

Sampling, measurement and analysis of VOCs & SVOCs: What are the best tools for the job?

Nicola Watson Sale Support Manager - Americas Markes International <u>nwatson@markes.com</u>

Agenda

- Sampling VOCs in air The tools of the trade Focusing on:
 - Canisters and online sampling
 - Sorbent tubes
 - Active sampling
 - Passive sampling
 - When should each technique be used?

How on-line/canister analysis works

1. Air/gas focusing

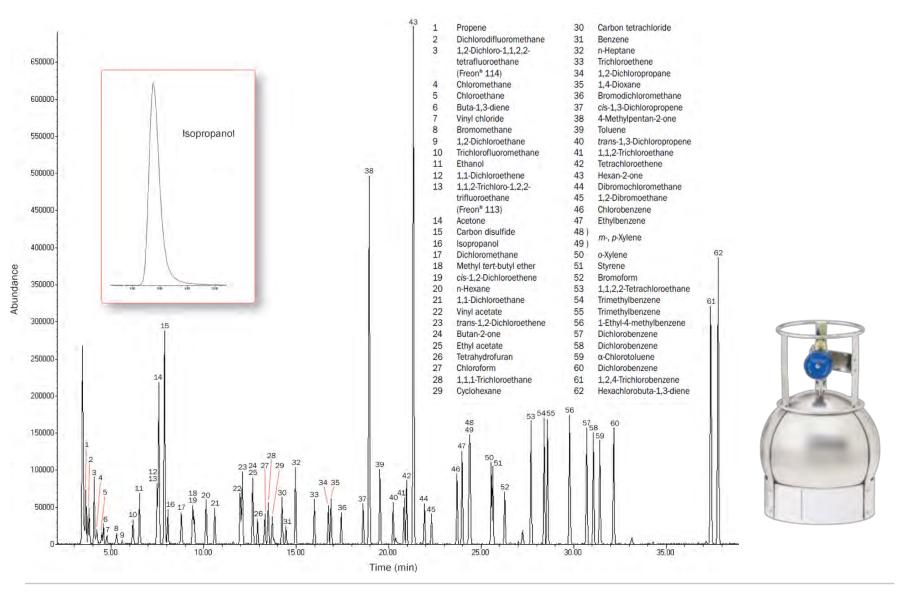
Samples are introduced directly onto the electrically-cooled, sorbent-packed focusing trap of the UNITY-xr thermal desorber, typically held between ambient and -30° C.

Quantitative retention of ultravolatiles from up to 1.5 L volumes and efficient low-flow, splitless desorption ensure low detection limits.

Peltier-cooled focusing trap eliminates ice-plug formation, while fast trap cooling minimises cycle times.

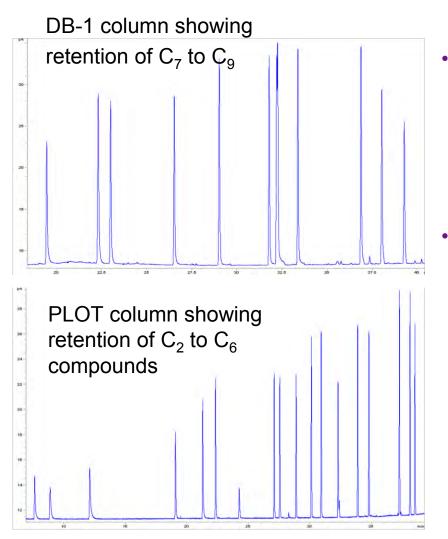
How on-line/canister analysis works

2. Trap desorption and outlet split



Focusing trap rapidly heated (up to 100° C/s) in a reverse flow of carrier gas ('backflush' operation), to transfer the analytes to the GC column.

- Fully automated sequences of air/gas (from a sample stream, calibration gas or zero air/gas) can be set at user-defined frequencies.
- During trap desorption, the flow of analytes can be split and re-collected onto a clean sorbent tube.
- Tubes and traps can contain multiple sorbents, for analysis of an extended range of analytes.



Analysis of Air Toxic compounds – Canisters

MARKES 1 L of a 1 ppb air toxics mix analysed splitless & cryogen-free using TD-GC/MS scan

Application: Monitoring of C_2 – C_{10} hydrocarbons (ozone precursors) in ambient (TD–GC dual FID)

Target compounds:

- C₂ to C₁₀ hydrocarbons (ozone precursors)
- 'Ozone precursors' focusing trap at –
 30°C and flow path at 120°C

Performance in field operation:

- Detection limits: <0.05 ppb
- Retention time stability: <0.2% RSD across all compounds
- Standard reproducibility: 0.2–5% RSD
- Excellent peak shape for splitless injection

Can canisters do everything?

- Great for C_2 to C_{12} compounds
- Suitable for rapid transfer (not storage) of ultravolatile reactive compounds such as H_2S
- Ideal for simple grab-sampling

- × NOT suitable for compounds with volatility less than $C_{10/12}$
- × NOT suitable for high-concentration samples
- Time-weighted average sampling is NOT as easy with a canister

How thermal desorption works

1. Tube desorption and inlet split

Sample tubes and traps can contain multiple sorbents, for analysis of a wide range of analytes.

During desorption of the tube the flow of analytes can be split and re-collected onto a clean sorbent tube.

Sample tube heated in flow of carrier gas and analytes swept onto an electrically cooled focusing trap, typically held between ambient and -30° C.

How thermal desorption works

2. Trap desorption and outlet split

Focusing trap rapidly heated (up to 100° C/s) in a reverse flow of carrier gas ('backflush' operation), to transfer the analytes to the GC column.

Extended re-collection

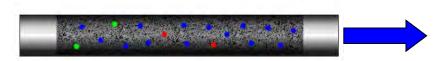
Quantitative re-collection allows:

- Valuable samples to be reanalysed, overcoming the historic 'one-shot' limitation of thermal desorption.
- Allows complete analyte transfer to be validated, ensuring compliance with standard methods.
- Aids method development and troubleshooting.

Sorbent tubes: Sampling techniques

- Active sampling
- Passive sampling

Which method to use?


Pumped sampling

Sample collection

 Sample (e.g. air) is collected

 Compounds of interest are adsorbed on the sorbent surface

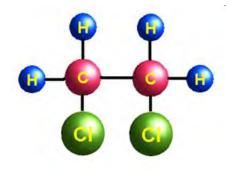
 Lighter gases such as nitrogen, argon and carbon dioxide pass through

Flow rate = 20–100 mL/min

Volume = 500 mL to 100 L

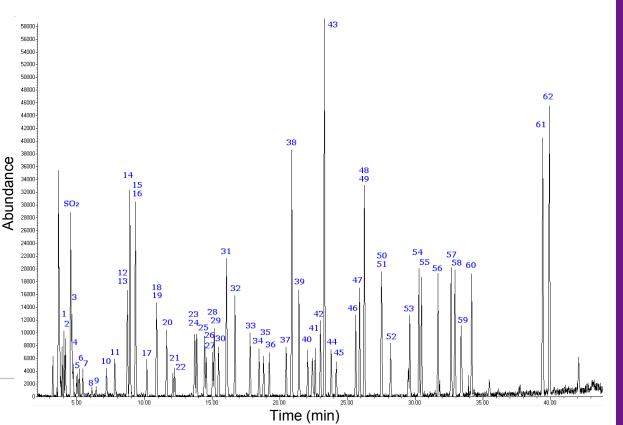
Important – do not exceed breakthrough volume for a compound on a given sorbent

Air monitoring - pumped

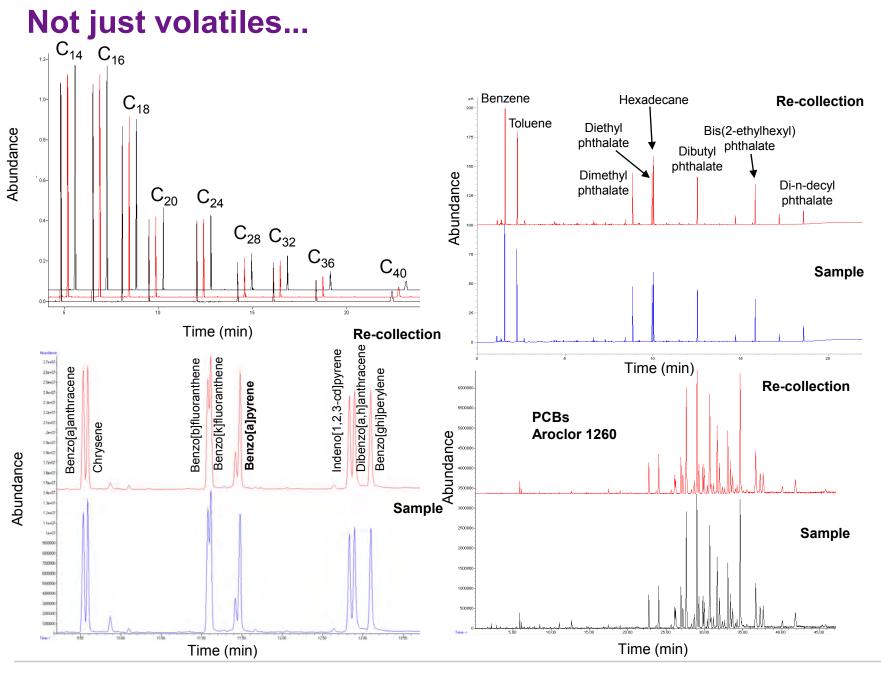

Sorbent selection for both tubes and focusing trap are very important

Semi-volatile compounds – Weak sorbent Helps prevent retention of unwanted compounds

Very volatile compounds – Strong sorbent Prevents breakthrough of light compounds

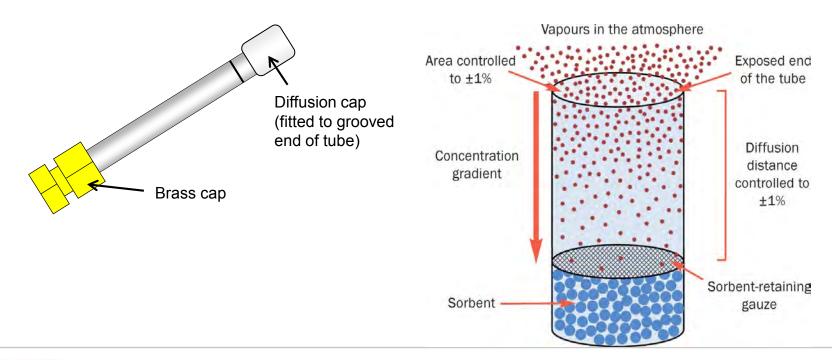


A complex example (US EPA TO-17)


1	Propene	30	Carbon tetrachloride
2	Dichlorodifluoromethane	31	Benzene
3	1,2-Dichloro-1,1,2,2-	32	n-Heptane
	tetrafluoroethane	33	Trichloroethene
	(Freon® 114)	34	1,2-Dichloropropane
4	Chloromethane	35	1,4-Dioxane
5	Chloroethane	36	Bromodichloromethane
6	Buta-1,3-diene	37	cis-1,3-Dichloropropene
7	Vinyl chloride	38	4-Methylpentan-2-one
8	Bromomethane	39	Toluene
9	1,2-Dichloroethane	40	trans-1,3-Dichloropropene
10	Trichlorofluoromethane	41	1,1,2-Trichloroethane
11	Ethanol	42	Tetrachloroethene
12	1,1-Dichloroethene	43	Hexan-2-one
13	1,1,2-Trichloro-1,2,2-	44	Dibromochloromethane
	trifluoroethane	45	1,2-Dibromoethane
	(Freon® 113)	46	Chlorobenzene
14	Acetone	47	Ethylbenzene
15	Carbon disulfide	48)	
16	Isopropanol	49)	m-, p-Xylene
17	Dichloromethane	50	o-Xylene
18	Methyl tert-butyl ether	51	Styrene
19	cis-1,2-Dichloroethene	52	Bromoform
20	n-Hexane	53	1,1,2,2-Tetrachloroethane
21	1,1-Dichloroethane	54	Trimethylbenzene
22	Vinvl acetate	55	Trimethylbenzene
23	trans-1,2-Dichloroethene	56	1-Ethyl-4-methylbenzene
24	Butan-2-one	57	Dichlorobenzene
25	Ethyl acetate	58	Dichlorobenzene
26	Tetrahydrofuran	59	α-Chlorotoluene
27	Chloroform	60	Dichlorobenzene
28	1,1,1-Trichloroethane	61	1.2.4-Trichlorobenzene
29	Cyclohexane	62	Hexachlorobuta-1,3-diene

Splitless desorption of 'Air toxics' tube loaded with 1 L of 1 ppb std GC/MS

Source: Markes Application Note TDTS 86



Passive (diffusive) sampling

- Diffusive sampling = a simple and cost-effective method of collecting the large number of samples required in many air monitoring programmes
- Vapours migrate across the air gap at a constant 'uptake rate'
- Diffusive sampling is a slow process typically sample for days

When should I use diffusive sampling?

- You know the compound that you are looking for
- There is a validated uptake rate available for that compound
- The test atmosphere is not heavily contaminated with a wide range of other organic compounds at much higher concentrations
- The expected concentration of analyte in the atmosphere is such that the desired sampling time (usually between 4–8 hours (occupational) and 1–4 weeks (environmental)) will result in a mass on the tube which is above the limit of detection of the TD–GC(MS) method
- You are looking for several compounds of the same volatility

- × You are using a multibed sorbent tube
- You are sampling a completely unknown atmosphere
- You want to sample two (or more) compounds of widely differing volatilities (*e.g.* acetone and toluene)
- × There are no uptake rates available for the compounds of interest

EPA 325 – Refinery perimeter monitoring

New federal regulation (CFR 40) to be implemented mid 2015, compliance within 3 years


- Requires continuous monitoring of vaporphase organics around the boundary of oil refineries. Target analytes:
 - Benzene
 - Hazardous air pollutants (HAPs)
 - VOCs in refinery air (light/middle distillate fuels)
- US EPA Methods:
 - 325 A (Sampling): 2-week passive sampling using sorbent tubes.
 - 325 B (Analysis): TD–GC(MS) determination (MS recommended)

Which sampling method is best? How do I get the right results?

- What are the compounds of interest?
- What is the expected concentration?
- How long is the monitoring period?
- Is the matrix compatible?
- Etc.....

- You can not determine which method is best until you know the sampling situation.
- <u>Define the problem, before finding the solution</u>, or as Einstein is quoted as having said

" If I had one hour to save the world, I would spend fifty-five minutes defining the problem and only five minutes finding the solution."

Contact us/Learn More

Questions?

nwatson@markes.com

Acknowledge the work of the Markes Application Team 1-866-483-5684

enquiries@markes.com

www.markes.com

@MarkesInt

Markes International

Google plus

TheMarkes1

A company of the **SCHAUENBURG** International Group