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Simplified Vent Sizing Equations for
Emergency Relief Requirements in
Reactors and Storage Vessels

Simplified vent sizing equations for emergency relief requirements in
reaction kettles and storage vessels are obtained from analytical con-
sideration. Venting modes include homogeneous-vesse! venting, all-
vapor venting, and all-liquid venting; energy sources due to runaway
chemical reactions and external heating are treated separately. The
resulting equations have been shown via numerical examples to yield
good agreement with detailed computer simulations, both in terms of
temperature and pressure histories during venting and in vent size pre-
dictions. These equations are generally applicable over a wide range of
overpressure situations and reduce to the correct limit at no overpres-
sure. The relative merit of allowing for overpressure. in various venting
modes can be demonstrated using these equations. Because of their
simple forms, requiring only pertinent physical property and thermal
data, these equations readily lend themselves to quick but accurate
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vent sizing predictions.

introduction

Detailed analysis of reactor venting subjected to runaway
reactions invariably involves the use of a large computer code
which often requires in its input a very large thermophysical
property data base as well as a kinetic model for the runaway
reaction (Booth et al., 1980; Huff, 1984b; Grolmes and Leung,
1985). The acquisition of such data can be time-consuming and
very costly. The purpose of this paper is to develop analytical
vent sizing equations in simple closed-form expressions for run-
away reactors undergoing various venting modes, namely, ho-
mogeneous-vessel venting, all-liquid venting, and all-vapor vent-
ing. As such, these equations are applicable to a major class of
runaway reactions where the exotherm is tempered by evapora-
tive cooling of the volatile components (Huff, 1982). In addi-
tion, similar equations are presented for storage vessels under
external heating such as fire exposure situations.

In the past several methods of calculation have been proposed
for sizing emergency relief systems (ERS). One common, but
frequently nonconservative method is based on vapor venting
alone (Diss et al., 1961). As noted by several early observers
(Boyle, 1967; Harmon and Martin, 1970; Huff, 1973) the most
realistic case should be based on the release of a vapor-liquid
mixture, with two-phase discharge in the relief system. Boyle
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developed the first theoretically design method based on liquid
discharge and defined the required vent area as that size which
would empty the reactor before the pressure could rise above
some allowable overpressure for a given vessel. This can be rep-
resented mathematically as

A T
GAs,

(1)

where the emptying time At, is based on the pressure history
obtained from adiabatic runaway computation or data in a
sealed sytem, Figure 1. However, Boyle’s assumption of non-
flashing liquid discharge often leads to unrealistic high flow,
since in reality the discharge liquid will flash and subsequently
attain choking at the exit piping. Hence, the use of flashing
choked flow in Eq. 1 has been proposed subsequently by Huff
(1973), Duxbury (1980), and Fauske (1984a,b). Fauske
(1984b) approximated the required venting time by

AT
Ay = aT/an, )

where (dT/dt), is the temperature rise rate (commonly known
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Figure 1. Characteristic time in vented and nonvented

runaways.
(Adapted from Huff, 1982).

as self-heat rate in runaway reactions) at the set pressure, and
AT is the temperature rise corresponding to the overpressure
AP. This venting time is often longer than Boyle’s definition
since it is based on a linear extrapolation and not on an average
self-heat rate during the overpressure period. By proposing a
simple formula for the flashing choked flow G (as will be dis-
cussed later) and utilizing Egs. 1 and 2, Fauske obtained the fol-
lowing simple expression

m, (C,\'/? (dT
A e —|=£ -
AP\ T, de s

Furthermore, by considering the case of 20% absolute overpres-
sure (i.e., 0.2 P, abs.) and taking a typical liquid specific heat of
2,100 J/kg - K (0.5 cal/g°C) for most organics, Fauske (1984c)
constructed a generalized nomograph based on saturated water
relationship.

The most comprehensive of the analytical methods to date is
that of Huff (1977, 1982). The required vent rate Wor GA in
kg/s is calculated for temperature turnaround conditions taking
into consideration the reduction in vessel contents during vent-
ing as well as the additional time required to generate the heat
for vapor formation during venting, shown as Az, in Figure 1. By
approximating the turnaround time in pressure 7, by the turn-
around time in temperature 7,, Huff obtained the homogeneous-
vessel venting result, casting it in terms of a relief vent rate
requirement as

(3)

W=GA=(m,/1) — (B/2rD[(1 + 4m,7,/B)'* = 1] (4)
where,
v h
- by ; oTo= AL+ £ (x., - x,);
QMUfg qm
2 V —_
xpe AP =Y W, (5)

Vg

Iteration is required to solve the above equations for W and 7,
since the latter is not readily obtainable.
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In the present paper, analytical closed-form expressions for
both 7, and W are obtained for the homogeneous-vessel venting
case as well as limiting cases such as all-vapor venting and all-
liquid venting. For the three examples considered, the current
method yields vent sizing results comparable to those of the
computer simulations. Utilizing these equations. the relative
merit of allowing for overpressure in the three venting modes
can be demonstrated. In the case of all-vapor venting, there is no
merit in allowing for overpressure. In the other two venting
modes, substantial reduction in vent area is obtained by allowing
for small overpressure. The relatively less reduction in the exter-
nal heating situation also can be explained by the current
approach. In general, the most stringent relief requirement is
due to all-liquid venting. Since this venting mode is unlikely for
a top-venting ERS design, the homogeneous-vessel behavior
offers the next most stringent requirement and is therefore the
recommended design approach for this configuration. Sizing
based on all-vapor venting is both unrealistic and unsafe.

Governing Equations

Governing equations for relief vent rate requirement can be
obtained by first considering the macroscopic energy and mass
balance on the vessel as shown in Figure 2. For the bulk of the
fluid in the vessel, the unsteady-state energy balance, Eq. 15.1-3
of Bird et al. (1960), becomes

4 V-0 - W (u. . 5) 6)

dt Py

in which Q is the sum of all heat transfer and reaction energy
rates and subscript 1 denotes the location at the vent line entry
point. In writing this equation, both the kinetic and potential
energies of the fluid have been neglected. The unsteady-state
mass balance takes the form

d
= (V)= -W 7
ar (p¥) N
Combination of the mass and energy balances then gives
d P
pV—u-Q—W(ul—u+—) (8)
dt P

This equation can be rewritten as follows by recalling p¥ = m,
p=1/v,0 =0+ XUt = Uy + xuynand h = u + Pu:

du, du,, dT
"’(dr tXar )@

dx
=Q - Wl(x, — x)uy + Pv;] — mu,,-d—’ 9)

This is essentially Huff’s (1977) result for the general energy
equation. For the case of ideal gas and incompressible liquid,
Huff showed that the lefthand side of Eq. 9 reduces to

PPN P Y s

(More correctly this term should reduce to m{x(C,, — R) +
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Figure 2. Reference vessel for model development.

(1 — x)C,]dT/dt since the incompressible liquid assumption
implies v, = constant; C,, = C,; see discussion, Bird et al., 1960,
p. 459). However, for most practical situations (far from critical
point and with vessel nearly full) it is accurate enough to repre-
sent this bulk sensible heat accumulation term by the liquid
phase portion alone, i.e., mC,(dT/dt). This representation is
consistent with the unsteady-state energy equation discussed in
reactor design textbooks (Smith, 1970, p. 109). The mass bal-
ance in Eq. 7 can be expanded to give

dv
m— = W
dt v

(10)
while noting d¥/dt = 0. By further assuming constant phasic
specific volume properties, Eq. 10 reduces to

dx Wvu

11
dt  mu, (n
which simply states that the change in vessel quality is related to
the net increase in vapor weight fraction as a result of relief dis-
charge. Utilizing this result in the general energy equation, Eq.
9, we arrive at the final useful form of the energy equation

dT v
mC,— = Q — Wh (x +—’) (12)
! dt > Vg

Hereafter, the subscript fin C,is dropped for convenience.
The energy input term Q can be further broken down into two
categories: one due to the total reaction energy release and the
other due to external heating such as fire exposure or jacket
heating. The former is dependent on the instantaneous reacting
mass, composition, and temperature; typically one can write
Q.. = mq where q is the reaction heat release rate per unit
mass. The latter is treated as constant for simplicity during
relief, i.e., Oy, = Qr, a constant. The solution schemes and final
equations are noticeably different according to whether Q is
mass-dependent or not. Finally, the second term on the
righthand side of Eq. 12 represents the net evaporative cool-
ing effect. It is given by the volumetric discharge rate
W (vy + xup,), divided by vy, to yield the net vapor production
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rate within the vessel, and multiplied by the latent heat to give
the energy removal rate via evaporative cooling.

Homogeneous-Vessel Venting with Runaway
Reaction

We treat here the particular case of zero disengagement of
liquid and vapor within the vessel, the so-called uniform-froth or
homogeneous-vessel venting case. For this case x, = x,and ¢, =
v = V/m; the energy equation, Eq. 12, then takes the form

T V h
mCU—=mq—GA——/‘
dt meg

(13)
(We shall use Wand GA interchangeably throughout the devei-
opment.) This equation together with the mass balance, Eq. 7.
can be integrated if one makes the following simplifications:

1. