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Estimation of Peak Pressure for Sonic-Vented Hydrocarbon
Explosions in Spherical Vessels

MICHAEL EPSTEIN, IAN SWIFT,* and HANS K. FAUSKE

Fauske & Associates, Inc., Burr Ridge, Hlinois 60521

Two closed-form approximate solutions are presented for the final pressure produced by a hydrocarbon explosion in a
spherical vessel with sonic venting. A constant factor which multiplies the ideal spherical flame velocity is used to
describe the effect of flame acceleration. One of the solutions is a simple, easy-to-use equation which may appeal to
vent designers; it agrees well with reported results from a comprehensive computer model and correlates available
experimental data as well as previous models involving several variable turbulence factors.

INTRODUCTION

A substantial body of experimental data exists on
sonic-vented deflagrations of hydrocarbon-air
mixtures in high pressure vessels up to 60 m? in
volume. To interpret the observed peak pressures
correctly, it is, of course, necessary to have a
theoretical model of the chemistry and dynamics
of such vented deflagrations, and this has typically
been done by recourse to computer simulation
(see, e.g., [1-4]). The purpose of this paper is to
exploit analytical techniques developed in the field
of vented deflagration research to obtain approxi-
mate closed-form expressions for the pressure in a
sonic-vented vessel at the completion of a tran-
sient, spherical deflagration. While these results
cannot be used for accurate vent design, they
should prove valuable for understanding quantita-
tive features of vented deflagrations, inferring
approximate scaling laws, and developing a meth-
odology for the selection of *‘safe’’ vent areas for
pressure relief. Moreover, the expressions corre-
late the available experimental data as well as
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previously reported numerical models with some
pretense of accuracy regarding the treatment of
flame acceleration mechanisms.

ANALYSIS

We treat here the particular case of ‘‘sonic-
vented’’ deflagrations, in which the vent opening
pressure (or set pressure) is sufficiently high and
the rate of burning is greater than the rate of
venting so that the gas discharge through the vent
is choked (sonic) throughout the duration of the
combustion process. The wholly sonic venting
regime is typical of explosion venting of high
pressure storage or process vessels. It is assumed
that the fuel and oxidizer gases are uniformly
mixed and contained within a rigid spherical vessel
of radius R.! The gases are centrally ignited and
the pressure in the vessel begins to rise at a rate
proportional to the product of deflagration flame
speed and area. The corresponding model of the
deflagration in a spherical vessel is depicted in
Fig. 1. The behavior of the spherical reaction front

! For the purpose of treating a nonspherical vessel, R is the

radius that a sphere would attain if it had the same volume as
the nonspherical vessel.
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Fig. 1. Configuration and notation: flame propagation in a
spherical vented container.

itself constitutes the first and most important
assumption:

1. The reaction or flame front speed is sufficiently
rapid to cause the thickness of the reaction zone
to be small compared with the (as yet undeter-
mined) flame radius, r. The flame front is
spherical and propagates outward from the
center of the vessel without any significant
distortion due to natural convention or venting.
Finally, it is assumed that a constant factor ¢
which multiplies the burning velocity S, ade-
quately describes the effects of increased burn-
ing rate due to both small-scale turbulence and
flame wrinkling (large-scale turbulence). Yao
et al. [1] assumed this to account for flame
acceleration effects.

Other important assumptions invoked to obtain
simple analytical results are

2. The ideal gas law is applicable to both the
unburned and burned gases, with the ratio of
specific heats (or polytropic exponents) and the
molecular weights for each gas characterized
by known constants. The burned and unburned
gases are compressed isentropically.

3. The temperature of the burned gas region is
uniform in space.

4. Energy losses to the vessel wall are negligible
and the pressure P is uniform throughout the
vessel.

5. When venting occurs only the unburned gases
are vented.

We now consider the fully transient combustion-
venting problem of predicting the maximum pres-
sure reached in the vessel at the instant when the
flame arrives at the wall (i.e., when r = R).
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The mass rate of production of burned gas is
given by the familiar formula for spherical flame
growth,

dm
-d—:=4wr2¢pu_su, (1)

where S, is the burning velocity and ¢ is the
turbulence correction factor (to be determined
from experimental data). The mass rate of loss of
the unburned gas is given by

id”?: — 4mr2¢p,S,— A\G. ¥)

The first term on the right-hand side of the above
equation represents the rate of loss of unburned
gas due to flame propagation and the second term
represents the escape of unburned gas through the
vent. Assumptions (2) and (3) imply
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where the subscript O refers to conditions in the
vessel at ignition. In writing the second of Egs. (3)
we are assuming that the burned gas density does
not depend on whether the gas is first compressed
and subsequently burned, or first burned and then
compressed. The burned gas density at ignition,
Pvo, is unknown; it can be estimated, however,
from a knowledge of the vessel pressure following
an explosion in a closed vessel (see below). It
follows from (3) that the instantaneous mass of
burned gas is given by

4 4 P\ Vn
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and that the total volume of the vessel, V, is
m m
Pu P
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Differentiating Eq. (5) with respect to time,
using Egs. (11 and 12) to eliminate dm,/dt and
dmy/dt, and solving the result for dP/dt, yields

i dIn P_- 4w rip(p/op—1)S,— A,G/p,
Yo dt (yo/yu)my/py + my/py .

(6)
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Simplification of this equation is possible if we can
_ put yp = 1y, in the denominator. The denominator
is then constant and equal to the volume of the
vessel [see Eq. (5)]. Making this approximation,
Eq. (6) becomes

VdlnP

Yo dt
Differentiating Eq. (4) with respect to time and

= 47rr2¢(pu/pb -1)S, - A,G/p,. (M
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using Eq. (7) to eliminate dP/dt gives the
following differential equation for the burn radius
r

dar
47rr? E =4wr¥(p,/pp)dS,—4wri/(3V)

X [4mr(pu/pn— 1)9 S, — AG/p ). (8)

Dividing Eq. (7) by Eq. (8), we have

(¢S A/ GAN (ool py) — D1 227 - 1

Yo dZ

where A is the surface area of the spherical
vessel, equal to 4wR?, and Z is a dimensionless
burn volume:
(4/3)xr?
v

Zz

(10)

Equation (9), when integrated, gives the variation
of pressure within the vessel as a function of the
volume of the flame ‘‘ball.”” Of course, the
maximum or final pressure, P, is reached when Z
= 1, i.e., when the flame ball occupies the entire
vessel volume. Equation (9) shows that P; depends
only on the dimensionless groups p,/p, and
#SupuAs/(GA,).

The burning velocity S, for most hydrocarbons
is linked empirically to pressure and unburned gas
temperature by the power law

S, T, \2/ Py\ 12
z( (—) . (11)
Su,O Tu,O P

The sonic mass rate of discharge per unit area of
vent is

G Pp, 1/2 '

—= . (12)
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Using the laws of isentropic compression, the

* group Sp,/G may be expressed in terms of
pressure only:

Sw./G (P)1~3/(2vu>
(Swo/G)o  \ P

(13)

Since for most hydrocarbon-air mixtures v, =
1.36, the exponent on the pressure ratio is only

(680, AJGA N (ool po)—[(oulpy) — 112} 23+ Z°
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—0.1. We can conclude that the group S,p,/G is
not greatly dependent on pressure during an
isentropic compression and for all practical pur-
poses is constant. The assumption that S,p,/G is
constant is used here. From Eq. (3) we note that
the density ratio p,/p, is related to pressure by

Pu pu,O(P>l/7u‘l/“/b (14)
o Pro \Po .

The specific heat ratio for the burned gases is
approximately 1.08 (see below) and thus the
exponent (1/y, — 1/y,) = —0.2, so we can
assume that p,/pyp is also uninfluenced by changes
in pressure and is a known constant.

The dimensionless group ¢Syp,A4/(GA,) that
appears in Eq. (9) is the ratio of the maximum
burning rate to the sonic discharge rate. To
simplify the notation we will denote it by B and
call it the burning number, viz.,

& SuouA;
GA,

B
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Most hydrocarbon-air mixtures have effectively
the same value of the group S,p./G, so that in
reality the burning number B is only a function of
the area ratio 4,/ A, and the turbulence correction
factor ¢.2 Previous analyses [1, 3] and experimen-

? For hydrocarbon-air mixtures and a venting discharge
coefficient of 0.7 S,0,/G has the value of approximately
0.0032. For laminar burning (¢ = 1) the burning number is
related to the Bradley-Mitcheson [3] dimensionless venting
parameter: A/$y by B = (A/8) (puolpvo — 1) VI(y, +
D21 (e + Dity, = 1),
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tal work [1, 5] suggest that explosion venting data
in terms of peak pressure should be specified as a
function of the ratio A,/A4,. Measured peak
pressures within vessels discharging gas in sub-
sonic flow have been found to compare well with
numerical results calculated by using constant
turbulent correction factors ¢ in the range 2-3 [1].
Before the vent opens G = 0 and Eq. (9)
simplifies to
l1dnP ou/op—1

— = : (16)
Yo dZ  ploy—(p/or—1)Z

Equation (16) can be readily integrated, leading to
an expression between the vessel pressure and the
dimensionless burn volume when the vent opens:

Pse u/
_ [ pu/py ] ™ an
PO pu/pb“(Pu/pb_ I)Zset

If the flame reaches the vessel wall without the
vent opening, Z,, = 1 and Eq. (17) then has its
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maximum value corresponding to an explosion in a
closed vessel:

Posx P4 ) 0
= — ) (18)
Py (Pb

Since Prp,x/Pp and p,/p, are frequently tabulated
quantities for combustible mixtures, Eq. (18)
serves as a means for evaluating the effective
constant exponent y,. For most hydrocarbon-air
mixtures we find v, = 1.08.

At this point it is desirable to express Z, in
terms of Py, /Py. From Eqgs. (17) and (18)

1= (Py/Pp)~
1= (Pran/ Po)~ V7

(19)

set

Integrating Eq. (9) from P = P atZ = Z, to P
= Prat Z = 1, using Eq. (18) to eliminate p,/p,
results in the following integral for the peak (final)
pressure:

[(Puad Po)/—1] - B - Z¥3 -1

In =t [
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It is not possible to do anything analytical with
this equation as it stands. We can, however, find
analytic expressions for P; which are upper
bounds to the set of solutions to Eq. (20). The
larger the value of B inserted into Eq. (20), the
higher is the corresponding final pressure P;.
Thus, if we ignore the variation of Z?* which
multiplies B, a useful upper limit to P; is obtained
by setting Z?3 equal to its maximum value of
unity. This substitution allows Eq. (20) to be
integrated in closed form, with the result

Pf Pmax l:)\+B] b

P, P, |1+B

@1
where A is a dimensionless vent opening pressure
defined by

_ (Pset/PO)‘/Tb_ 1
(P PY)V—1"

(22)

Interestingly enough, the values of P; calculated

Zt {(Pumax/P0) /" — [(Prax/Po) /76— 11Z} -+ B - Z¥3+ Z )

dz. (20)

from Eq. (21) are not too much larger than those
calculated from Eq. (20). The error associated
with Eq. (21) is largest when the set pressure is
low and approximately equal to P,, but even in
this limit the error is tolerable. For example, the
error is less than 30% for P/P; = 1.3. Clearly,
the integral in Eq. (20) is not greatly dependent on
the value of Z?/3, because an increased value of
this quantity raises the numerator and denominator
of the integral almost proportionately.

It should be noted that Eq. (21) is the solution
for the final pressure produced in a one-dimen-
sional vessel (cylinder) with ignition at the closed
end and a vent in the vessel opposite the plane of
ignition. In particular, it is the exact solution to
Egs. (1)-(5) with the flame front area 4xr?
constant and equal to the cross-sectional area of
the cylindrical vessel (‘‘flat flame approxima-
tion’’). Thus the simpler one-dimensional model
can be used without too much loss in accuracy to
predict the final pressure in a vented spherical



SIMPLIFIED VENTING CALCULATION

vessel. However, when the initial pressure and the
set pressure are nearly equal, Eq. (21) overesti-
mates the final explosion pressure in a spherical
vessel by about a factor of two.

An accurate closed-form approximation for Py
over the entire range of Py values, Py < P,y <
P,,,, can be obtained by substituting Z'/? for Z2/3
in Eq. (20). It is obvious that this substitution will
introduce a smaller error than that caused by
replacing Z?/3 by unity. Integrating Eq. (20) with
Z%*? now Z'? yields

Py [Zset”Z(l —BZ'?)+eB(1 _Zset)] "

P, 1+B
2e—1DBZ "2 +8—-1 | ws
2€e—1)B+8-1
—2(e—1B+1+ /B
x[ - b ]“’ . (23)
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where we have introduced the definitions

Poax \ 177
e = ( me ) !, (24)

Py

B = [1+4e(e—1)B?2, (25)

This result accurately predicts the final explosion
pressure. In the limit Pg,/Py — 1.0 the results are
especially encouraging, with Eq. (23) representing
the numerical solutions of Eq. (20) to better than
10%.

Equation (23) for the final explosion pressure is
more complex than the proceding equation for the
flat flame, viz., Eq. (21). Fortunately accurate
predictions can be made with Eq. (21) as long as
Py/Py > 1.3. This is usually the case in practice.
In the next section we compare the predictions of
Eq. (21) with available numerical and experimen-
tal results.

DISCUSSION

Bradley and Mitcheson [3] have provided com-
puter solutions of laminar (¢ = 1) spherical
burning within a vented vessel which are free from
many of the approximations invoked here. Their
analysis included a reaction zone of finite thick-
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ness, equilibrium chemistry calculations of the
burned gas properties allowing for twelve chemi-
cal species, and a spatially nonuniform tempera-
ture of the burned gas behind the deflagration
zone. The calculated peak pressures for a meth-
ane-air explosion are plotted in Fig. 2 in a manner
suggested by Eq. (21). The accurate computer
solution results of Bradley and Mitcheson [3]
appear as data points which were read off the
theoretical curves provided in their paper for the
sonic venting regime. The fact that all their
numerical data approximately collapse to a single
line close to the straight line represented by Eq.
(21) suggests a sound basis for the simple theory
presented here.

Chippett [4] carried out an experimental and
theoretical investigation of pressures developed in
methane- and propane-air mixtures in spheres
ranging from 0.65 to 3.8 m? in size under sonic
venting conditions. Figure 3 shows the compari-
son of Chippett’s experimentally determined peak
pressures for propane explosions in the 0.65 m?
vessel with his model of vented deflagrations and
with Eq. (21). The dark squares in Fig. 3 represent
Chippett’s data plotted against peak pressures
predicted with his model while the open circles
represent his measurements positioned according
to Eq. (21) with a turbulent correction factor ¢ =
5. Thus, it is necessary to introduce a fivefold
increase in burning velocity above that of the
laminar values to bring the experimental data into
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Fig. 2. Peak combustion pressure: comparison of present
result and numerical solutions reported in [3].
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Fig. 3. Peak propane-air measured explosion pressures of
Ref. [4] plotted against the predictions of Ref. [4] and against
Eq. (21) with ¢ = 5.

line with the present theory. It is pertinent to note
that Chippett presented a rather elaborate numeri-
cal model of vented deflagrations involving three
empirical flame acceleration parameters that were
determined from his experimental data. Despite
the complexity of his model, it can be seen from
Fig. 3 that it yields no better correlation of the
peak pressure data than that obtained with the
single ¢-parameter model presented here.
Measurements of the pressure rise during pen-
tane vapor-air explosions in vented containers
having length-to-diameter ratios of order unity
have been made by Cousins and Cotton [6] in a
0.032 m?3 vessel and by Donat [7] in vessels of 1,
10, and 60 m>3. Some of their results obtained in
the sonic venting regime have been recast in the
form of the foregoing theory and are plotted in
Fig. 4, where they may be compared directly with
Eq. (21). Also plotted in Fig. 4 are the peak
pressures measured by Chippett [4] in his study of
methane-air explosions in 1.9 m? and 3.8 m’
spherical vessels. The experimental peak pressure
data have been plotted by assuming ¢ = 3. The
circular data points were obtained from empirical
curves reported by Donat [7]. The data from the
Cousins and Cotton study fall somewhat below the
theoretical curve, while that of Chippett’s study lie
somewhat above the theory; nevertheless, the data
trends are parallel to the curve and, therefore,
better agreement with Eq (21) can be achieved by
simply assigning a lower value of ¢ to Cousins and
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Fig. 4. Peak combustion pressure: comparison of present
result with experimental data for propane-air explosions [6, 7]
and methane-air explosions [4]

Cotton’s [6] data and a higher value of ¢ to
Chippett’s [4] methane-air data.

