   Ratio = 32.9 (9<br>1   Ratio = 25.6 (8<br>0.8   0.4   0.4   0.2   0.4   0.2   0.4   0.2   0.4   0.2   0.4   0.2   0.4   0.2   0.4   0.2   0.4   0.2   0.4   0.2   0.4   0.2   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4 | 94.5 %)<br>86.5 %)<br>5 6.1 6.15 6.2           | 6.25 6.3                      | + Scan (6.109-6.246 min,<br>2 3- 62.0<br>2 -<br>1 - 51.0<br>0                                                                                                                | 78.0 97.9                                                                    | 0 120 130 '                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * 🔹 🖬 🖬 | and the state of the | tate 0 Detate ( |                          | x V ISTD QC        |
| GL.D 1<br>0 2 -<br>0.8 -<br>0.6 -<br>0.4 -<br>0.2 -<br>0 -  | 1,2-dichloro-Ethan<br>Name                                                                  | P 10.0 ug/L<br>RT-5,154 2.653E+006<br>1.2-d folloro-Ethane<br>1 6.15 6.2 6.25 6.3<br>Acquisition Time (min)                                                               | 0 . 64.0 . 49.0<br>x10 <sup>2</sup> Ratio = 32.9 (9<br>1 Ratio = 25.6 (8<br>0.6<br>0.6<br>0.4<br>0.2<br>0<br>6 6.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94.5 %)<br>86.5 %)<br>5 6.1 6.15 6.2           | 6.25 6.3<br>sition Time (min) | + Scan (6.109-6.246 min.<br>2 x10 7<br>2 -<br>1 -<br>51.0<br>0 -<br>40 50 60                                                                                                 | 78.0<br>97.9<br>70 80 90 100 1<br>Mass                                       |                                | 1.2-dichloro-El<br>sx 10 <sup>-1</sup> y =<br>xx 10 <sup>-1</sup> y =<br>R <sup>-2</sup><br>S.5-<br>y<br>4.5-<br>4-<br>3.5-<br>3-                                                                                                                                                                                                                                                                                                                   | * 🔹 🖬 🖬 | and the state of the | tate 0 Detate ( |                          | × 💌 15TD QC        |
| gL.D 1<br>0 2 -<br>0.8 -<br>0.6 -<br>0.4 -<br>0.2 -<br>0 -  | 1,2-dichloro-Ethan<br>Name                                                                  | P 100 ug/L<br>RT-\$154 2.653E+006<br>1.2-0 Chloro-Ethane<br>1.615 6/2 6/25 6/3<br>Acquisition Time (min)<br>P 10.0 ug/L<br>111                                            | 0.64.0,49.0<br>x10 <sup>2</sup> Ratio = 32.9 (9<br>1 Ratio = 25.6 (8<br>0.8<br>0.6<br>0.4<br>0.2<br>0<br>0<br>6 6.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94.5 %)<br>86.5 %)<br>5 6.1 6.15 6.2<br>Acquie | 6.25 6.3<br>sition Time (min) | + Scan (6.109-6.246 min,<br>2<br>3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                          | 78.0<br>78.0<br>70.80 97.9<br>70.80 90 100 1<br>Mass<br>40 scans) P 10 ugL D | 0 120 130 +<br>to-Charge (m/z) | 1.2-dichloro-Et<br>ss: x101 y=<br>ss: x101 y=<br>y=<br>y=<br>y=<br>y=<br>y=<br>y=<br>y=<br>y=<br>y=<br>y=<br>y=<br>y=<br>y                                                                                                                                                                                                                                                                                                                          | * 🔹 🖬 🖬 | and the state of the | tate 0 Detate ( |                          | x 🔹 15TD QC        |
| gL.D 1<br>0 2 -<br>0.8 -<br>0.6 -<br>0.4 -<br>0.2 -<br>0 -  | ★     A     ▲       1,2-dichloro-Ethan       Name       6     6.05       1,4 difluorobenzen | P 100 ug/L<br>RT-5 154 2.653E+006<br>1.2-d Ploto-Ethane<br>1.6-15 6'2 6.25 6'3<br>Acquisition Time (min)<br>P 100 ug/L<br>RT-5 61 9.604E+005                              | 0 . 64.0 . 49.0<br>x10 <sup>2</sup> Ratio = 32.9 (9<br>1 Ratio = 25.6 (8<br>0.6<br>0.6<br>0.4<br>0.2<br>0<br>6 6.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94.5 %)<br>86.5 %)<br>5 6.1 6.15 6.2<br>Acquie | 6.25 6.3<br>sition Time (min) | + Scan (6.109-6.246 min,<br>2<br>3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                          | 78.0<br>78.0<br>70.80 97.9<br>70.80 90 100 1<br>Mass<br>40 scans) P 10 ugL D | 0 120 130 '                    | 1.2-dichloro-Et<br>ss:x101 y=<br>ss:x101 y=<br>x45-<br>dex.tpg<br>4-<br>3.5-<br>3-<br>2.5-<br>2-                                                                                                                                                                                                                                                                                                                                                    | * 🔹 🖬 🖬 | and the state of the | tate 0 Detate ( |                          | x 💌 15TD QC        |
| ygL.D 1<br>0 2 -<br>0.8 -<br>0.6 -<br>0.4 -<br>0.2 -<br>0 - |                                                                                             | P 100 ug/L<br>RT-5 154 2.653E+006<br>1.2-d Ploto-Ethane<br>1.6-15 6'2 6.25 6'3<br>Acquisition Time (min)<br>P 100 ug/L<br>RT-5 61 9.604E+005                              | 0,64,0,49,0<br>x10 <sup>2</sup> Ratio = 32.9 (9<br>1 Ratio = 25.6 (8<br>0.6<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94.5 %)<br>86.5 %)<br>5 6.1 6.15 6.2<br>Acquie | 6.25 6.3<br>sition Time (min) | + Scan (6.109-6.246 min,<br>21 x10 7<br>3 - 62.0<br>2 - 1 - 51.0<br>40 50 60<br>+ Scan (6.570-6.703 min,<br>8 x10 7<br>9 x10 7<br>10 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 78.0<br>78.0<br>70.80 97.9<br>70.80 90 100 1<br>Mass<br>40 scans) P 10 ugL D | 0 120 130 +<br>to-Charge (m/z) | 1.2-dichloro-Et<br>ss:t101 y=<br>ss:t101 y=<br>so:t101 y=<br>y=<br>2005set<br>5-<br>3-<br>3-<br>2.5-                                                                                                                                                                                                                                                                                                                                                | * 🔹 🖬 🖬 | and the state of the | tate 0 Detate ( |                          | <  ISTD QC         |
| gL.D 1<br>02-<br>0.8-<br>0.6-<br>0.4-<br>0.2-<br>0-<br>0-   |                                                                                             | P 100 ug/L<br>RT-5 154 2.653E+006<br>1.2-d Ploto-Ethane<br>1.6-15 6'2 6.25 6'3<br>Acquisition Time (min)<br>P 100 ug/L<br>RT-5 61 9.604E+005                              | 0.64.0,49.0<br>x10 <sup>2</sup> Ratio = 32.9 (9<br>1 Ratio = 25.6 (8<br>0.8<br>0.6<br>0.4<br>0.2<br>0<br>0<br>6 6.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94.5 %)<br>86.5 %)<br>5 6.1 6.15 6.2<br>Acquie | 6.25 6.3<br>sition Time (min) | + Scan (6.109-6.246 min,<br>$s_{2}^{g} \times 10^{7}$<br>                                                                                                                    | 78.0<br>78.0<br>70.80 97.9<br>70.80 90 100 1<br>Mass<br>40 scans) P 10 ugL D | 0 120 130 +<br>to-Charge (m/z) | Image: 200 minipage         Y = 1           1.2-dichloro-Ei         %           2.5-         3-           2.5-         2-           1.5-         1- | * 🔹 🖬 🖬 | and the state of the | tate 0 Detate ( |                          | x 💌 15TD QC        |
| gL.D 1<br>02-<br>0.8-<br>0.6-<br>0.4-<br>0.2-<br>0-<br>0-   |                                                                                             | P 100 ug/L<br>RT-5 154 2.653E+006<br>1.2-d Ploto-Ethane<br>1.6-15 6'2 6.25 6'3<br>Acquisition Time (min)<br>P 100 ug/L<br>RT-5 61 9.604E+005                              | 0, 64 0, 49 0<br>x10 <sup>2</sup>   Ratio = 32.9 (9<br>1 Ratio = 25.6 (8<br>0.6<br>0.4<br>0.2<br>0.4<br>0.2<br>0.4<br>0.4<br>0.2<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.5 %)<br>86.5 %)<br>5 6.1 6.15 6.2<br>Acquie | 6.25 6.3<br>sition Time (min) | + Scan (6, 109-6, 246 min,                                                                                                                                                   | 78.0 97.9<br>97.9<br>70 80 90 100 1<br>40 scans) P 10 ugL D                  | 0 120 130 +<br>to-Charge (m/z) | 1.2-dichloro-Et<br>sstud to 1 y = 7<br>sstud to 5.5 - Typ<br>5.5 - Typ<br>4 -<br>3.5 -<br>3 -<br>2.5 -<br>1.5 -<br>1.5 -<br>1.5 -<br>1.5 -                                                                                                                                                                                                                                                                                                          | * 🔹 🖬 🖬 | and the state of the | tate 0 Detate ( |                          | x <b>1</b> 5TD Q4  |
| gL.D 1<br>0 2 -<br>0.8 -<br>0.6 -<br>0.4 -<br>0.2 -<br>0 -  |                                                                                             | P 10.0 ug/L<br>RT=5,154 2.653E+006<br>1.2-d folioro-Eithane<br>1 6-15 6-2 6-25 6-3<br>Acquisition Time (min)<br>P 10.0 ug/L<br>RT=5,611 9.604E+005<br>1.4 diffeorobenzene | 0, 640, 490<br>x10 <sup>2</sup>   Ratio = 32.9 (9<br>1 Ratio = 25.6 (8<br>0.8<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.5 %)<br>86.5 %)<br>5 6.1 6.15 6.2<br>Acquie | 6.25 6.3<br>sition Time (min) | + Scan (6.109-6.246 min,<br>$s_{2}^{g} \times 10^{7}$<br>                                                                                                                    | 78.0<br>97.9<br>70 80 90 100 1<br>Mass<br>40 scans) P 10 ugLD                | 0 120 130 +<br>to-Charge (m/z) | Image: 200 minipage         Y = 1           1.2-dichloro-Ei         %           2.5-         3-           2.5-         2-           1.5-         1- | * 🔹 🖬 🖬 | and the state of the | tate 0 Detate ( |                          | x 🔹 15TD QC        |



## Volatiles Analysis: 1,3-dichloro-Propane Purge-and-Trap Sample Preparation: 7890B GC and 7010 HES

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 📮 Analyze Batch 🗸 🕢 🛛 Layout: 🔙                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Restore Default L                 | ayout                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|------------------|-------------------------|-------------------|
| tch Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
| Sample: 👔 P 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/L 💌 J Sample                                                                                                                | ype: <all></all>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Ci                              | ompound: 🔄 1,3-dio                                                                        | chloro-Propane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>ISTD: 1,4 difluorob</li> </ul>                                                                                                 | enzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                | 1 😽 🕅                                            | 2 6 2            | Sample/Compound Gr      | roup: <all></all> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,3-dichl                         | 1,3-dichloro-Pr                                                                           | opane Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Qualifie 1,4 difluoroben                                                                                                                | z Qualifie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |                                                  |                  |                         |                   |
| 7 Data Fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                                                                           | Conc. Final Conc. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
| P 03 ugL .D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cal P1 4/16/2016 4:27 PM                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0300 8.818                      |                                                                                           | 0.0403 0.0403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 134.3 157.2 6.611 18934                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
| P 075 ugL.D<br>P 02 ugL.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cal P2 4/16/2016 4:56 PM<br>Cal P3 4/16/2016 5:25 PM                                                                           | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0750 8.832 0.2000 8.832         |                                                                                           | 0.0607 0.0607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.9 318.3 6.611 17894<br>97.7 288.3 6.611 17081                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
| P 02 ugL.D<br>P 05 ugL.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cal P3 4/16/2016 5:25 PM<br>Cal P4 4/16/2016 5:54 PM                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2000 8.832                      |                                                                                           | 0.5458 0.5458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.2 278.8 6.611 1/081                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
| P 1 ugL.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cal P5 4/16/2016 6:22 PM                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0000 8.832                      |                                                                                           | 0.8615 0.8615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86.2 312.0 6.611 16788                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
| P 3 ugL.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cal P6 4/16/2016 6:51 PM                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.0000 8.832                      | 269278 🗖 2                                                                                | 2.5770 2.5770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85.9 292.2 6.611 16593                                                                                                                  | 72 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                                                  |                  |                         |                   |
| P 10 ugL.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cal P7 4/16/2016 7:20 PM                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0000 8.835                     |                                                                                           | 9.5161 9.5161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95.2 309.2 6.611 16721                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
| P 30 ugL.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cal P8 4/16/2016 7:49 PM<br>Cal P9 4/16/2016 8:18 PM                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30.0000 8.835                     |                                                                                           | 5.7777 35.7777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119.3 306.0 6.611 17516<br>107.5 300.9 6.611 18812                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
| P 100 ugL.D<br>P 200 ugL.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cal P9 4/16/2016 8:18 PM<br>Cal P10 4/16/2016 8:47 PM                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0000 8.835<br>200.0000 8.835  |                                                                                           | 7.4538 107.4538<br>5.9951 206.9951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.5 300.9 6.611 18812<br>103.5 289.6 6.611 21856                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
| P 300 ugL.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cal P11 4/16/2016 9:15 PM                                                                                                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 300.0000 8.835                    |                                                                                           | 0.2964 280.2964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93.4 278.5 6.611 23770                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                  |                  |                         |                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • ×                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                | - 1                                              |                  |                         |                   |
| • + ‡ <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a a a a                           | ▲ A   ☆ A                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ‡ 🕴 💽 🖬                                                        | Type: Linear                                     |                  | Origin: L 💌 Weight: 1/x | ▼ ISTD Q          |
| ↔ ‡ <u>&amp;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o-Propane P 300 ug/L 78.0                                                                                                      | , 76.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | + Scan                                                                                    | (8.793-8.923 min, 39 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         | I,3-dichlore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🗘 🐥 🔚 🖬                                                        | , 8 Levels Used, 11 I                            |                  |                         | ▼ ISTD Q          |
| ↔ ‡ <u>&amp;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o-Propane P 300 ug/L<br>RT=8.835 2.584E+007                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | + Scan                                                                                    | (8.793-8.923 min, 39 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         | الالا الالالا<br>الالالالالالالالالالالالال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 1<br>01954                   |                  |                         | • ISTD Q          |
| ↔ ‡ <u>&amp;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o-Propane P 300 ug/L<br>RT=8.835 2.584E+007                                                                                    | 1, 76.0<br>(10 <sup>2</sup> ] Ratio = 278.5 (92<br>1-<br>0.8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | + Scan<br>왈 x10                                                                           | (8.793-8.923 min, 39 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         | الالا الالالا<br>الالالالالالالالالالالالال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *      *     *     Propane - 11 Levels     = 0.123586 * x + 0. | , 8 Levels Used, 11 1<br>01954                   |                  |                         | • ISTD Q          |
| ↔ ‡ <u>&amp;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o-Propane P 300 ug/L<br>RT=8.835 2.584E+007                                                                                    | . 76.0<br>10 <sup>2</sup> Ratio = 278.5 (92<br>1-<br>0.8-<br>0.6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | + Scan<br>욑 x10<br>이                                                                      | (8.793-8.923 min, 39 s<br>8-76.0<br>5-<br>4-<br>3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | scans) P 300 ugL D<br>165.8<br>128.9                                                                                                    | الالا الالالا<br>الالالالالالالالالالالالال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 1<br>01954                   |                  |                         | • ISTD Q          |
| ↔ ‡ <u>&amp;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o-Propane P 300 ug/L<br>RT=8.835 2.584E+007                                                                                    | , 760<br>10 <sup>2</sup> Ratio = 278.5 (92<br>1-<br>0.8-<br>0.6-<br>0.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | + Scan<br>욑 x10<br>이                                                                      | (8.793-8.923 min, 39 s<br>8 76.0<br>5 76.0<br>4 76.0<br>3 76.0<br>4 76.0<br>5 76.0 | scans) P 300 ugL D<br>165.8<br>128.9                                                                                                    | الالا الالالا<br>الالالالالالالالالالالالال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 1<br>01954                   |                  |                         | • চচ ০            |
| ↔ ‡ <u>&amp;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o-Propane P 300 ug/L 78.0<br>RT=8.835 2.584E+007                                                                               | . 76.0<br>10 <sup>2</sup> Ratio = 278.5 (92<br>1-<br>0.8-<br>0.6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | + Scan<br>욑 x10<br>이                                                                      | (8.793-8.923 min, 39 e<br>8- 76.0<br>5-<br>4-<br>3-<br>2-<br>1- 49.0 93.9<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | scans) P 300 ugL D<br>165.8<br>128.9                                                                                                    | 1,3-dichlore<br>8 x10 1_<br>5 x10 1_<br>1.6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 1<br>01954                   |                  |                         | • ISTO Q          |
| ↔         ‡         ▲           ugL.D 1.3-dichlo         0.2         1.3-dichlo           0.2         0.6-         0.4-           0.4-         0.2-         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o-Propane P 300 ug/L<br>RT48.835 2.584E+007<br>Name=1.3-dichloro-Propane                                                       | , 760<br>10 <sup>2</sup> Ratio = 278.5 (92<br>1-<br>0.8-<br>0.6-<br>0.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (% 6                              | + Scan<br>욑 x10<br>이                                                                      | (8.793-8.923 min, 39 e<br>8-76.0<br>5-<br>4-<br>3-<br>2-<br>49.0<br>0-<br>49.0<br>1-<br>49.0<br>1-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | scans) P 300 ugL D<br>165.8<br>128.9                                                                                                    | الالا الالالا<br>الالالالالالالالالالالالال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 1<br>01954                   |                  |                         | ▼ ISTD Q          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c-Propane P 300 ugL<br>Name=1,3-diphloro-Propane<br>8,75 8/8 8,85 8/9 8,95 9<br>Acquisition Time (min)                         | . 76.0<br>10 <sup>2</sup> Ratio = 278.5 (92<br>1-<br>0.6-<br>0.4-<br>0.2-<br>0.4-<br>0.2-<br>0.4-<br>0.2-<br>0.5-<br>0.4-<br>0.5-<br>0.4-<br>0.5-<br>0.4-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.8 8.85 8.9                      | + Scan                                                                                    | (8.793-8.923 min, 39 e<br>8 76.0<br>5 4<br>4 -<br>2 49.0<br>1 49.0<br>40 60 80 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | scans) P 300 ugL.D<br>165.8<br>128.9<br>11.9<br>120 140 160 180 200 220<br>Mass-to-Charge (m/z)                                         | 1.3-dichlor<br>sex101<br>uodsat<br>1.6-<br>ax101<br>1.6-<br>ax101<br>1.6-<br>ax101<br>1.2-<br>1.2-<br>1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 1<br>01954                   |                  |                         | • ISTD Q          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o-Propane P 300 ug/L<br>RT48.835 2.584E+007<br>Name=1.3-diblioro-Propane<br>8.75 8/8 8.85 8/9 8.95 9<br>Acquisition Time (min) | , 760<br>10 <sup>2</sup><br>10 <sup>2</sup><br>10 <sup>3</sup><br>10 <sup>4</sup><br>10 | 9%)<br>8/8 8/85 8/9<br>Acquisitio | 8.95 9<br>an Time (min) + Scan                                                            | (8.793-8.923 min, 39 e<br>- 76.0<br>- 49.0<br>- 49.0 | scans) P 300 ugL D<br>165.8<br>11.9<br>11.9<br>126.9<br>13.9<br>140 160 180 200 220<br>Mass-to-Charge (m/z)<br>scans) P 300 ugL D       | 1,3-dichlor<br>8 ×10 1<br>0 0 0<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 1<br>01954                   |                  |                         | • ISTD Q          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o-Propane P 300 ug/L<br>RT48.835 2.584E+007<br>Name=1.3-diblioro-Propane<br>8.75 8/8 8.85 8/9 8.95 9<br>Acquisition Time (min) | , 760<br>10 <sup>2</sup><br>10 <sup>2</sup><br>10 <sup>3</sup><br>10 <sup>4</sup><br>10 | 9%)<br>8/8 8/85 8/9<br>Acquisitio | 8.95 9<br>an Time (min) + Scan                                                            | (8.793-8.923 min, 39 e<br>- 76.0<br>- 49.0<br>- 49.0 | scans) P 300 ugL.D<br>165.8<br>128.9<br>11.9<br>120 140 160 180 200 220<br>Mass-to-Charge (m/z)                                         | 1.3-dichlor<br>sex101<br>uodsat<br>1.6-<br>ax101<br>1.6-<br>ax101<br>1.6-<br>ax101<br>1.2-<br>1.2-<br>1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 1<br>01954                   |                  |                         | • ISTD Q          |
| 0 ugL D 1,3-dichlo<br>10 2<br>1-<br>0.8<br>0.6<br>0.4<br>0.2<br>0<br>8.65 8.7<br>0 ugl D 14 difluer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o-Propane P 300 ug/L<br>RT48.835 2.584E+007<br>Name=1.3-diblioro-Propane<br>8.75 8/8 8.85 8/9 8.95 9<br>Acquisition Time (min) | , 760<br>10 <sup>2</sup><br>10 <sup>2</sup><br>10 <sup>3</sup><br>10 <sup>4</sup><br>10 | 9%)<br>8/8 8/85 8/9<br>Acquisitio | 8.95 9<br>an Time (min)<br>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$       | (8.793-8.923 min, 39 e<br>a 76.0<br>5 4<br>4 -<br>2 49.0<br>1 49.0<br>1 40 60 80 100<br>(6.570-6.710 min, 42 e<br>7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | scans) P 300 ugL D<br>165.8<br>11.9<br>11.9<br>126.9<br>13.9<br>140 160 180 200 220<br>Mass-to-Charge (m/z)<br>scans) P 300 ugL D       | 1,3-dichlor<br>8 ×10 1<br>0 0 0<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-<br>1.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 I<br>01954                   |                  |                         |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o-Propane P 300 ug/L<br>RT48.835 2.584E+007<br>Name=1.3-diblioro-Propane<br>8.75 8/8 8.85 8/9 8.95 9<br>Acquisition Time (min) | , 760<br>10 <sup>2</sup><br>10 <sup>2</sup><br>10 <sup>3</sup><br>10 <sup>4</sup><br>10 | 9%)<br>8.8 8.85 8.9<br>Acquisitie | 8.95 9<br>an Time (min)<br>9 200                                                          | (8.793-8.923 min, 39 e<br>8 - 76.0<br>5 - 93.9<br>1 - 10<br>- 40.60 80 100<br>(6.570-6.710 min, 42 e<br>7 - 1<br>1 - 8<br>- 1<br>- 8<br>- 1<br>- 8<br>- 1<br>- 8<br>- 8<br>- 8<br>- 8<br>- 8<br>- 8<br>- 8<br>- 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | scans) P 300 ugL D<br>165.8<br>11.9<br>11.9<br>126.9<br>13.9<br>140 160 180 200 220<br>Mass-to-Charge (m/z)<br>scans) P 300 ugL D       | 1.3-dichlord<br>sex 10 <sup>1</sup><br>1.6-<br>sex 10 <sup>1</sup><br>1.6-<br>1.4-<br>1.2-<br>1.2-<br>1.2-<br>0.8-<br>0.6-<br>0.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 I<br>01954                   |                  |                         | • ISTD Q          |
| 1 ↔ ‡ A<br>0 ugLD 1.3-dichlo<br>10 <sup>2</sup><br>1-<br>0.8-<br>0.4-<br>0.2-<br>0.4-<br>0.2-<br>0.4-<br>0.2-<br>0.4-<br>0.2-<br>0.4-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0.2-<br>0. | o-Propane P 300 ug/L<br>RT48.835 2.584E+007<br>Name=1.3-diblioro-Propane<br>8.75 8/8 8.85 8/9 8.95 9<br>Acquisition Time (min) | , 760<br>10 <sup>2</sup><br>10 <sup>2</sup><br>10 <sup>3</sup><br>10 <sup>4</sup><br>10 | 9%)<br>8.8 8.85 8.9<br>Acquisitie | 8.95 9<br>an Time (min)<br>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$       | (8,793-8,923 min, 39 ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | scans) P 300 ugL D<br>165.8<br>11.9<br>128.9<br>129.9<br>120.140.160.180.200.220<br>Mass-to-Charge (m/z)<br>Scans) P 300 ugL D<br>114.0 | Image: Constraint of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 I<br>01954                   |                  |                         |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o-Propane P 300 ug/L<br>RT48.835 2.584E+007<br>Name=1.3-diblioro-Propane<br>8.75 8/8 8.85 8/9 8.95 9<br>Acquisition Time (min) | , 760<br>10 <sup>2</sup><br>10 <sup>2</sup><br>10 <sup>3</sup><br>10 <sup>4</sup><br>10 | 9%)<br>8.8 8.85 8.9<br>Acquisitie | 8.95 9<br>an Time (min)<br>9<br>0.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0               | (8,793-8,923 min, 39 4<br>8 1 76.0<br>4 3<br>4 49.0<br>4 49.0  | scans) P 300 ugL D<br>165.8<br>128.9<br>11.9<br>120 140 160 180 200 220<br>Mass-to-Charge (m/z)<br>scans) P 300 ugL D<br>114.0<br>88.0  | 1.3-dichlord<br>sex 10 <sup>1</sup><br>1.6-<br>sex 10 <sup>1</sup><br>1.6-<br>1.4-<br>1.2-<br>1.2-<br>1.2-<br>0.8-<br>0.6-<br>0.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | , 8 Levels Used, 11 I<br>01954                   |                  |                         |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o-Propane P 300 ug/L<br>RT48.835 2.584E+007<br>Name=1.3-diblioro-Propane<br>8.75 8/8 8.85 8/9 8.95 9<br>Acquisition Time (min) | . 76.0<br>10 <sup>2</sup> Ratio = 278.5 (92<br>1-<br>0.6-<br>0.4-<br>0.2-<br>0.4-<br>0.2-<br>0.4-<br>0.2-<br>0.5-<br>0.4-<br>0.5-<br>0.4-<br>0.5-<br>0.4-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.8 8.85 8.9<br>Acquisiti         | 8.95 9<br>an Time (min)<br>+ Scan<br>g x10<br>+ Scan<br>g x10<br>0.0<br>0.0<br>0.0<br>0.0 | (8,793-8,923 min, 39 #<br>* 76.0<br>* 76.0<br>* 93.9<br>* 49.0<br>* 93.9<br>* 1<br>* 49.0<br>* 1<br>* 1<br>* 1<br>* 1<br>* 1<br>* 1<br>* 1<br>* 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | scans) P 300 ugL D<br>165.8<br>11.9<br>128.9<br>129.9<br>120.140.160.180.200.220<br>Mass-to-Charge (m/z)<br>Scans) P 300 ugL D<br>114.0 | 1.3-dichlor<br>g x10 <sup>-1</sup> .<br>si x1 | Propane - 11 Levels<br>= 0.123586 * x + 0.<br>(*2 = 0.99396951 | 8 Levels Used, 11  <br>01954<br>nore, Weight 1/x | Points, 8 Points |                         |                   |



## Conclusions: Volatiles Analysis Purge-and-Trap Sample Preparation: 7890B GC and 7010 HES

### 5977B HES Performance

- Significant improvement in detection limits
- Signal improvement provided is not complicated by interferences, and results in clear enhancements in detection.
- Extends dynamic range of P/T application





# Semi-Volatiles Analysis



## Environmental Monitoring Requirements Analysis of Semi-Volatile Compounds (SVOCs)

#### Overview

- •SVOCs are a broad class of environmentally significant contaminants of global interest.
- Included in a target analyte lists for GC/MS methods such as EPA methods 8270, 625 and 525 methods

#### GC/MS Analysis

- •Listed as targets and appropriate to selected ion monitoring (SIM) in GC/MS analysis
- •Surveying samples by scanning GC/MS provides advantages:
- •Full scan spectra for compound confirmation
- •Tentatively identifying unexpected unknowns in samples that would escape SIM,
- · In the past scan sensitivity was borderline or insufficient
- •When compared to SIM
- •To meet the required detection limits.

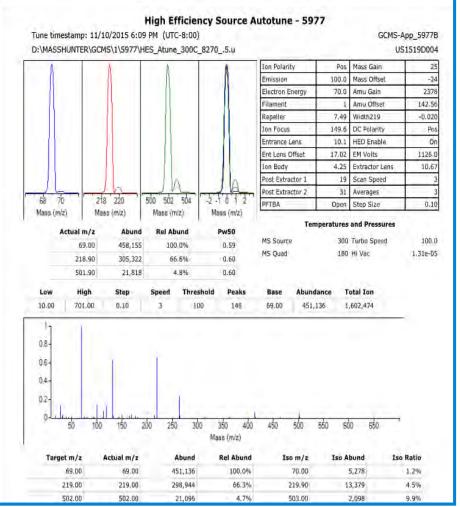
#### Project Scope

- •Survey select compounds of environmental interest as an indication of what may be achieved with the new 5977B GC/MSD in this approach.
- •Determine if High Efficiency Source (HES) increases ion current created that may lead to improvement in sensitivity and significant improvements in detection limits for VOC targets.
- •Evaluate new HES capability to produce scan detection limits for SVOCs that were formerly only approached by SIM.
- •Determine instrument detection limits (IDLs) for a few SVOCs across the classes of compounds typical to this analysis.



## Environmental Monitoring Requirements Analysis of Semi-Volatile Compounds

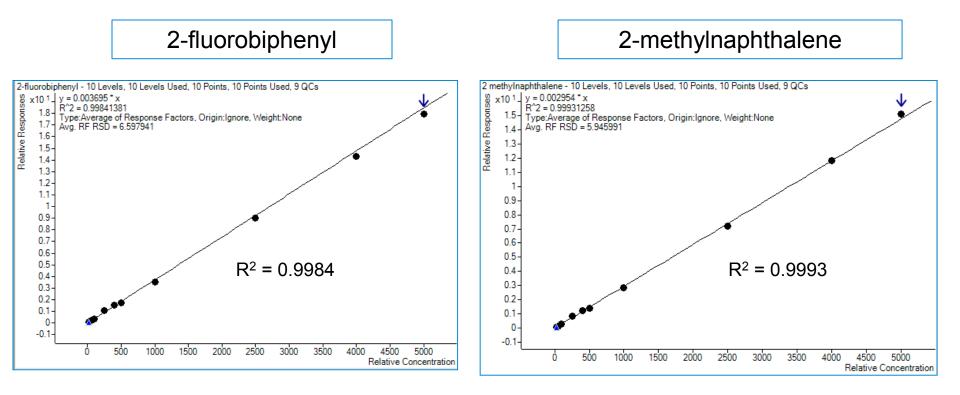
#### GC Summary


| Run time         | 25 min.   |              |           |
|------------------|-----------|--------------|-----------|
| Oven Temperature |           |              |           |
| (Initial)        | 40°C      | Hold time    | 0.5 min.  |
| Post run         | 40°C      | #1 Rate      | 10°C/min. |
| #1 Value         | 100°C     | #1 Hold Time | 0 min.    |
| #2 Rate          | 25°C/min. | #2 Value     | 260°C     |
| #2 Hold Time     | 0 min.    | #3 Rate      | 10°C/min. |
| #3 Value         | 280°C     | #3 Hold Time | 0 min.    |
| #4 Rate          | 25°C/min. | #4 Value     | 320°C     |
| #4 Hold Time     | 8.5 min.  |              |           |

Agilent 5190-2293: 900 µL (splitless, single taper, ultra inert)

#### **MS Parameters**

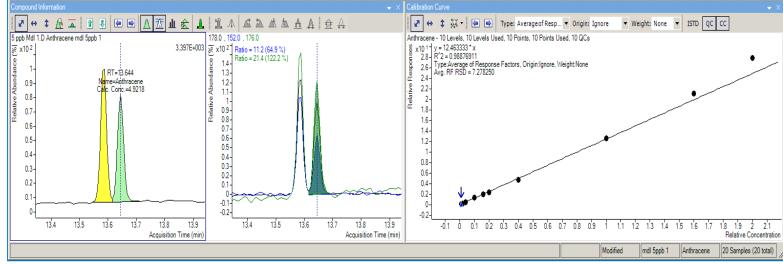
| Acquisition Mode    | Scan     | Normal or Fast Scanning Normal Scanning |
|---------------------|----------|-----------------------------------------|
| Solvent Delay       | 3.0 min. | EM Setting Mode Gain 0.1                |
| Trace Ion Detection | On       |                                         |
| [Scan Parameters]   |          |                                         |
| Start Time          | 3.0 min. |                                         |
| Low Mass            | 50       | High Mass 550                           |
| Threshold           | 75       | A/D Samples 4                           |
| MS Source           | 350°C    | Maximum 350°C                           |
| MS Qual             | 180°C    | Maximum 200°C                           |


## Parameters for SVOC analysis



## HES Autotune




Linearity: Semi-Volatiles Analysis





# Semi-Volatiles Analysis: Anthracene

|       | 🧧 🚮 📑 🖓 Analyz                | e Batch 🔻 | 0     | ayout: 🔝 🔛 🖯                             |      | Mest      | ore Derault L    | ayout            |              |                |                |       |          |            |                |       |      |           |   |                                    |  |
|-------|-------------------------------|-----------|-------|------------------------------------------|------|-----------|------------------|------------------|--------------|----------------|----------------|-------|----------|------------|----------------|-------|------|-----------|---|------------------------------------|--|
| ch Ta | ble                           |           |       |                                          |      |           |                  |                  |              |                |                |       |          |            |                |       |      |           |   |                                    |  |
| Sampl | e: 👔 mdl 5ppb 1               |           | -     | Sample Type: <all></all>                 |      |           | - C              | ompound          | I: 🔄 Anthrac | cene           | •              | ISTD: | Phenanti | hrene-D10  | ∎ †≣           |       |      | 1 🙀 🔯 🚩 1 | 7 | Sample/Compound Group: <all></all> |  |
|       |                               | Sa        | ample |                                          |      |           | Anthrace         |                  | A            | Anthracene Res | ults           |       | Qu Q     | u Phenant  | hrene-D10 (IS  |       |      |           |   |                                    |  |
| 7     | Data File                     | Туре      | Level | Acq. Date-Time                           | Amt  | Tot. Amt. | Exp. Conc.       | RT               | Resp.        | MI Calc. Con   | c. Final Conc. | -     |          |            | Resp.          | Ratio |      |           |   |                                    |  |
| Ė     | accustandard 5 ppb.D          | Cal       | 1     | 11/12/2015 1:12 AM                       | 5    |           | 5.0000           | 13.644           |              |                |                |       | 9.4 1    |            | 40207          |       | 10.7 |           |   |                                    |  |
|       | accustandard 10 ppb.D         | Cal       | 2     | 11/12/2015 1:43 AM                       | 10   |           | 10.0000          | 13.644           |              |                |                |       | 11.7 2   |            | 32896          | 9.8   | 10.9 |           |   |                                    |  |
|       | accustandard 20 ppb.D         | Cal       | 3     | 11/12/2015 2:14 AM                       | 20   |           | 20.0000          | 13.644           |              |                |                |       | 11.5 2   |            | 29093          |       | 10.7 |           |   |                                    |  |
|       | accustandard 50 ppb.D         | Cal       | 4     | 11/12/2015 2:45 AM                       | 50   |           | 50.0000          | 13.645           | 41255        | 54.09          | 9 54.0919      | 108.2 | 11.7 2   | 0.8 13.559 | 30597          | 9.4   | 11.0 |           |   |                                    |  |
|       | accustandard 80 ppb.D         | Cal       | 5     | 11/12/2015 3:16 AM                       | 80   |           | 80.0000          | 13.644           | 66844        | 76.964         | 6 76.9646      | 96.2  | 11.1 2   | 0.9 13.558 | 34842          | 8.9   | 10.7 |           |   |                                    |  |
|       | accustandard 100 ppb.D        | Cal       | 6     | 11/12/2015 3:47 AM                       | 100  |           | 100.0000         | 13.644           | 71544        | 91.870         | 15 91.8705     | 91.9  | 11.5 2   | 1.8 13.559 | 31241          |       | 10.7 |           |   |                                    |  |
|       | accustandard 200 ppb.D        | Cal       | 7     | 11/12/2015 4:19 AM                       | 200  |           | 200.0000         | 13.644           | 127358       | 189.06         | 9 189.0659     | 94.5  | 11.6 2   | 1.0 13.559 | 27024          |       | 10.8 |           |   |                                    |  |
|       | accustandard 500 ppb.D        | Cal       | 8     | 11/12/2015 4:50 AM                       | 500  |           | 500.0000         | 13.644           | 332001       | 506.26         | 9 506.2679     | 101.3 | 11.8 2   | 1.8 13.559 | 26308          |       | 10.8 |           |   |                                    |  |
|       | accustandard 800 ppb.D        | Cal       | 9     | 11/12/2015 5:21 AM                       | 800  |           | 800.0000         | 13.644           | 664835       | 844.77         | 844.7751       |       | 12.0 2   |            | 31572          |       | 10.8 |           |   |                                    |  |
|       |                               | Cal       | 10    | 11/12/2015 5:52 AM                       | 1000 |           | 1000.00          | 13.644           |              |                |                |       | 12.5 2   |            | 41145          |       | 10.8 |           |   |                                    |  |
|       | 5 ppb MdI 10.D                | QC        | 1     | 11/12/2015 11:02 AM                      |      |           | 5.0000           | 13.644           |              |                |                |       | 12.0 2   |            | 20318          |       | 10.9 |           |   |                                    |  |
|       | 5 ppb MdI 1.D                 | QC 🔽      | 1     | 11/12/2015 11:34 AM                      |      |           | 5.0000           | 13.644           |              |                |                |       | 11.2 2   |            | 32142          |       | 10.7 |           |   |                                    |  |
|       | 5 ppb MdI 2.D                 | QC        | 1     | 11/12/2015 12:05 PM                      |      |           | 5.0000           | 13.644           |              |                |                |       | 10.3 1   |            | 28057          |       | 11.0 |           |   |                                    |  |
|       | 5 ppb MdI 3.D                 | QC        | 1     | 11/12/2015 12:36 PM                      |      |           | 5.0000           | 13.644           |              |                |                |       | 11.0 2   |            | 26416          |       | 11.0 |           |   |                                    |  |
|       | 5 ppb MdI 4.D                 | QC        | 1     | 11/12/2015 1:07 PM                       |      |           | 5.0000           | 13.644           |              |                |                |       | 12.4 2   |            | 22891          |       | 11.1 |           |   |                                    |  |
|       | 5 ppb MdI 5.D                 | QC        | 1     | 11/12/2015 1:38 PM                       |      |           | 5.0000           | 13.644           |              |                |                |       | 10.0 2   |            | 30189          |       | 10.9 |           |   |                                    |  |
|       | 5 ppb MdI 6.D                 | QC        | 1     | 11/12/2015 2:09 PM                       |      |           | 5.0000           | 13.644           |              |                |                | 95.7  |          | 1.0 13.558 | 27069          |       |      |           |   |                                    |  |
|       | 5 ppb MdI 7.D                 | QC        | 1     | 11/12/2015 2:40 PM                       |      |           | 5.0000           | 13.644           |              |                |                |       | 13.2 2   |            | 23910          |       | 10.7 |           |   |                                    |  |
|       | 5 ppb Mdl 8.D<br>5 ppb Mdl .D | QC<br>QC  | 1     | 11/12/2015 3:11 PM<br>11/12/2015 3:42 PM |      |           | 5.0000<br>5.0000 | 13.644<br>13.644 |              |                |                |       | 10.9 2   | 0.2 13.559 | 27744<br>30213 |       | 11.5 |           |   |                                    |  |





# Semi-Volatiles Analysis: Anthracene

| Income                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | iat                            |             |                                          | 04.20                                                   | J            |                   |                  |            |                            |                      |                                  |           |            |                   |                      |                   |                                       |                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|-------------|------------------------------------------|---------------------------------------------------------|--------------|-------------------|------------------|------------|----------------------------|----------------------|----------------------------------|-----------|------------|-------------------|----------------------|-------------------|---------------------------------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt MassHunter Quantita                           |                                |             |                                          | - 04-20-                                                | 2016.Datch   | 1.DIN             |                  |            |                            |                      |                                  |           |            |                   |                      |                   |                                       |                              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dit View Analyze Method                          |                                | -           |                                          |                                                         |              |                   |                  |            |                            |                      |                                  |           |            |                   |                      |                   |                                       |                              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 🍃 🛃 🐴 💭 Analyz                                   | ze Batch 🔻 🤇                   | 0           | Layout: 🙀 😥 😥                            |                                                         | Kestor       | re Default I      | Layout           |            |                            |                      |                                  |           |            |                   |                      |                   |                                       |                              |
| Batch Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ble                                              |                                |             |                                          |                                                         |              |                   |                  |            |                            |                      |                                  |           |            |                   |                      |                   |                                       | <b>▼</b> X                   |
| Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | le: 👔 mdl 5ppb 1                                 |                                | -           | Sample Type: <all></all>                 |                                                         |              | - C               | ompound:         | Anthracene |                            | -                    | ISTD: Ph                         | enanthre  | ene-D10    | <b>■</b> ↓        |                      | 🛛 🛠 🕅 🏲 🏞 💝       | Sample/Compound Group: <a< p=""></a<> | All>                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | Sar                            | nple        |                                          |                                                         | ,            | Anthrace          |                  | Anthr      | acene Results              |                      | Q                                | u Qu.     | Phenanth   |                   | Qu Qu                |                   |                                       |                              |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Data File                                        | Туре                           | Level       | Acq. Date-Time                           | Amt.                                                    | Tot. Amt. E  | Exp. Conc.        | RT               | Resp. MI   | Calc. Conc.                | Final Conc.          | Accuracy Ra                      | atio Rati | o RT       | Resp.             | Ratio Ratio          |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | accustandard 5 ppb.D                             | Cal                            | 1           | 11/12/2015 1:12 AM                       | 5                                                       |              | 5.0000            | 13.644           | 5253       | 5.2413                     | 5.2413               | 104.8 9                          | 9.4 19.   | 5 13.558   | 40207             | 9.0 10.7             |                   | c · ·                                 |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | accustandard 10 ppb.D                            | Cal                            | 2           | 11/12/2015 1:43 AM                       | 10                                                      |              | 10.0000           | 13.644           | 7753 🗖     | 9.4556                     | 9.4556               | 94.6 11                          | 1.7 20.9  | 9 13.559   | 32896             | 9.8 10.9             |                   | Spike                                 | a 🛛                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | accustandard 20 ppb.D                            | Cal                            | 3           | 11/12/2015 2:14 AM                       | 20                                                      |              | 20.0000           | 13.644           | 13236 🗌    | 18.2521                    | 18.2521              |                                  | 1.5 20.4  |            | 29093             | 8.8 10.7             |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | accustandard 50 ppb.D                            | Cal                            | 4           | 11/12/2015 2:45 AM                       | 50                                                      |              | 50.0000           | 13.645           | 41255 🗌    | 54.0919                    | 54.0919              | 108.2 11                         |           |            | 30597             | 9.4 11.0             |                   | amo                                   | unt                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | accustandard 80 ppb.D                            | Cal                            | 5           | 11/12/2015 3:16 AM                       | 80                                                      |              | 80.0000           | 13.644           | 66844      | 76.9646                    | 76.9646              |                                  | 1.1 20.   |            | 34842             | 8.9 10.7             |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | accustandard 100 ppb.D                           | Cal                            | 6           | 11/12/2015 3:47 AM                       | 100                                                     |              | 100.0000          | 13.644           | 71544      | 91.8705                    | 91.8705              |                                  | 1.5 21.0  |            | 31241             | 9.4 10.7             |                   |                                       |                              |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | accustandard 200 ppb.D<br>accustandard 500 ppb.D | Cal<br>Cal                     | 8           | 11/12/2015 4:19 AM<br>11/12/2015 4:50 AM | 200                                                     |              | 200.0000 500.0000 | 13.644<br>13.644 | 127358     | 189.0659<br>506.2679       | 189.0659<br>506.2679 | 94.5 11<br>101.3 11              | _         |            | 27024<br>26308    | 9.2 10.8<br>9.1 10.8 |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | accustandard 500 ppb.D<br>accustandard 800 ppb.D | Cal                            | 0<br>9      | 11/12/2015 4:50 AM                       | 800                                                     |              | 800.0000          | 13.644           | 664835     | 844.7751                   | 844,7751             |                                  | 2.0 21.   |            | 31572             | 8.8 10.8             |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | accustandard 1000 ppb.D                          | Cal                            | 10          | 11/12/2015 5:52 AM                       | 1000                                                    |              | 1000.0000         | 13.644           | 1145741    | 1117.1332                  | 1117 1222            |                                  | 2.5 22.4  |            | 41145             | 9.3 10.8             |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 ppb Mdl 10.D                                   | QC                             | 1           | 11/12/2015 11:02 AM                      | 1000                                                    | - 6          | 5.0000            | 13.644           | 2237       | 4.4167                     | 4.4167               |                                  | 2.0 20.0  |            | 20318             | 9.0 10.9             |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 ppb Mdl 1.D                                    | QC 🔽                           | 1           | 11/12/2015 11:34 AM                      |                                                         |              | 5.0000            | 13.644           | 3943       | 4.9218                     | 4.9218               |                                  | 1.2 21.4  |            | 32142             | 9.0 10.7             |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 ppb Mdl 2.D                                    | QC                             | 1           | 11/12/2015 12:05 PM                      |                                                         |              | 5.0000            | 13.644           | 3387 🗖     | 4.8423                     | 4.8423               |                                  | 0.3 17.   |            | 28057             | 8.6 11.0             |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 ppb Mdl 3.D                                    | QC                             | 1           | 11/12/2015 12:36 PM                      |                                                         |              | 5.0000            | 13.644           | 3193 🗖     | 4.8491                     | 4.8491               | 97.0 11                          | 1.0 20.   | 8 13.558   | 26416             | 9.5 11.0             |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 ppb MdI 4.D                                    | QC                             | 1           | 11/12/2015 1:07 PM                       |                                                         |              | 5.0000            | 13.644           | 2768 🗖     | 4.8515                     | 4.8515               |                                  | 2.4 20.1  | 1 13.559   | 22891             | 9.1 11.1             | ]                 |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 ppb MdI 5.D                                    | QC                             | 1           | 11/12/2015 1:38 PM                       |                                                         |              | 5.0000            | 13.644           | 3555 🗖     | 4.7242                     | 4.7242               |                                  | 0.0 21.0  |            | 30189             | 9.3 10.9             |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 ppb MdI 6.D                                    | QC                             | 1           | 11/12/2015 2:09 PM                       |                                                         |              | 5.0000            | 13.644           | 3228 🗖     | 4.7843                     | 4.7843               |                                  | 0.3 21.0  |            | 27069             | 9.3 10.6             |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 ppb Mdl 7.D                                    | QC                             | 1           | 11/12/2015 2:40 PM                       |                                                         |              | 5.0000            | 13.644           | 2862       | 4.8012                     | 4.8012               |                                  | 3.2 22.   |            | 23910             | 9.2 10.7             |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 ppb Mdl 8.D                                    | QC                             | 1           | 11/12/2015 3:11 PM                       | _                                                       |              | 5.0000            | 13.644           | 3313       | 4.7903                     | 4.7903               |                                  | 0.9 20.1  |            | 27744             | 9.1 11.5             |                   | Actual amore                          | Sunt                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 ppb MdI .D                                     | QC                             | 1           | 11/12/2015 3:42 PM                       |                                                         |              | 5.0000            | 13.644           | 3519       | 4.6725                     | 4.6725               | 93.4 12                          | 2.1 22.   | 6 13.558   | 30213             | 311 11.1             |                   |                                       |                              |
| Compour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd Information                                   |                                |             |                                          |                                                         |              |                   | -                |            |                            | · × Calib            | ration Curve                     |           |            |                   |                      |                   |                                       | - V                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                |             |                                          | 10 .                                                    |              | .1 .1.            |                  | 1          |                            |                      |                                  | ~ I r     |            |                   |                      |                   |                                       | · · ·                        |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | <b>₹</b>                       |             | . 🏦 🏦 🛣 .                                | іл                                                      |              |                   | · 卓 A            | ☆☆         |                            | 2                    |                                  |           |            | ype: Average of   |                      |                   | it: None 🔻 ISTD QC CC                 |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | II 1.D Anthracene mdl 5ppb 1                     | 1                              |             |                                          |                                                         | 2.0 , 176.0  |                   |                  |            |                            |                      |                                  |           |            | , 10 Points, 10 P | oints Used, i        | 10 QCs            |                                       |                              |
| <u>ङ</u> x10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                |             | 14                                       |                                                         |              |                   | A                |            |                            | % x1                 | 0 1 - y = 12.4<br>2.8 - R^2 = 0. |           |            |                   |                      |                   |                                       |                              |
| 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |             |                                          | B 1.4-                                                  | Ratio = 21.4 | 4 (122.2 %)       | 1                |            |                            | l d                  | 2.6 Type:Av                      | erage of  | Response F | actors, Origin:lg | nore, Weigh          | t:None            |                                       | • ~                          |
| 1 Partice<br>10.0 Phindance<br>10.0 Belative<br>10.0 | 1.                                               | RT=13.644                      |             |                                          | 2011.4-<br>1.3-<br>1.2-<br>1.1-<br>1.1-<br>0.9-<br>0.8- |              |                   |                  |            |                            |                      | 2.4 - Avg. RF                    | RSD = 7   | 7.278250   |                   |                      |                   |                                       |                              |
| ja 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 6                                              | Vame=Anthrac<br>anc. Conc.=4.9 | ene<br>9218 | 1                                        | 1.2-<br>1.1-                                            |              |                   | 11               |            |                            |                      | 2.2-                             |           |            |                   |                      |                   | . /                                   |                              |
| ີອີ 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                |             |                                          | 8 1                                                     |              |                   | n I              |            |                            | elati                | 2-                               |           |            |                   |                      |                   | •                                     |                              |
| ·도<br>콩 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                |                                |             | 14                                       | 0.9-                                                    |              |                   | . 11 . 1         |            |                            | <u> </u>             | 1.8-                             |           |            |                   |                      |                   |                                       |                              |
| <u>ش</u> 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                |             | à                                        |                                                         |              |                   | - 11-1           |            |                            |                      | 1.6-                             |           |            |                   |                      | /                 |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                |             |                                          | 0.7-                                                    |              |                   |                  |            |                            |                      | 1.4-                             |           |            |                   |                      |                   |                                       |                              |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                |                                |             |                                          | 0.6-<br>0.5-                                            |              |                   |                  |            |                            |                      | 1.2-                             |           |            |                   |                      |                   |                                       |                              |
| 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1                                              |                                |             |                                          | 0.4-                                                    |              |                   |                  | 1          |                            |                      | 1-                               |           |            |                   | /                    |                   |                                       |                              |
| 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |             |                                          | 0.3-                                                    |              |                   |                  |            |                            |                      | 0.8-<br>0.6-                     |           |            |                   |                      |                   |                                       |                              |
| 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |             |                                          | 0.2-                                                    |              |                   |                  |            |                            |                      | 0.4-                             |           |            | 1                 |                      |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                |             |                                          | 0.1-                                                    |              | <u>.</u>          | JV               | 1          | $\infty \sim$              | <u></u>              | 0.2-                             | J.        |            |                   |                      |                   |                                       |                              |
| 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                | Y                              |             |                                          | -0.1-                                                   | ~~~          |                   |                  | × -        |                            |                      | 0-                               | - 🏹       |            |                   |                      |                   |                                       |                              |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ۹                                                |                                |             |                                          | -0.2-                                                   |              |                   |                  |            |                            |                      | 0.2-                             |           |            |                   |                      |                   |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.4 13.5                                        | 13.6 1                         | 3.7         | 13.8 13.9<br>Acquisition Time (min)      |                                                         | 13.4         | 13.5              | 13.6             |            | 13.8 13<br>uisition Time ( |                      | -0.1                             | ό o       | .1 0.2 0   | 3 0.4 0.5         | 0.6 0.7              | 0.8 0.9 1 1.1 1.2 | 1.3 1.4 1.5 1.6 1.7 1.8 1.<br>Relat   | 9 2 2.1<br>ive Concentration |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                |             |                                          |                                                         |              |                   |                  |            |                            | 1                    |                                  |           |            |                   |                      | Modified n        | dl 5ppb 1 Anthracene 20 San           | nples (20 total)             |

# Semi-Volatiles Analysis: Anthracene

| Liiii Aaila                                                     | nt MassHunter Quantitat                          | tivo Analysis             | lfor C   |                                          | 04 20        | J                                       | h hin            |                  |             |                             |                    |              |                          |              |                   |                     |               |              |                        | _ 🗆 X                            |
|-----------------------------------------------------------------|--------------------------------------------------|---------------------------|----------|------------------------------------------|--------------|-----------------------------------------|------------------|------------------|-------------|-----------------------------|--------------------|--------------|--------------------------|--------------|-------------------|---------------------|---------------|--------------|------------------------|----------------------------------|
|                                                                 | dit View Analyze Method                          |                           |          |                                          | 04-20-       | 2010.040                                | 11.0111          |                  |             |                             |                    |              |                          |              |                   |                     |               |              |                        |                                  |
| -                                                               |                                                  |                           | •        |                                          |              |                                         |                  |                  |             |                             |                    |              |                          |              |                   |                     |               |              |                        |                                  |
| -                                                               | 🝃 🛃 📑 💭 Analyz                                   | e Batch 🔻 🦉               | Li       | ayout: 🙀 😰 🖉                             |              | Mest                                    | ore Default I    | ayout            |             |                             |                    |              |                          |              |                   |                     |               |              |                        |                                  |
| Batch Ta                                                        | ble                                              |                           |          |                                          |              |                                         | 1                |                  |             |                             |                    |              |                          |              |                   |                     |               |              |                        | <b>▼</b> X                       |
| Sampl                                                           | e: 👔 mdl 5ppb 1                                  | •                         | •        | Sample Type: <all></all>                 |              |                                         | ▼ C              | ompound:         | Anthracen   | e                           | •                  | ISTD:        | Phenanthr                | ene-D10      | <b>■</b> 1        |                     | 🛛 🗱 🖗 🏲 🏷     | ' 衬 义 Sa     | mple/Compound Group: < | All>                             |
|                                                                 |                                                  | Sam                       | nple     |                                          |              |                                         | Anthrace         |                  | Anth        | racene Results              | 1                  |              | Qu Qu                    | Phenanth     | rene-D10 (IS      | Qu Qu               |               |              |                        |                                  |
| Ÿ                                                               | Data File                                        | Туре                      | Level    | Acq. Date-Time                           | Amt.         | Tot. Amt.                               | Exp. Conc.       | RT               | Resp. M     | Calc. Conc.                 | Final Conc.        | ccuracy      | Ratio Rat                | io RT        | Resp.             | Ratio Ratio         | 0             |              |                        |                                  |
|                                                                 | accustandard 5 ppb.D                             | Cal                       | 1        | 11/12/2015 1:12 AM                       | 5            |                                         | 5.0000           | 13.644           | 5253        | 5.2413                      | 5.2413             | 104.8        | 9.4 19.                  | 5 13.558     | 40207             | 9.0 10.7            | 7             |              | Cusila                 |                                  |
|                                                                 | accustandard 10 ppb.D                            | Cal                       | 2        | 11/12/2015 1:43 AM                       | 10           |                                         | 10.0000          | 13.644           | 7753 🗖      | 9.4556                      | 9.4556             | 94.6         | 11.7 20.                 |              | 32896             | 9.8 10.9            |               |              | Spik                   | ea                               |
|                                                                 | accustandard 20 ppb.D                            | Cal                       | 3        | 11/12/2015 2:14 AM                       | 20           |                                         | 20.0000          | 13.644           | 13236 🗌     | 18.2521                     | 18.2521            | 91.3         | 11.5 20                  |              | 29093             | 8.8 10.7            |               |              |                        |                                  |
|                                                                 | accustandard 50 ppb.D                            | Gui                       | 4        | 11/12/2015 2:45 AM                       | 50           |                                         | 50.0000          | 13.645           | 41255       | 54.0919                     | 54.0919            | 108.2        | 11.7 20.                 |              | 30597             | 9.4 11.0            |               |              | amo                    | unt                              |
|                                                                 | accustandard 80 ppb.D                            |                           | 5        | 11/12/2015 3:16 AM<br>11/12/2015 3:47 AM | 80           |                                         | 80.0000          | 13.644<br>13.644 | 66844 C     | 76.9646 91.8705             | 76.9646<br>91.8705 | 96.2<br>91.9 | 11.1 20.<br>11.5 21.     |              | 34842<br>31241    | 8.9 10.<br>9.4 10.7 |               |              |                        |                                  |
|                                                                 | accustandard 100 ppb.D<br>accustandard 200 ppb.D | Cal                       | 7        | 11/12/2015 3:47 AM<br>11/12/2015 4:19 AM | 200          |                                         | 200.0000         | 13.644           | 127358      | 189.0659                    | 189.0659           | 91.9         | 11.5 21.                 |              | 27024             | 9.4 10.7            | _             |              |                        |                                  |
|                                                                 | accustandard 500 ppb.D                           | Cal                       | 8        | 11/12/2015 4:15 AM                       | 500          |                                         | 500.0000         | 13.644           | 332001      | 506.2679                    | 506.2679           | 101.3        | 11.8 21.                 |              | 2/024             | 9.1 10.8            |               |              |                        |                                  |
|                                                                 | accustandard 800 ppb.D                           |                           | 9        | 11/12/2015 5:21 AM                       | 800          |                                         | 800.0000         | 13.644           | 664835      | 844.7751                    | 844.7751           | 101.5        | 12.0 21.                 |              | 31572             | 8.8 10.8            |               |              |                        |                                  |
|                                                                 | accustandard 1000 ppb.D                          | Cal                       | 10       | 11/12/2015 5:52 AM                       | 1000         |                                         | 1000.00          | 13.644           | 1145741     | 1117,1332                   | 1117 1332          | 111.7        | 12.5 22                  |              | 41145             | 9.3 10.8            |               |              | -                      |                                  |
|                                                                 | 5 ppb MdI 10.D                                   | QC                        | 1        | 11/12/2015 11:02 AM                      |              |                                         | 5.0000           | 13.644           | 2237        | 4.4167                      | 4.4167             | 88.3         | 12.0 20.                 |              | 20318             | 9.0 10.9            |               |              | Accurac                | v                                |
| •                                                               | 5 ppb Mdl 1.D                                    | QC 🔽                      | 1        | 11/12/2015 11:34 AM                      |              |                                         | 5.0000           | 13.644           | 3943        | 4.9218                      | 4.9218             | 98.4         | 11.2 21.                 | 4 13.559     | 32142             | 9.0 10.7            | 7             |              | Accurac                | У                                |
|                                                                 | 5 ppb MdI 2.D                                    | QC                        | 1        | 11/12/2015 12:05 PM                      |              |                                         | 5.0000           | 13.644           | 3387 🗖      | 4.8423                      | 4.8423             | 96.8         | 10.3 17.                 |              | 28057             | 8.6 11.0            | ס             |              |                        |                                  |
|                                                                 | 5 ppb MdI 3.D                                    | QC                        | 1        | 11/12/2015 12:36 PM                      |              |                                         | 5.0000           | 13.644           | 3193 🗖      | 4.8491                      | 4.8491             | 97.0         | 11.0 20.                 | _            | 26416             | 9.5 11.0            |               |              |                        |                                  |
|                                                                 | 5 ppb MdI 4.D                                    | QC                        | 1        | 11/12/2015 1:07 PM                       |              |                                         | 5.0000           | 13.644           | 2768 🗖      | 4.8515                      | 4.8515             | 97.0         | 12.4 20.                 |              | 22891             | 9.1 11.1            | -             |              |                        |                                  |
|                                                                 | 5 ppb MdI 5.D                                    | QC                        | 1        | 11/12/2015 1:38 PM                       |              |                                         | 5.0000           | 13.644           | 3555        | 4.7242                      | 4.7242             | 94.5         | 10.0 21.                 |              | 30189             | 9.3 10.9            |               |              |                        |                                  |
|                                                                 | 5 ppb Mdl 6.D                                    | QC                        | 1        | 11/12/2015 2:09 PM                       |              |                                         | 5.0000           | 13.644           | 3228        | 4.7843                      | 4.7843             | 95.7         | 10.3 21.                 |              | 27069             | 9.3 10.6            |               |              |                        |                                  |
|                                                                 | 5 ppb Mdl 7.D                                    | QC                        | 1        | 11/12/2015 2:40 PM                       |              |                                         | 5.0000           | 13.644           | 2862        | 4.8012                      | 4.8012             | 96.0         | 13.2 22.                 |              | 23910<br>27744    | 9.2 10.7            | -             | Δ            | atual ama              | ~                                |
|                                                                 | 5 ppb Mdl 8.D<br>5 ppb Mdl .D                    | QC<br>QC                  | 1        | 11/12/2015 3:11 PM<br>11/12/2015 3:42 PM |              |                                         | 5.0000<br>5.0000 | 13.644<br>13.644 | 3313        | 4.7903                      | 4.7903<br>4.6725   | 95.8<br>93.4 | 10.9 20.<br>12.1 22.     | _            | 30213             | 9.1 11.8            | _             | A            | ctual am               | ount                             |
|                                                                 | o ppo mar.o                                      | u(C                       | · 1      | 11/12/2010 0.4211                        |              |                                         | 5.0000           | 10.044           | 3010 []     | 4.0723                      | 4.0723             | 33.4         | 12.1 22.                 | 0 10.000     | 50215             |                     |               |              |                        |                                  |
| Compour                                                         | d Information                                    |                           |          |                                          |              |                                         |                  |                  |             |                             | × Calibr           | ation Curv   | e                        |              |                   |                     |               |              |                        | <b>▼</b> X                       |
| -                                                               |                                                  |                           |          |                                          | 10 0         |                                         |                  |                  | E 🗛 0       |                             |                    | 1            |                          |              |                   | -                   |               |              |                        |                                  |
| =                                                               | + ‡ 🕅 🛣 🚹                                        | <b>↓ ●</b>                |          |                                          |              | 0000 0000000000000000000000000000000000 |                  | ± 4              | ₿           |                             | 2                  |              | × •                      |              |                   |                     |               | Weight: None | ▼ ISTD QC CC           |                                  |
|                                                                 | I 1.D Anthracene mdl 5ppb 1                      |                           |          |                                          |              | 2.0 , 176.0                             |                  |                  |             |                             |                    |              |                          |              | , 10 Points, 10 F | oints Used,         | 10 QCs        |              |                        |                                  |
| <u>ङ</u> x10 ²                                                  | -                                                |                           |          |                                          |              | Ratio = 11                              | .2 (64.9 %)      | 4                |             |                             |                    | n n l ¤^n -  | 2.463333 *<br>= 0.988769 | 11           |                   |                     |               |              |                        | •                                |
| 0<br>2<br>1                                                     |                                                  |                           |          | 20                                       | 1.4-         | rtatio = 21                             | .4 (122.2 %)     | 1                |             |                             |                    | 2.6 Type     | :Average o               | f Response F | actors, Origin:   | gnore, Weigl        | ht:None       |              |                        | • /                              |
| epu '                                                           |                                                  | RT=13.644<br>ame=Anthrace |          | pa pa                                    | 1.3-         |                                         |                  | - J.             |             |                             | le<br>Be           | 2.4 - Avg.   | RF RSD =                 | 7.278250     |                   |                     |               |              |                        |                                  |
| 1 Belative Abundance<br>8.0 Abundance<br>8.0 Selative Abundance | i di                                             | alp. Conc.=4.9            | 218      | Relative Abundance                       | 1.2-<br>1.1- |                                         |                  | - 11             | t i         |                             | ,e                 | 2.2-         |                          |              |                   |                     |               |              | •                      | r                                |
| ē 0.8                                                           | -                                                |                           |          | e,                                       | 1-           |                                         |                  | Ы                |             |                             | Relative           | 2-           |                          |              |                   |                     |               |              | •                      |                                  |
| 물 0.7                                                           | -                                                |                           |          | ela tr                                   | 0.9-         |                                         |                  | - 11 - 1         |             |                             |                    | 1.8-         |                          |              |                   |                     |               |              |                        |                                  |
| <u>ش</u><br>0.6                                                 |                                                  |                           |          | č                                        |              |                                         |                  | -11-1            |             |                             |                    | 1.6-         |                          |              |                   |                     |               |              |                        |                                  |
|                                                                 |                                                  |                           |          |                                          | 0.7-<br>0.6- |                                         |                  | - 11-1           | ll i        |                             |                    | 1.4-         |                          |              |                   |                     | ~             |              |                        |                                  |
| 0.5                                                             |                                                  | 4 (1)                     |          |                                          | 0.6-         |                                         |                  |                  | 8           |                             |                    | 1.2-         |                          |              |                   |                     |               |              |                        |                                  |
| 0.4                                                             | - 1                                              |                           |          |                                          | 0.4-         |                                         |                  |                  | ŀ           |                             |                    | 1-           |                          |              |                   | _                   |               |              |                        |                                  |
| 0.3                                                             | - /                                              |                           |          |                                          | 0.3-         |                                         |                  |                  |             |                             |                    | ).8-<br>).6- |                          |              | _                 |                     |               |              |                        |                                  |
| 0.2                                                             |                                                  |                           |          |                                          | 0.2-<br>0.1- |                                         |                  | $-1$ $\setminus$ |             |                             |                    | ).4-         |                          |              | 1                 |                     |               |              |                        |                                  |
|                                                                 |                                                  |                           |          |                                          | 0.1-         |                                         |                  | ) Y              |             | so.                         |                    | 0.2-         | 1                        |              |                   |                     |               |              |                        |                                  |
| 0.1                                                             | ╏───┣───┻                                        |                           |          |                                          | -0.1-        |                                         |                  |                  | <u> </u>    |                             |                    | 0-           | - š                      | •            |                   |                     |               |              |                        |                                  |
| 0                                                               | 1                                                |                           |          |                                          | -0.2-        |                                         |                  |                  |             |                             |                    | 0.2-         |                          |              |                   |                     |               |              |                        |                                  |
|                                                                 | 13.4 13.5                                        | 13.6 13                   | 3.7<br>А | 13.8 13.9<br>cquisition Time (min)       |              | 13.4                                    | 13.5             | 13.6             | 13.7<br>Acc | 13.8 13<br>juisition Time ( |                    | -0.          | 1 0 (                    | ).1 0.2 0    | .3 0.4 0.5        | 0.6 0.7             | 0.8 0.9 1 1.1 | 1.2 1.3 1.4  |                        | 1.9 2 2.1<br>ative Concentration |
|                                                                 |                                                  |                           |          | ,                                        |              |                                         |                  |                  |             |                             | × 11               |              |                          |              |                   |                     | Modified      | mdl 5ppb 1   |                        | amples (20 total)                |
|                                                                 |                                                  |                           |          |                                          |              |                                         |                  |                  |             |                             |                    |              |                          |              |                   |                     |               |              |                        |                                  |

# Semi-Volatiles Analysis: 2-Fluorobiphenyl

| 201111                                                                        | able<br>ple: 🍸 8270 curve p                        | oint 10 👻 🎝                                                                        | Sampl                    | e Type:  | <all></all>                              | Compound: 🐖 2-fluorobiph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | enyl                |       | 📑 ISTD           | Napht                                                                                                                 |                                           |                  | <b>*</b>    |              | » Sampl     | le/Compoun | d Group: < | JI>                       |   |
|-------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------|--------------------------|----------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|-------------|--------------|-------------|------------|------------|---------------------------|---|
|                                                                               | pound Group: <all></all>                           | ▼ Sample Grou                                                                      | 1                        |          | -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | egment: <all></all> |       | -                |                                                                                                                       |                                           |                  |             |              | *= · · ·    |            |            |                           |   |
|                                                                               | Cound Croups, Shire                                | TELEVISION AND AND AND AND AND AND AND AND AND AN                                  | Sample                   | _        | C                                        | The source of the second secon | 2-fluorobi          |       | -                | Alexabishand D                                                                                                        |                                           |                  | Outifie     | Qualifie.    | Machibal    | Naphthale  | Oust       | - 0                       |   |
|                                                                               | 1                                                  | 1                                                                                  |                          | 1        | La la                                    | a stall the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0000000          | -     |                  | -fluorobiphenyl R                                                                                                     |                                           | torn or hard     |             |              |             |            |            | ie Q                      |   |
| 7                                                                             | Name                                               | Data File                                                                          | Туре                     |          | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exp. Conc.          | RT    |                  | MI Calc. Conc.                                                                                                        |                                           |                  | Ratio M     |              |             |            | esp. Ratio | Contraction of the second |   |
| 11                                                                            | 8270 curve point 1                                 | accustandard 5 ppb.D                                                               | Cal                      | 5        | 5                                        | 11/12/2015 1:12 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0000              | 11.2_ | 5383             | 5.3656                                                                                                                | 5.3656                                    | 107.3            | 39.4        |              | 0.2000      |            | 4305 12.6  |                           | 7 |
| -                                                                             | 8270 curve point 2                                 | accustandard 10 ppb.D                                                              | Cal                      | 10       | 10                                       | 11/12/2015 1:43 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0000             | 11.2_ | 8967             |                                                                                                                       | 9.8314                                    | 98.3             | 35.6        | 26.7         | 0.2000      |            | 9370 12.8  |                           | 7 |
| 1                                                                             | 8270 curve point 3                                 | accustandard 20 ppb.D                                                              | Cal                      | 20       | 20                                       | 11/12/2015 2:14 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.0000             | 11.2_ | 15374            | 10.00100                                                                                                              | 19.2433                                   | 96.2             | 36.9        | 26.4         | 0.2000      |            | 3248 13.1  |                           | 8 |
| 1                                                                             | 8270 curve point 4                                 | accustandard 50 ppb.D                                                              | Cal                      | 50       | 50                                       | 11/12/2015 2:45 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.0000             | 11.2_ | 47775            | 57.4810                                                                                                               | 57.4810                                   | 115.0            | 36.5        | 26.2         | 0.2000      |            | 4991 12,6  |                           | 8 |
| -                                                                             | 8270 curve point 5                                 | accustandard 80 ppb.D                                                              | Cal                      | 80       | 80                                       | 11/12/2015 3:16 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.0000             | 11.2_ | 70342            | 82.3809                                                                                                               | 82.3809                                   | 103.0            | 36.8        | 26.4         | 0.2000      |            | 6221 12,9  |                           | 7 |
| -                                                                             | 8270 curve point 6                                 | accustandard 100 ppb.D                                                             | Cal                      | 100      | 100                                      | 11/12/2015 3:47 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.0000            | 11.2_ | 80873            | 94.1278                                                                                                               | 94.1278                                   | 94.1             | 37.0        | 26.3         | 0.2000      |            | 6509 12.6  |                           | 7 |
| -                                                                             | 8270 curve point 7                                 | accustandard 200 ppb.D                                                             | Cal                      | 200      | 200                                      | 11/12/2015 4:19 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200.0000            | 11.2_ | 153831           | 188.9800                                                                                                              | 188.9800                                  | 94.5             | 37.2        | 26.5         | 0.2000      |            | 4064 12.7  |                           | 7 |
| _                                                                             | 8270 curve point 8                                 | accustandard 500 ppb.D                                                             | Cal                      | 500      | 500                                      | 11/12/2015 4:50 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500.0000            | 11.2_ | 338185           | 487.2889                                                                                                              | 487.2889                                  | 97.5             | 37.3        | 26.7         | 0.2000      |            | 7568 12.9  |                           | 8 |
|                                                                               | 8270 curve point 9                                 | accustandard 800 ppb.D                                                             | Cal                      | 800      | 800                                      | 11/12/2015 5:21 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 800.000             | 11.2  | 638332           | 775.8164                                                                                                              | 775.8164                                  | 97.0             | 37.6        | 27.1         | 0.2000      |            | 4539 12.9  |                           | 7 |
|                                                                               | 8270 curve point 10                                |                                                                                    | Cal                      | 1000     | 1000                                     | 11/12/2015 5:52 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000.0000           | 11.2  | 900776           | 971.6787                                                                                                              | 971.6787                                  | 97.2             | 38.0        | 27.4         | 0.2000      |            | 0182 12.8  |                           | 8 |
|                                                                               | mdl 5ppb 10                                        | 5 ppb MdI 10.D                                                                     | QC                       | 5        | 5                                        | 11/12/2015 11:02 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0000              | 11.2_ | 3396             | 4.6621                                                                                                                | 4.6621                                    | 93.2             | 36.9        | 26.8         | 0.2000      |            | 9431 14.0  |                           | 8 |
|                                                                               | mdl 5ppb 1                                         | 5 ppb Mdl 1.D                                                                      | QC                       | 5        | 5                                        | 11/12/2015 11:34 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0000              | 11.2  | 3853             | 4.7460                                                                                                                | 4.7460                                    | 94.9             | 36.9        | 26.5         | 0.2000      |            | 3948 13.9  |                           | 8 |
|                                                                               | mdl 5ppb 2                                         | 5 ppb Mdl 2.D                                                                      | QC                       | 5        | 5                                        | 11/12/2015 12:05 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0000              | 11.2  | 3744             |                                                                                                                       | 4.6766                                    | 93,5             | 36.7        | 25.3         | 0.2000      |            | 3342 13.4  |                           | 7 |
| _                                                                             | mdl 5ppb 3                                         | 5 ppb Mdl 3.D                                                                      | QC                       | 5        | 5                                        | 11/12/2015 12:36 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0000              | 11.2_ | 3481             |                                                                                                                       | 4.5220                                    | 90.4             | 37.5        | 27.4         | 0.2000      |            | 1672 13.8  |                           | 8 |
|                                                                               | mdl 5ppb 4                                         | 5 ppb Mdl 4.D                                                                      | QC .                     | 5        | 5                                        | 11/12/2015 1.07 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0000              | 11.2_ | 3348             |                                                                                                                       | 4.5188                                    | 90.4             | 37.6        | 26.6         | 0.2000      |            | 0101 14.1  |                           | 7 |
| _                                                                             | mdl 5ppb 5                                         | 5 ppb Mdl 5.D                                                                      | QC                       | 5        | 5                                        | 11/12/2015 1:38 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0000              | 11.2_ | 3709             | 4.7139                                                                                                                | 4.7139                                    | 94.3             | 36.5        | 27.3         | 0.2000      |            | 2587 13.5  |                           | 8 |
|                                                                               | mdl 5ppb 6                                         | 5 ppb MdI 6.D                                                                      | QC                       | 5        | 5                                        | 11/12/2015 2:09 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0000              | 11.2_ | 3490             | 4.5928                                                                                                                | 4.5928                                    | 91.9             | 37.4        | 25.1         | 0.2000      |            | 1131 13.6  |                           | 7 |
|                                                                               | mdl 5ppb 7                                         | 5 ppb Mdl 7.D                                                                      | QC                       | 5        | 5                                        | 11/12/2015 2:40 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0000              | 11.2  | 3310             |                                                                                                                       | 4.3760                                    | 87.5             | 37.3        | 25.3         | 0.2000      |            | 0945 13.8  |                           | 7 |
|                                                                               | mdl 5ppb 9                                         | 5 ppb MdI .D                                                                       | QC                       | 5        | 5                                        | 11/12/2015 3:42 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0000              | 11.2  | 3690             | 4.5794                                                                                                                | 4.5794                                    | 91.6             | 35.6        | 26.4         | 0.2000      | 10.062 4   | 3621 13.5  |                           | 8 |
| 10<br>0.9                                                                     | 5-<br>9-<br>5-                                     | Belative Abundance (                                                               | .1-<br>1-<br>.9-         | = 27.4 ( | 104,6 %)                                 | دع ۱-<br>0.8-<br>0.6-<br>0.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 172.0               |       | Relative Respons | x101_y = 0.003<br>1.8 R <sup>2</sup> = 0.9<br>Type:Avi<br>1.7 Avg. RF<br>1.6-<br>1.5-<br>1.4-<br>1.3-<br>1.2-<br>1.1- | 99841381<br>Frage of Resp<br>RSD = 6.5979 | oonse Fac<br>941 | tors, Origi | in:Ignore, V | /eight:None | /          | /          |                           |   |
| 0.<br>0.8<br>0.7<br>0.7<br>0.6<br>0.5<br>0.<br>0.5<br>0.<br>0.4<br>0.3<br>0.2 | 5-<br>7-<br>5-<br>6-<br>5-<br>5-<br>5-<br>5-<br>3- | であり、<br>の、<br>の、<br>の、<br>の、<br>の、<br>の、<br>の、<br>の、<br>の、<br>の、<br>の、<br>の、<br>の、 | .7-<br>.6-<br>.5-<br>.4- |          |                                          | 0.2-<br>85.0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¢Į.                 |       | -                | 1-<br>0.9-<br>0.8-<br>0.7-<br>0.6-<br>0.5-                                                                            |                                           |                  | /           | /            |             |            |            |                           |   |

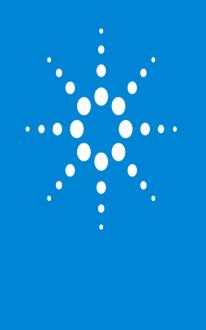
🔆 🔆 Aglient lechnologies

# MDLS: Semi-Volatiles Analysis

|                                   |        |            |           |           | Avg        |           |        |        |        |            |           |           |
|-----------------------------------|--------|------------|-----------|-----------|------------|-----------|--------|--------|--------|------------|-----------|-----------|
| Name                              | RT     | Transition | Avg Conc. | Std. Dev. | Conc./Std. | Conc. RSD | MDL    | 100    | LOD    | Avg Height | Avg. Resp | Resp. RSD |
| indire.                           |        | Transition | ing conci | otor been | Dev.       | concriso  |        |        | 200    |            | 118 nesp  | nesprinse |
| 1,4-dichlorobenzene               | 8.477  | 146        | 2.5604    | 0.0507    | 50.54      | 2         | 0.133  | 0.5066 | 0.152  | 1447       | 2634      | 5.9       |
| 1,2-dichlorobenzene               | 8.68   | 146        | 2.5889    | 0.0744    | 34.82      | 2.9       | 0.1951 | 0.7435 | 0.2231 | 1390       | 2503      | 5.8       |
| Anthracene                        | 13.662 | 178        | 2.3763    | 0.0471    | 50.49      | 2         | 0.1235 | 0.4707 | 0.1412 | 1960       | 3029      | 15.9      |
| Benz[a]anthracene                 | 17     | 228        | 2.894     | 0.094     | 30.79      | 3.2       | 0.2467 | 0.94   | 0.282  | 919        | 1600      | 23.3      |
| 2-fluorophenol                    | 6.354  | 112        | 1.8707    | 0.1018    | 18.38      | 5.4       | 0.2671 | 1.0177 | 0.3053 | 371        | 1036      | 10.3      |
| Phenol-d5-                        | 7.853  | 99         | 2.0789    | 0.1061    | 19.59      | 5.1       | 0.2785 | 1.061  | 0.3183 | 585        | 1353      | 9.2       |
| Phenol                            | 7.872  | 94         | 2.0978    | 0.0753    | 27.85      | 3.6       | 0.1977 | 0.7533 | 0.226  | 605        | 1406      | 4.7       |
| Aniline                           | 7.968  | 93         | 2.0027    | 0.1123    | 17.83      | 5.6       | 0.2948 | 1.1232 | 0.337  | 974        | 1854      | 8.1       |
| Bis(2-chloroethyl) ether          | 8.044  | 93         | 2.4595    | 0.1975    | 12.45      | 8         | 0.5183 | 1.9747 | 0.5924 | 836        | 1856      | 7.5       |
| 2-chlorophenol                    | 8.149  | 128        | 1.8842    | 0.1333    | 14.13      | 7.1       | 0.3499 | 1.3333 | 0.4    | 412        | 942       | 9.7       |
| 1,3-dichlorobenzene               | 8.378  | 146        | 2.5532    | 0.0566    | 45.14      | 2.2       | 0.1485 | 0.5657 | 0.1697 | 1399       | 2575      | 5.9       |
| Dibenz[a,h]anthracene             | 22.325 | 278        | 5.8961    | 0.4339    | 13.59      | 7.4       | 1.1388 | 4.3391 | 1.3017 | 224        | 970       | 23.9      |
| Benzyl alcohol                    | 8.604  | 108        | 2.6224    | 0.6737    | 3.89       | 25.7      | 1.768  | 6.7365 | 2.021  | 337        | 857       | 26.3      |
| Dibenzofuran                      | 12.202 | 168        | 2.6192    | 0.0787    | 33.28      | 3         | 0.2066 | 0.7871 | 0.2361 | 2574       | 3904      | 10.5      |
| o-Cresol                          | 8.732  | 108        | 2.9833    | 0.9942    | 3          | 33.3      | 2.6092 | 9.9416 | 2.9825 | 535        | 1434      | 34.2      |
| Bis(2-chloro-1-methylethyl) ether | 8.79   | 121        | 3.72      | 0.1907    | 19.51      | 5.1       | 0.5005 | 1.9072 | 0.5722 | 241        | 684       | 8.9       |
| p-Cresol                          | 8.924  | 108        | 2.4153    | 0.653     | 3.7        | 27        | 1.7138 | 6.5301 | 1.959  | 489        | 1153      | 27.4      |
| N Nitroso-di-n-propylamine        | 8.953  | 70         | 2.8614    | 0.4659    | 6.14       | 16.3      | 1.2227 | 4.6589 | 1.3977 | 524        | 1448      | 20.4      |
| Hexachloroethane                  | 9.14   | 117        | 2.4922    | 0.1367    | 18.24      | 5.5       | 0.3586 | 1.3665 | 0.41   | 503        | 798       | 5.8       |
| Nitrobenzene-D5                   | 9.166  | 82         | 2.2607    | 0.0589    | 38.4       | 2.6       | 0.1545 | 0.5887 | 0.1766 | 861        | 1688      | 6.2       |
| Nitrobenzene                      | 9.192  | 77         | 2.1995    | 0.1304    | 16.87      | 5.9       | 0.3422 | 1.3038 | 0.3911 | 816        | 1458      | 9.3       |
| Isophorone                        | 9.484  | 82         | 2.0293    | 0.0875    | 23.2       | 4.3       | 0.2295 | 0.8746 | 0.2624 | 1078       | 1899      | 8.5       |
| 2,4-dimethylphenol                | 9.602  | 107        | 1.808     | 0.0766    | 23.61      | 4.2       | 0.2009 | 0.7657 | 0.2297 | 531        | 897       | 8.5       |
| bis(2-chloroethoxy)-methane       | 9.721  | 93         | 2.2003    | 0.0797    | 27.62      | 3.6       | 0.2091 | 0.7968 | 0.239  | 1142       | 1805      | 4.6       |
| 2,4-dichloro-phenol               | 9.87   | 162        | 1.3744    | 0.1568    | 8.76       | 11.4      | 0.4116 | 1.5684 | 0.4705 | 253        | 457       | 16.6      |
| 1,2,4-trichlorobenzene            | 9.984  | 180        | 2.5619    | 0.0646    | 39.65      | 2.5       | 0.1696 | 0.6462 | 0.1939 | 1337       | 2057      | 6.7       |
| Naphthalene                       | 10.086 | 128        | 2.5072    | 0.033     | 76.08      | 1.3       | 0.0865 | 0.3295 | 0.0989 | 3723       | 5908      | 6.4       |
| 4-Chloroaniline                   | 10.117 | 127        | 2.141     | 0.256     | 8.36       | 12        | 0.6718 | 2.5596 | 0.7679 | 795        | 1720      | 14.4      |
| Hexachlorobutadiene               | 10.219 | 227        | 2.002     | 0.4507    | 4.44       | 22.5      | 1.1828 | 4.5068 | 1.352  | 553        | 621       | 25.5      |
| 4-chloro-3-methyl-phenol          | 10.629 | 142        | 2.6386    | 0.3667    | 7.2        | 13.9      | 0.9625 | 3.6673 | 1.1002 | 256        | 540       | 18.5      |
| 2 methylnaphthalene               | 10.863 | 141        | 2.4774    | 0.2275    | 10.89      | 9.2       | 0.597  | 2.2747 | 0.6824 | 1857       | 2953      | 7.5       |
| 2-fluorobiphenyl                  | 11.24  | 172        | 2.2854    | 0.0579    | 39.49      | 2.5       | 0.1519 | 0.5787 | 0.1736 | 2365       | 3421      | 7.8       |
| 2 chloronaphthalene               | 11.396 | 162        | 2.3329    | 0.057     | 40.96      | 2.4       | 0.1495 | 0.5695 | 0.1709 | 1889       | 2857      | 8.4       |
| 2-Nitroaniline                    | 11.472 | 65         | 2.0706    | 0.3219    | 6.43       | 15.5      | 0.8448 | 3.2188 | 0.9657 | 179        | 294       | 17.7      |
| Dimethyl phthalate                | 11.635 | 163        | 2.2032    | 0.0793    | 27.8       | 3.6       | 0.208  | 0.7925 | 0.2378 | 1601       | 2510      | 6.9       |
| 2,6 Dinitrotoluene                | 11.71  | 89         | 2.3394    | 0.3694    | 6.33       | 15.8      | 0.9696 | 3.6943 | 1.1083 | 143        | 200       | 18.3      |
| Acenapthylene                     | 11.845 | 152        | 2.5816    | 0.2025    | 12.75      | 7.8       | 0.5315 | 2.0252 | 0.6076 | 2327       | 3699      | 7.6       |
| 3-Nitroaniline                    | 11.896 | 92         | 0.465     | 0.3278    | 1.42       | 70.5      | 0.8603 | 3.2781 | 0.9834 | 119        | 215       | 25.8      |
| Acenaphthene                      | 12.024 | 152        | 2.9098    | 0.4256    | 6.84       | 14.6      | 1.117  | 4.2561 | 1.2768 | 1163       | 1805      | 11.4      |
| 2,4-dinitro-toluene               | 12.135 | 165        | 10.127    | 0.2458    | 41.2       | 2.4       | 0.6451 | 2.4578 | 0.7373 | 142        | 208       | 18.4      |
| Diethyl Phthalate                 | 12.358 | 149        | 5.1659    | 0.9011    | 5.73       | 17.4      | 2.3648 | 9.0105 | 2.7032 | 3467       | 4979      | 21.6      |



# Conclusions: Semi-Volatiles Analysis 7890B GC and 5977B MSD HES


#### **HES Performance:**

- Preliminary results suggest <u>a significant improvement in linearity and system</u> <u>stability at the lowest concentration level</u>
- Wide Dynamic Range
  - Possibly eliminates need to dilute and reanalyze samples which would have been over range on previous systems.
  - Reduces re-runs
- Signal improvement provided a more stable platform to perform day-to-day analysis





# Nitrosamines Analysis





# N-Nitrosamines in Drinking Water GC/MS/MS with HES

N-Nitrosamines like NDMA are inadvertent by-products of wastewater treatment through chlorination.

EPA method 521, (2004) specifies use of ion trap MS based liquid CI/MS/MS measurements for the detection of N-nitrosamines in drinking water

Industry requires alternate, sensitive and reliable procedure for the analysis of N-nitrosamines.

GC-MS tandem quadrupole technology deliver very high sensitivity and selectivity in the small molecule mass range and allow the detection of nitrosamines meeting and exceeding current detection levels attained using CI/MS/MS measurements.

Method designed to demonstrate application of GC/MS/MS instrumentation to determine nitrosamines in drinking water satisfying EPA method 521 requirements



# Method: N-Nitrosamines in Drinking Water GC-MS/MS with HES

#### Leveraging Technological Advance

•Method was developed using Agilent 7890B GC coupled to the 7010 Mass Spectrometer (MS) in positive electron ionization mode (EI), using HES (high efficiency source).

#### GC configuration

- •Multi-mode inlet (MMI)
- •30 meter DB-1701 column
- •7693 Autosampler (A/S).

#### Sample Prep

• In this study solid phase extraction for sample preparation following the protocol outlined in EPA Method 521

#### Analysis

- •Run time was less than 14.0 minutes.
- •Triplicate calibration curves were set up using 5 levels
- •1.0 ng/L to 20 ng/L extracted
- •1.25 ng/L to 20 ng/L solvent standards
- •Data analysis was carried out using MassHunter Software



# Approach: Method: N-Nitrosamines in Drinking Water GC-MS/MS with HES

#### Analytical Approach

- Only <u>0.5 microliter extract</u> was injected into a GC/MS/MS system employing electron ionization.
  - EPA method 521 utilizes large volume injections (20µL) to reach the required minimum reporting limits (MRLs)
    - 1.2 ng/L for NDPA)
    - 2.1 ng/L for NDEA
- Using surrogate (NDMA-d6) and internal standards (NDPA-d14, NDEA-d10) ensures accurate quantitation
  - Accounts for analytical variability that may occur during sample processing, extraction, and instrumental analysis.





# Target Analytes: N-Nitrosamines in Drinking Water GC-MS/MS with HES

| Name                     | ABR      | R∕ T  | Quant Mass | R        |
|--------------------------|----------|-------|------------|----------|
| N-nitrosodimethylamine   | NDMA-d6  | 7.10  | 80>50      | IS/ Surr |
| N-nitrosodimethylamine   | NDMA     | 7.15  | 74>44      | 0.99968  |
| N-nitrosomethyethylamine | NMEA     | 8.28  | 88>71      | 0.99981  |
| N-nitrosodiethylamine    | NDEA-d10 | 9.10  | 112>94     | IS       |
| N-nitrosodiethylamine    | NDEA     | 9.13  | 102>85     | 0.99996  |
| N-nitrosodipropylamine   | NDPA-14  | 11.00 | 144>126    | IS       |
| N-nitrosodipropylamine   | NDPA     | 11.08 | 113>71     | 0.99922  |
| N-nitrosomorpholine      | NMOR     | 11.47 | 86>56      | 0.99993  |
| N-nitrosopyrrolidine     | NPYR     | 11.64 | 100>70     | 0.99131  |
| N-nitrosopiperdine       | NPIP     | 11.85 | 114>84     | 0.99837  |
| N-nitrosodi-n-butylamine | NDBA     | 12.56 | 116>99     | 0.99937  |

Retention Times, Quantitation Mass, and Linearity R<sup>2</sup>



# MRM Transitions: N-Nitrosamines in Drinking Water GC-MS/MS with HES

| Compound | Transition | Œ  | Compound | Transition | Œ  |
|----------|------------|----|----------|------------|----|
| NDMA-d6  | 80>50.1    | 6  | NDPA     | 130>43     | 20 |
| NDMA-d6  | 80>48.1    | 14 | NDPA     | 130>113    | 8  |
| NDMA     | 74>42.1    | 14 | NMOR     | 116>56.1   | 20 |
| NDMA     | 74>44.1    | 6  | NMOR     | 116>86     | 4  |
| NMEA     | 88>71      | 6  | NPYR-d8  | 108>78.1   | 10 |
| NMEA     | 88>43      | 10 | NPYR-d8  | 108>62.1   | 14 |
| NDEA-d10 | 112>94.1   | 10 | NPYR     | 100>70     | 10 |
| NDEA-d10 | 112>62     | 20 | NPYR     | 100>55     | 10 |
| NDEA     | 102>56.1   | 20 | NPIP     | 114>97     | 10 |
| NDEA     | 102>85     | 10 | NPIP     | 114>84     | 10 |
| NDPA-d14 | 144>126.1  | 4  | NDBA     | 158>99     | 20 |
| NDPA-d14 | 144>50.1   | 20 | NDBA     | 158>141.1  | 12 |



# Analysis: Method: N-Nitrosamines in Drinking Water GC-MS/MS with HES

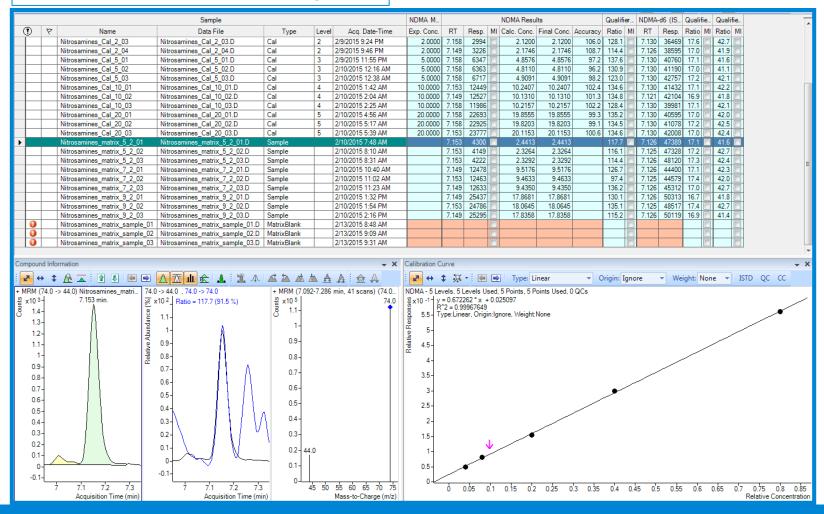
### Analytical Approach

- Matrix blanks were interspersed during the calibration and MDL injection sequence to verify there was no carryover.
- All calibration levels were performed using three replicates.
- Matrix blanks were spiked at three levels (2, 8, and 15 ppt) to verify recovery. Results at the 2ppt level are listed in the next slide.





# Recovery Results: N-Nitrosamines in Drinking Water GC-MS/MS with HES


### Average of 3 replicates of 2 ppt Matrix spike

| Compound | Conc | Ave. Calc. Conc. | Ave. Recovery | Limits |
|----------|------|------------------|---------------|--------|
| NDMA     | 2    | 2.36             | 118.20        | 70-130 |
| NMEA     | 2    | 2.23             | 111.65        | 70-130 |
| NDEA     | 2    | 2.06             | 102.92        | 70-130 |
| NDPA     | 2    | 1.99             | 99.70         | 70-130 |
| NMOR     | 2    | 1.94             | 97.12         | 70-130 |
| Npyr     | 2    | 2.24             | 111.92        | 70-130 |
| Npip     | 2    | 2.16             | 107.83        | 70-130 |
| NDBA     | 2    | 2.03             | 101.55        | 70-130 |



## Results: N-Nitrosamines in Drinking Water GC-MS/MS with HES

### Calibration from 1.0 to 20 ng/L





# Results: N-Nitrosamines in Drinking Water GC-MS/MS with HES (all concentrations in ng/L)

| Name | TS | RT    | Avg.<br>Conc. | Std.<br>Dev. | MDL   | LQQ   | LOD   | EPA<br>MRLs | Noise | S⁄ N | Avg.<br>Resp | Resp.<br>RSD(%) |
|------|----|-------|---------------|--------------|-------|-------|-------|-------------|-------|------|--------------|-----------------|
| NDMA | 1  | 7.15  | 1.62          | 0.0471       | 0.141 | 0.471 | 0.141 | 1.6         | 5     | 228  | 3275         | 3.9             |
| NMEA | 2  | 8.28  | 1.48          | 0.0287       | 0.086 | 0.287 | 0.086 | 1.5         | 3     | 258  | 2073         | 4.1             |
| NDEA | 3  | 9.13  | 1.43          | 0.0579       | 0.174 | 0.579 | 0.174 | 2.1         | 3     | Inf. | 1347         | 5.3             |
| NDPA | 4  | 11.08 | 1.29          | 0.1423       | 0.427 | 1.423 | 0.427 | 1.2         | 10    | 214  | 238          | 8.9             |
| NMOR | 5  | 11.47 | 1.19          | 0.0411       | 0.123 | 0.412 | 0.123 |             | 3     | 1912 | 2478         | 3.9             |
| NPyr | 5  | 11.64 | 1.32          | 0.124        | 0.372 | 1.240 | 0.372 | 1.4         | 1     | 1525 | 375          | 7.5             |
| NPip | 6  | 11.85 | 1.41          | 0.045        | 0.135 | 0.450 | 0.135 | 1.4         | 3     | 216  | 1206         | 3.5             |
| NDBA | 7  | 12.56 | 1.47          | 0.0595       | 0.178 | 0.595 | 0.178 | 1.4         | 8     | Inf. | 928          | 3.8             |

MDL/LOQ/LOD at 95% confidence level: Calculated from 8 replicates at 1.25 ng/L using 0.5  $\mu L$  injections



# Conclusions: N-Nitrosamines in Drinking Water $_{\mbox{GC-MS/MS with HES}}$

### HES Performance:

- The enhanced EI sensitivity of the HES ion source meets and exceeds the detection requirements of EPA Method 521,
  - Excellent alternative to the method specified PCI MS/MS Ion Trap systems.
- Rapid EI/MS/MS method demonstrated good stability
- Calibration in the 1-20 ng/L range
- Excellent detection levels ranging from 0.08 0.4 ng/L
  - Well below the required levels with only a 0.5 µL sample injection.
- Recoveries at multiple levels all demonstrated highly sensitive, accurate and reliable performance.
- Smaller injection volume led to less sample on column, less matrix and longer time between system maintenance





# Agilent Model 5977B GC/MSD



## The Source of New Possibilities The Most Powerful EI GC/MS Source







NEW! 5977B High Efficiency Source

More intense electron beam...

Times a longer path length for electron beam/effluent interaction Yields up to 20x More Ions Produced



5977B High Efficiency Source with Magnet Removed



# Driving Technology Innovation Inspiring discoveries for a better world

Your research helps protect:

- the air we breath
- the water we drink
- the soil we depend on for food





## Thank you Let's Continue the Conversation

# www.agilent.com

## Access Agilent







