

... efficient, environmentally friendly and cost effective approach

Single Analysis of Volatile and Semi-Volatile Organics in Air. The Cost Effective Green Solution

Roberta Provost, Air Method Development Chemist Pace Analytical Services Lee Marotta, Sr Field Application Scientist PerkinElmer Instruments

- Introduction
- Industry Problem/Solution
 - Combining a two analysis solution into one analysis
- ▶ EPA Method TO-17 and Thermal Desorption
- Analytical Data and Performance
- Results from Site Sampling (MGP site)
- Air Monitoring Study Summary

New Sorbent Tubes designed by PerkinElmer

- 2010: Soil Vapor Intrusion (SVI) Tube (patented)
 - \circ (C₃ to C₂₆)
 - Combines VOC & SVOC from the seven VOA gases to pyrene
 - Thank you to CARO Analytical Services for their help
- 2011: XRO-640 (patent pending)
 - \circ (C₆ to C₄₄)
 - Residue in Liquefied Petroleum Gas (LPG)
 - Combines VOC & SVOC from BTEX to benzo(g,h,i)perylene
 - Thank you to Alberta Innovates Tech Futures for their help
- 2013: XRO–440 (patent pending)
 - \circ (C₄ to C₄₄)
 - Combines VOC & SVOC from 1,3-butadiene to benzo(g,h,i)perylene
 - Thank you to Pace Analytical Services for their help

... efficient, environmentally friendly and cost effective approach

Success

Move from a Two Analysis

to One Analysis

The cost effective,

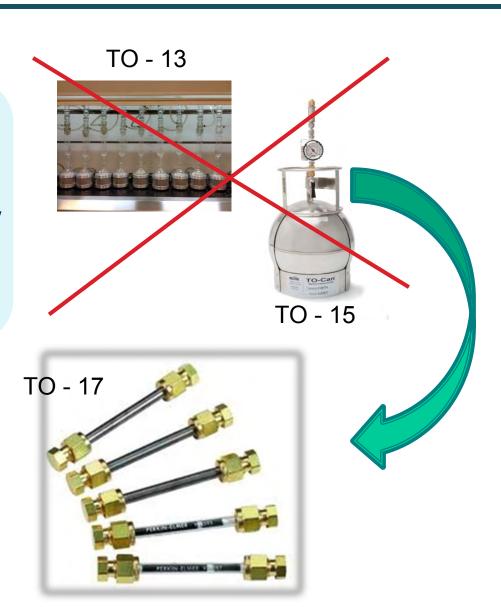
environmentally friendly

Approach

PM10 (particulates)

TO-15 (VOCs)

TO-13 (PAHs)

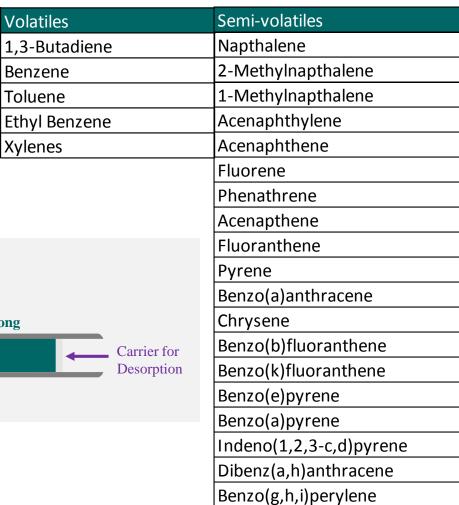


- Eliminate liquid extractions
 - Save time and \$\$\$
 - Improve productivity and efficiency
 - Enhance recoveries
 - A Greener analysis

Two Analysis now ONE

Improve Productivity
Cost Effective
Environmentally Friendly

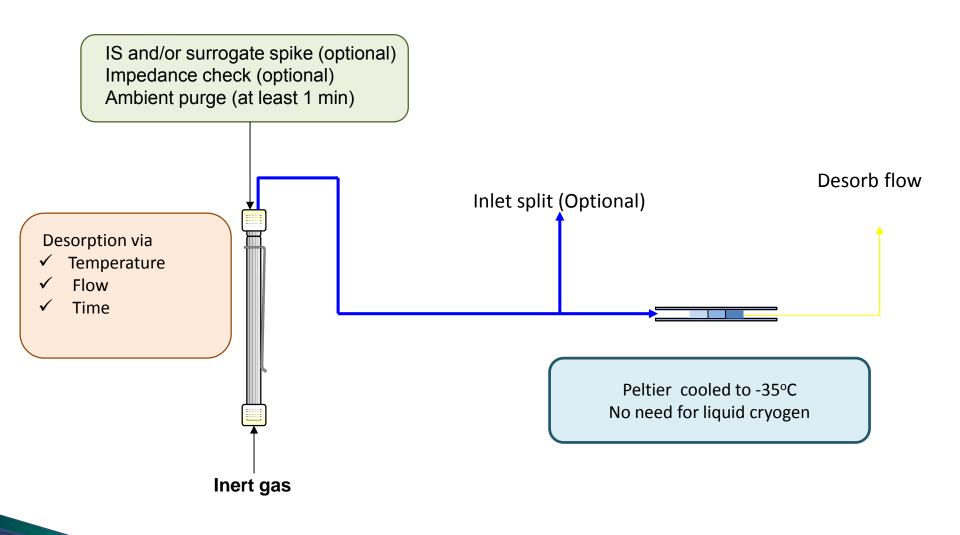
The Analytical Solution for Air Monitoring


... efficient, environmentally friendly and cost effective approach

The TO-17 Solution for the Analysis of VOCs and SVOCs in air

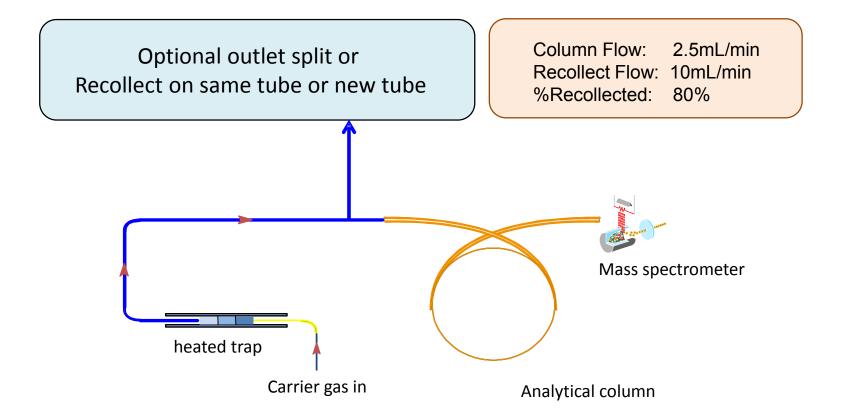
The Analytical Solution for Air Monitoring

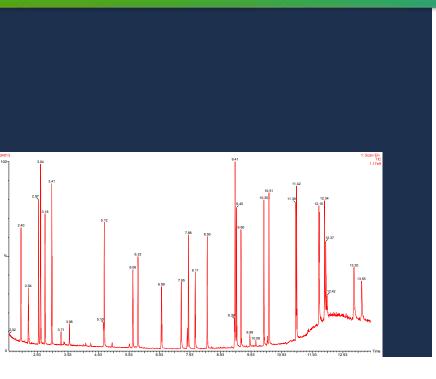
... efficient, environmentally friendly and cost effective approach



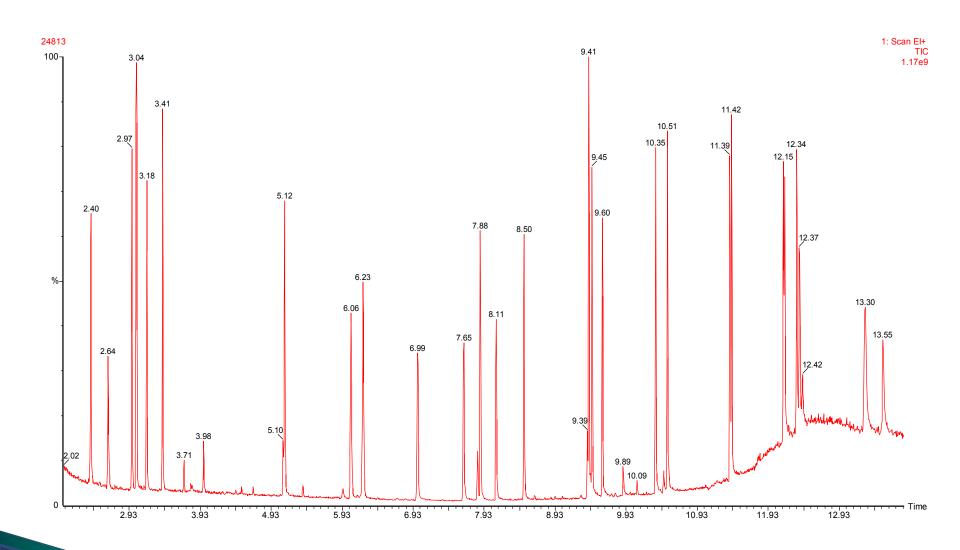
Operation

Step 1: Sample Tube (Primary) Desorption





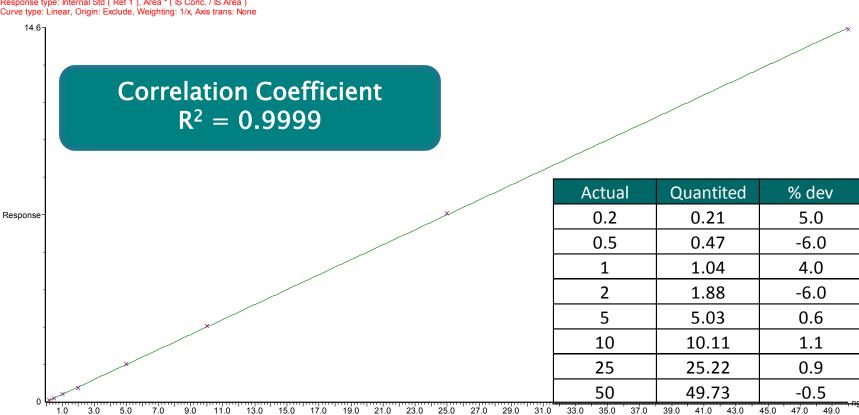
... efficient, environmentally friendly and cost effective approach


Analytical Performance

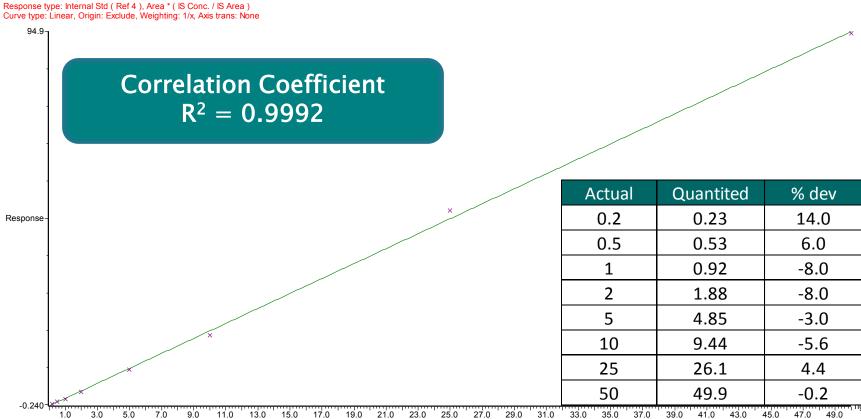
Data was acquired in Simultaneous Full Scan/ SIM Mode. Only results from Full Scan are reported

Total Ion Chromatogram (TIC)

Calibration, Precision and Reporting Limits



Target Compount	Range 0.2 to 50ng	Reporting Limit (ug/m³) 45L sample volume	Precision (%RSD) n=6
1,3-Butadiene	0.9961	0.0111*	1.89
Benzene	0.9971	0.0044	0.90
Toluene	0.9991	0.0044	0.94
Ethyl Benzene	0.9989	0.0044	0.77
m & p - Xylenes	15.54%	0.0044	0.95
o - Xylene	0.9994	0.0044	1.57
Naphthalene	25.07%	0.0044	0.92
2-Methylnaphthalene	11.79%	0.0044	1.69
1-Methylnaphthalene	19.05%	0.0044	0.65
Acenaphthylene	11.32%	0.0044	1.87
Acenaphthene	14.40%	0.0044	1.48
Fluorene	20.96%	0.0044	2.27
Phenanthrene	8.13%	0.0044	1.67
Anthracene	15.54%	0.0044	2.27
Fluroanthene	7.23%	0.0044	1.41
Pyrene	22.44%	0.0044	1.24
Benzo[a]anthracene	18.93%	0.0044	2.04
Chrysene	19.21%	0.0044	1.92
Benzo[b&k]fluoranthene	16.21%	0.0044	5.96
Benzo[e]pyrene	16.61%	0.0044	0.80
Benzo[a]pyrene	10.86%	0.0044	0.99
Indeno[1,2,3-c,d]pyrene	20.28%	0.0044	1.78
Dibenz[a,h]anthracene	0.9951	0.0044	1.21
Benzo[g,h,i]perylene	0.9952	0.0044	1.97

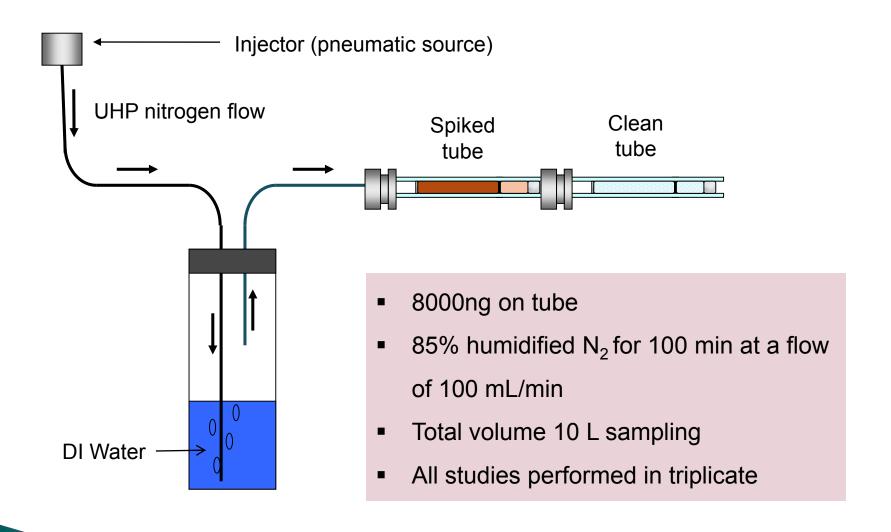

Compound 12 name: o - Xylene
Coefficient of Determination: 0.999930
Calibration curve: 0.292679 * x + 0.00222540
Response type: Internal Std (Ref 1), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound 22 name: Pyrene Coefficient of Determination: 0.999243 Calibration curve: 1.90286 * x + -0.239747

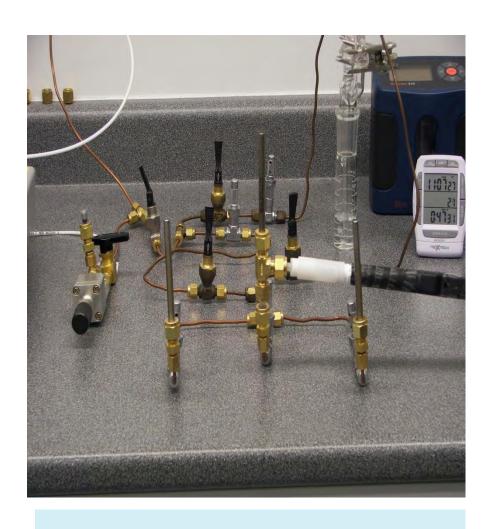
The Analytical Solution for Air Monitoring

... efficient, environmentally friendly and cost effective approach

Breakthrough and Recovery Experiments and Results



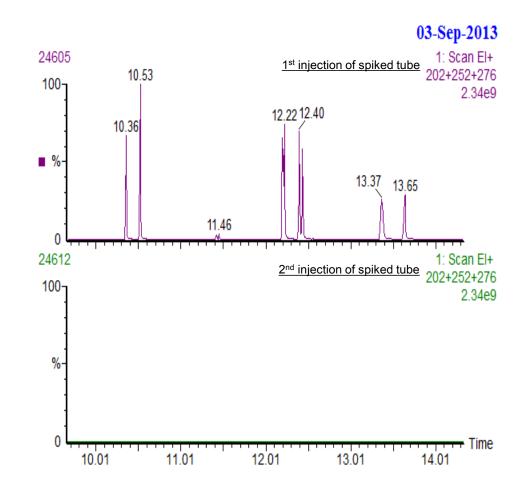
- Occurs when target compounds are not adsorbed by adsorbents
- ▶ EPA TO-17 definition: "The volume sampled when the amount of analyte collected in a back-up sorbent tube reaches a certain percentage (typically 5%) of the total amount collected by both sorbent tubes"



- A primary TD tube was attached to a gaseous standard to continuously deliver target compounds (mimics a real-world sampling event)
- A BT tube was attached and monitored on a regular basis
- Ultimately, the primary tube was loaded with >200mg analyte with no detectable breakthrough

non-detectable breakthrough on all compounds first target 1,3-butadiene

Carryover and Recovery



Recovery/Carryover Experiments

- Analyzed spiked tube (50ng)
- Analyzed trap
- Analyzed valve
- Re-analyzed spiked tube

Target Analyte	Trap Test	Tube Test	Valve Test
Benzene	nd	nd	nd
Toluene	nd	nd	nd
Ethylbenzene	nd	nd	nd
m&p-Xylene	nd	nd	nd
o-Xylene	nd	nd	nd
Naphthalene	nd	nd	nd
2-Methylnaphthalene	nd	nd	nd
Acenaphthylene	nd	nd	nd
Acenaphthene	nd	nd	nd
Fluorene	nd	nd	nd
Phenanthrene	nd	nd	nd
Fluoranthene	nd	nd	nd
Chrysene	nd	nd	nd
Benzo[a]pyrene	nd	nd	nd
Indeno[1,2,3-cd]pyrene	nd	nd	nd
Benzo[g,h,i]perylene	nd	nd	nd

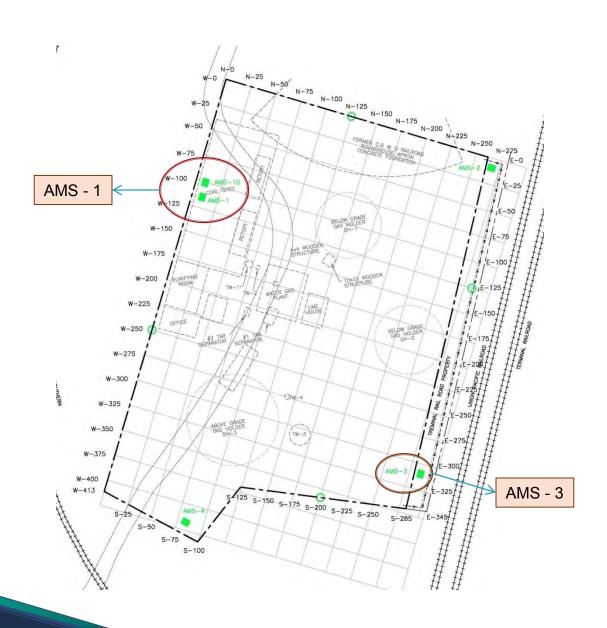
The Analytical Solution for Air Monitoring