Clearly, a single value of the turbulence correc-
tion factor ¢ does not yield accurate values for the
peak pressure measured in all the venting deflagra-
tion studies mentioned in the foregoing discussion.
A possibly important parameter (that is not in-
cluded in the model) is the vessel geometry, which
was different in each of these experimental stud-
ies. In nonspherical vessels a part of the flame may
contact the vessel wall, with a resulting heat loss
and reduction in maximum pressure, well before
the deflagration is completed. Quenching by ves-
sel walls can also occur if the ignition position is
noncentral. Indeed, Cousin and Cotton [6] ignited
their hydrocarbon-air mixtures at the vessel wall
and their measured peak pressures require the
lowest value of ¢ to give agreement with the
theory.

Differences in the required value of ¢ not only
arise between peak pressure data taken by various
investigators using different vessels, but also
between data taken in the same vessel. Figure 3
shows the scatter in the peak pressure data
obtained from Chippett’s [4] study of propane-air
flames. Turbulence correction factors that range
between ¢ = 3 and ¢ = 10 are required to
account for the different peak pressures measured
under essentially fixed initial conditions in the
same vessel. Chippett suggests that the poor
reproducibility may be due to slight variations in
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the gas mixture composition, which presumably
could influence the stability of the flame when the
vent opens, and to incomplete vent openings when
the set pressure is reached.

CONCLUDING REMARKS

A simple model of spherical, sonic-vented defla-
grations in hydrocarbon-air mixtures has been
pursued here to the point of yielding an approxi-
mate closed-form expression for the peak explo-
sion pressure. This approximate expression offers
a generally useful correlation of the results of
numerical computations of laminar, sonic-vented
deflagrations. The model incorporates turbulence
by simply multiplying the laminar burning velocity
by a constant turbulence correction factor ¢. The
difficulty of employing the model in practice
derives from our ignorance of ¢; it is required to
obtain it for each system by experiment. The
spherical flame model adopted here represents a
considerable idealization of actual combustion
venting conditions. Distortion of the flame shape
is known to occur as a result of asymmetric
venting and hydrodynamic instabilities. These
phenomena are at present unquantifiable and,
accordingly, in current numerical treatments of
combustion venting involving variable turbulence
factors it is also necessary to make parameter
adjustments (see, e.g., [4]) or to choose an
appropriate turbulent Reynolds number [2] to
account for observed flame acceleration effects. In
view of the fact that a quantitative description of
flame acceleration effects is still far off,3 it seems
best to employ a constant turbulence correction
factor and gain the corresponding simplicity,
rather than to carry more elaborate equations
through a train of numerical computations whose
accuracy is also limited to only a narrow range of
experimental conditions. Moreover, the present
one-parameter result provides a convenient tool
with which the magnitude of the deviation of

* The recent photographic study of venting gaseous explosions
by McCann et al. [8] represents another step toward our
understanding of the mechanisms that produce flame acceler-
ation.
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actual behavior from idealized laminar combustion
venting can be readily determined.

NOTATION

A, surface area of vessel (47r2); m?

A, vent area; m?

B dimensionless burning number; Eq. (15)
G sonic mass discharge flux of unburned gas;

kg/(m? s)

mass of gas; kg

pressure; kg/(m s?)

P; final peak pressure at the end of combus-
" tion; kg/(m s?)

T3

P, maximum combustion pressure in a closed
vessel; kg/(m s?)
P,  set or bursting pressure of the vent; kg/(m

s?)

r instantaneous radius of spherical deflagra-
tion wave; m

R radius of (equivalent) spherical vessel; m

Sy ‘‘laminar’’ burning velocity; m/s

t time; s

T absolute temperature of gas; K

V volume of vessel (4/37r%); m3

VA dimensionless burn volume; Eq. (10)

Z.  dimensionless burn volume when the vent
opens

0% ratio of specific heats

o gas density; kg/m3

¢ turbulence correction factor

Subscripts

b refers to the burned gases

0 refers to conditions in the vessel at ignition

u refers to the unburned gases
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