... efficient, environmentally friendly and cost effective approach

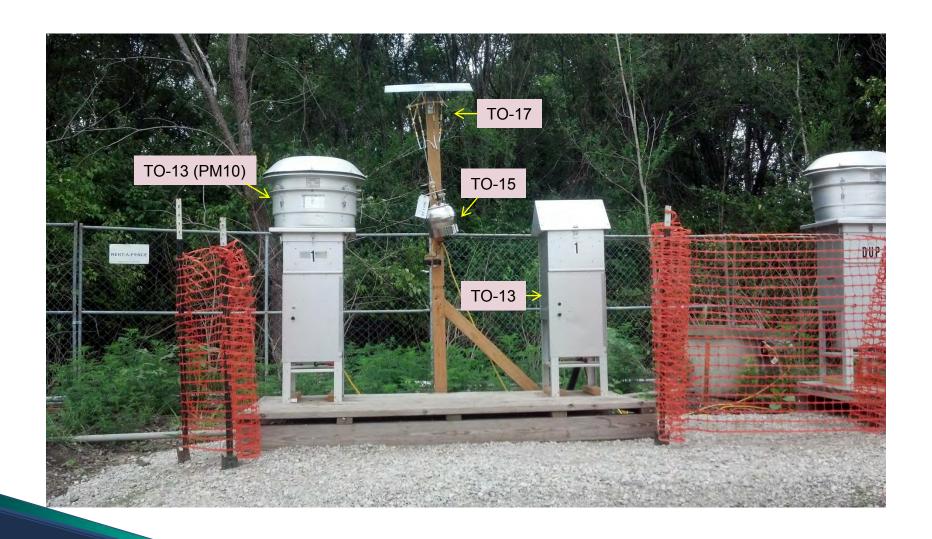
Site Study, 2012-2013

TO-17 data was collected in simultaneous Full Scan/SIM mode only Full Scan data is presented

Air Monitoring Study Parameters



- Compare TO-13 / TO-15 to TO-17 from an active MGP remediation site
- ▶ 72-hour sample collection
- Continuous sampling for six weeks
- One sample location selected (AMS-03)
- ▶ Three 72-hour samples from each site were selected for comparison
- ▶ 14 sampling sets



- Two types of tubes investigated (XRO-440 and XRO-640)
- Each type of tube was sampled in duplicate
- One of the duplicates had filter attached and analyzed
- A breakthrough tube was attached to every tube sampled

72 Hour Sampling Duration

- Arr TO-13 = ~1,000,000 Liters (1000 m³)
- ▶ TO-15 = 6 Liters
- ightharpoonup TO-17 = ~45 Liters

Moisture: Hydrophobic adsorbents

Tube	Time for Dry Purge				
Sample Tube Type 1	nd added moisture on tube				
Sample Tube Type 2	2 minute Dry Purge				

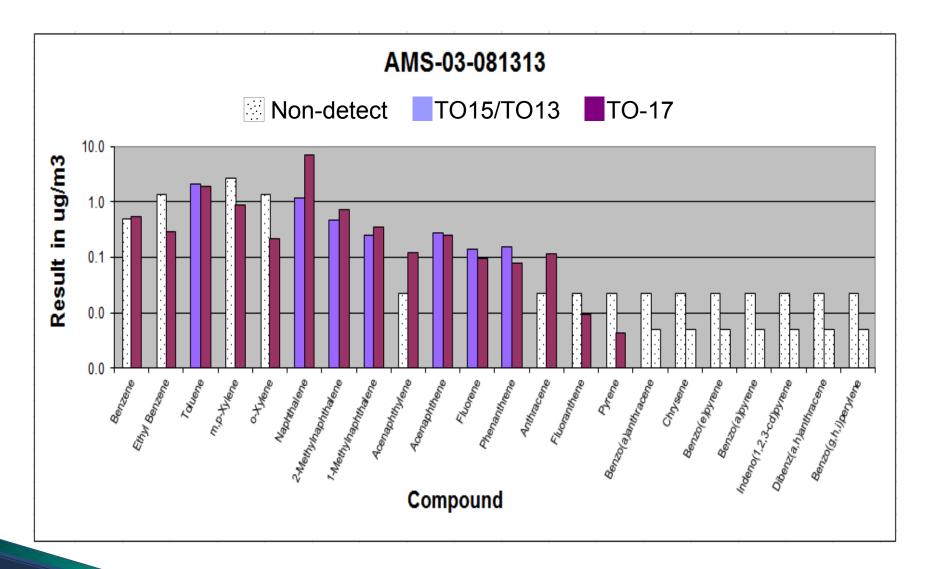
Only slight water retention with 45L sample volume!

There was non-detectable targets on the breakthrough tubes from the site studies with an average of 45 liter sample volume

Duplicates from Site Study

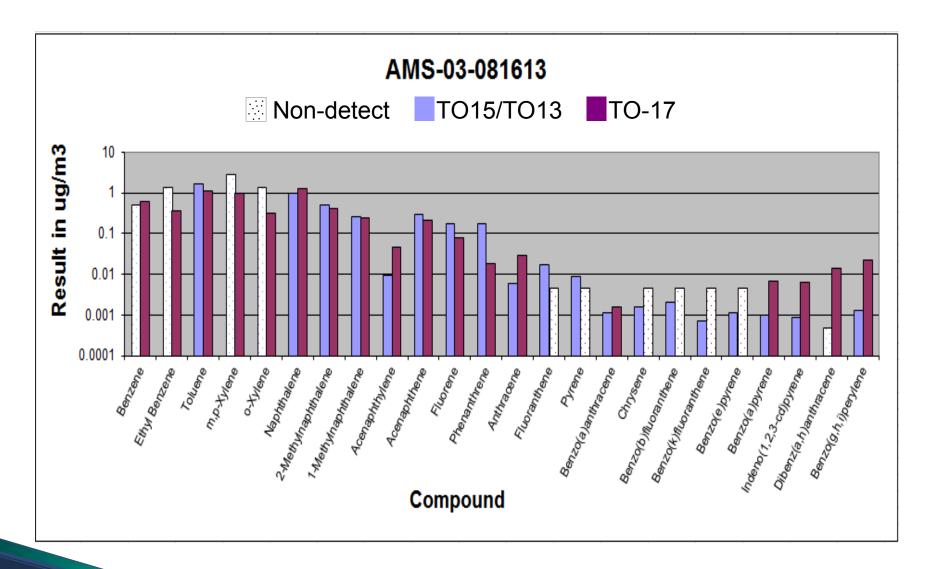
	ug/m3	ug/m3	equates to ng on	
Target Analyte	(first tube)	(second tube)	tube	% relative dif
1,3-Butadiene	0.0193	0.0200	0.87	3.6
Benzene	0.3827	0.4090	17.2	6.6
Toluene	1.3329	9.7246	60.0	152
Ethyl Benzene	0.1543	0.2136	6.94	32.2
m & p - Xylenes	0.4413	0.6081	19.9	31.8
o - Xylene	0.1434	0.1586	6.45	10.1
Naphthalene	3.1182	3.4084	140	8.9
2-Methylnaphthalene	0.6185	0.6083	27.8	1.7
1-Methylnaphthalene	0.2647	0.3138	11.9	17.0
Acenaphthylene	0.0656	0.0492	2.95	28.6
Acenaphthene	0.3022	0.2660	13.6	12.8
Fluorene	0.1238	0.1768	5.57	35.3
Phenanthrene	0.0547	0.0931	2.46	52.0
Anthracene	0.0803	0.0915	3.61	13.1
Fluroanthene	0.0040	0.0050	0.18	21.7
Pyrene	0.0032	0.0050	0.14	45.4
Benzo[a]anthracene	0.0067	0.0054	0.30	21.0
Chrysene	0.0046	0.0033	0.21	32.7
Benzo[b&k]fluoranthene	0.0044	nd	0.20	
Benzo[e]pyrene	0.0044	nd	0.20	
Benzo[a]pyrene	0.0074	nd	0.33	
Indeno[1,2,3-c,d]pyrene	nd	nd		
Dibenz[a,h]anthracene	nd	nd		
Benzo[g,h,i]perylene	nd	nd		

Results from Study: AMS-03

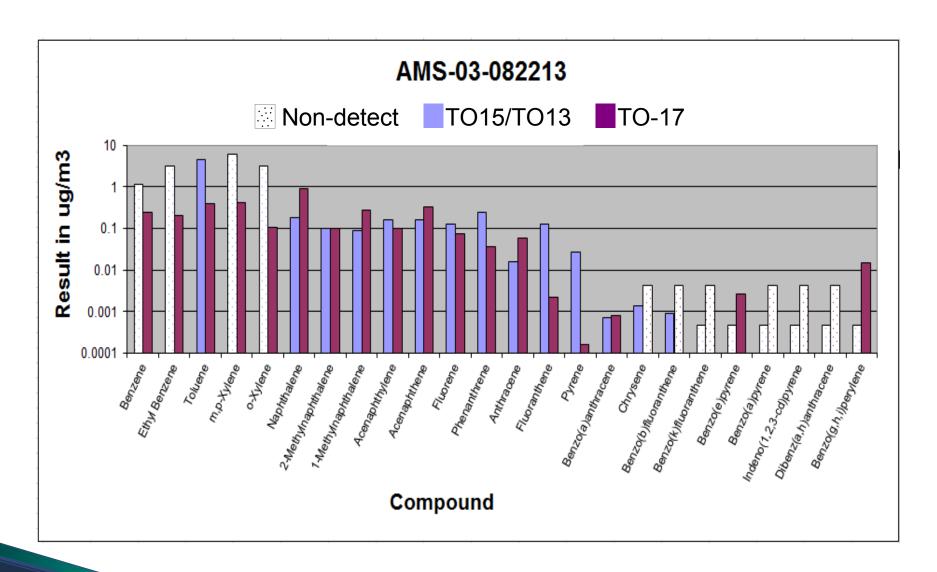


Sample ID	AMS-03	-081313	AMS-03	3-081613	AMS-03-082213		
- Analyte	TO13 & TO15	TO17	TO13 & 15	TO17	TO13 & 15	T017	
Benzene	0.52	0.54	1.20	0.56	1.2	0.48	
Ethyl Benzene	1.4	0.29	1.4	0.29	3.2	0.78	
Toluene	2	1.9	1.6	1.1	4.4	0.86	
m,p-Xylene	2.8	0.87	2.8	0.83	6.5	0.91	
o-Xylene	1.4	0.22	1.4	0.24	3.2	0.26	
Naphthalene (TO15)	3.2	6.9	3.3	1.1	3.9	2.4	
Naphthalene (TO13)	1.2	6.9	0.95	1.3	0.18	2.4	
2-Methylnaphthalene	0.48	0.74	0.51	0.41	0.10	0.67	
1-Methylnaphthalene	0.25	0.36	0.26	0.25	0.088	1.2	
Acenaphthylene	0.023	0.12	0.0094	0.047	0.17	0.40	
Acenaphthene	0.27	0.25	0.30	0.21	0.17	1.7	
Fluorene	0.14	0.10	0.17	0.081	0.13	0.45	
Phenanthrene	0.16	0.077	0.17	0.019	0.24	0.24	
Anthracene	0.023	0.11	0.0061	0.0258	0.016	0.36	
Fluoranthene	0.023	0.0092	0.017	0.0047	0.13	0.013	
Pyrene	0.023	0.0043	0.0088	0.0047	0.027	0.0018	
Benzo(a)anthracene	0.023	0.0051	0.0011	0.0047	0.00074	0.00029	
Chrysene	0.023	0.0051	0.0016	0.0047	0.0014	0.0046	
Benzo(b+k)fluoranthene	0.046	0.010	0.0027	0.0094	0.00091	0.0092	
Benzo(e)pyrene	0.023	0.0051	0.0011	0.0047	0.00050	0.0046	
Benzo(a)pyrene	0.023	0.0051	0.0010	0.0066	0.00050	0.0046	
Indeno(1,2,3-cd)pyrene	0.023	0.0051	0.0009	0.0065	0.00050	0.0046	
Dibenz(a,h)anthracene	0.023	0.0051	0.00050	0.0140	0.00050	0.0046	
Benzo(g,h,i)perylene	0.023	0.0051	0.0013	0.0220	0.00050	0.015	

Note: yellow cells are non-detect with the reporting limit value for that target in the cell

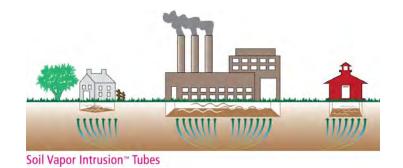


Note: dotted, unfilled bars are non-detects. Value represents reporting limit.



Note: dotted, unfilled bars are non-detects. Value represents reporting limit.

Note: dotted, unfilled bars are non-detects. Value represents reporting limit.



... efficient, environmentally friendly and cost effective approach

Other Projects and Site Studies

Site Experiments

Site	Investigating (Research)	Sample Volume
Indoor Air	Comparing PAHs in Sub-Slab to Indoor Air	1 liter
Industrial Sub-Slab (MI)	2-Methyl Naphthalene was the compound of interest comparing recovery using TO-15 to TO-17 (XRO-440 tube)	1 liter
Industrial Sub-Slab (IN)	Same site sampling onto SVI tube and XRO-440 tube	1 liter

Indoor Air Site – Soil Vapor Intrusion Concern (conc µg/m³)

Location	Stock	Room	Sewing	Maint Room	
Location	Sub-slab	Indoor Air	Sub-slab	Indoor Air	Drain
Target Analyte (SVOC)					
Naphthalene	0.251	3.96	0.286	1.15	1.46
2-Methylnaphthalene	0.345	0.802	0.414	0.252	0.900
1-Methylnaphthalene	0.284	0.408	0.234	0.138	0.529
Acenaphthylene	0.0773	nd	nd	nd	0.180
Acenaphthene	0.157	nd	nd	nd	nd
Fluorene	0.170	0.124	0.166	0.210	0.119
Phenanthrene	0.158	0.111	nd	1.40	0.0794
Anthracene	nd	0.0335	nd	0.240	nd
Fluroanthene	0.0208	nd	0.0336	0.145	nd
Pyrene	0.0286	0.0192	nd	0.238	nd
Benzo[a]anthracene	nd	nd	nd	0.0334	nd
Chrysene	nd	nd	nd	0.0315	nd
Benzo[b]fluoranthene	nd	nd	nd	nd	nd
Benzo[k]fluoranthene	nd	nd	nd	nd	nd
Benzo[e]pyrene	nd	nd	nd	nd	nd
Benzo[a]pyrene	nd	nd	nd	nd	nd
Indeno[1,2,3-c,d]pyrene	nd	nd	nd	nd	nd
Dibenz[a,h]anthracene	nd	nd	nd	nd	nd
Benzo[g,h,i]perylene	nd	nd	nd	nd	nd

Results from Site in Michigan: Soil Gas (XRO-440 Tubes)

Component	Reporting Limit (RL)	001B	004B	022B	002B	009B	016B
Naphthalene	0.30	1.39	1.52	0.81	0.453	0.414	1.1
2-Methylnaphthalene	0.30	0.818	0.253	0.189	0.247	0.129	1.2
1-Methylnaphthalene	0.30	0.415	0.146	0.116	0.14	0.117	0.631
Acenaphthylene	0.30	0.0682	0.0338	0.0458	0.043	0.0232	0.114
Acenaphthene	0.30	0.0527	0.0178	0.0246	0.015	0.00897	0
Fluorene	0.30	0.0542	0.0162	0.0455	0.0427	0.0312	0.051
Phenanthrene	0.30	0.212	0.174	0.214	0.211	0.247	0.546
Anthracene	0.30	0.063	0.0416	0.049	0.0455	0.0619	0.0933
Fluoranthene	0.30	0.079	0.0873	0.0892	0.116	0.136	0.128
Pyrene	0.30	0.0976	0.05	0.0558	0.0638	0.0576	0.057
Benzo(a)anthracene	0.30	0.165	0.0465	0.0729	0.0935	0.109	0.103
Chrysene	0.30	0.108	0.0623	0.0768	0.0833	0.0682	0.0576
Benzo(b)fluoranthene	0.30	0.568	0.547	0.179	0.45	0.435	0.356
Benzo(k)fluoranthene	0.30	0.426	0.413	0.164	0.371	0.25	0.13
Benzo(e)pyrene	0.30	0.193	0.148	nd	0.23	0.229	0.195
Perylene	0.30	nd	0.4	nd	nd	nd	nd
Benzo(a)pyrene	0.30	0.247	nd	nd	nd	nd	nd
Ideno(1,2,3-cd)pyrene	0.30	nd	nd	nd	nd	nd	nd
Dibenz(a,h)anthracene	0.30	nd	nd	nd	nd	nd	nd
Benzo(g,h,i)perylene	0.30	nd	nd	nd	nd	nd	nd

Indiana Site: TO-17 (SVI vs XRO-440 Tubes)

Sample		VP -	105	VP -106		VP - 111		VP - 114		VP - 115		
	SVI RL	XRO-440										
Compound	(ng)	RL (ng)	SVI	XRO - 440	SVI	XRO - 440						
Naphthalene	5.0	0.30	2.04	0.999	2.16	1.87	2.25	2.1	2.15	1.1	8.46	6.55
2-Methylnaphthalene	2.0	0.30	1.72	0.439	1.37	1.32	0.612	0.71	0.474	0.742	20.9	20
1-Methylnaphthalene	2.0	0.30	1.11	0.262	1.08	0.78	0.604	0.49	0.38	0.714	12.8	13
Acenaphthylene	2.0	0.30	0.0278	0.0381	0.0327	0.0828	0.0238	0.0514	0.0776	0.0932	1.86	0.704
Acenaphthene	2.0	0.30	0	0.051	0.186	0.118	0.136	0.0382	0.101	0.0465	1.2	0.947
Fluorene	2.0	0.30	0.28	0.0678	0.281	0.106	0.213	0.0676	0.172	0.043	0.795	0.416
Phenanthrene	2.0	0.30	0.249	0.196	0.242	0.347	0.255	0.237	0.179	0.147	0.42	0.358
Anthracene	nd	0.30	nd	nd	nd	0.0622	nd	nd	nd	nd	nd	0.136
Fluoranthene	nd	0.30	nd	0.0576	nd	0.0591	nd	0.0579	nd	0.0539	nd	0.0363
Pyrene	nd	0.30	nd	0.162	nd	0.161	nd	0.15	nd	0.101	nd	0.173
Benzo(a)anthracene	nd	0.30	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Chrysene	nd	0.30	nd	nd	nd	nd	nd	nd	nd	0.0386	nd	nd
Benzo(b)fluoranthene	nd	0.30	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(k)fluoranthene	nd	0.30	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(e)pyrene	nd	0.30	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Perylene	nd	0.30	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(a)pyrene	nd	0.30	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Ideno(1,2,3-cd)pyrene	nd	0.30	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Dibenz(a,h)anthracene	nd	0.30	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo(g,h,i)perylene	nd	0.30	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

EPA Acceptance for SVOC by TO-17

- EPA Method TO-17 is performance-based, guidance method
 - Section 2.5 states: "...This method provides performance criteria to demonstrate
 acceptable performance of the method (<u>or modifications of the method</u>) for
 monitoring a compound or set of compounds."
- ▶ EPA has seen this data and has given verbal acceptance stating that TO-17 is performance based so targets may be included as long as criteria is met
 - U.S. Environmental Protection Agency
 Office of Air Quality Planning and Standards
 Ambient Air Monitoring Group C304-06
 Research Triangle Park, NC 27711

- Analytical performance proves concept
- Site data suggests this is a better alternative
- One analysis instead of two:
 - Reduce sampling and analytical costs and disposal
 - Save on shipping and labor costs
 - Enhance productivity and efficiency
 - Increase profits
 - Better for our environment ... A Greener analysis
- More data is available

Acknowledgments

Pace Analytical Services

- Amy Jacobson, manager
- Nathan Eklund, Program Manager
- Kesler Krieg, Sales Manager for Air

PerkinElmer Instruments

James Day, Sr Service Engineer

The Analytical Solution for Air Monitoring

... efficient, environmentally friendly and cost effective approach

Questions please ????

Contact Info: lee.marotta@perkinelmer.com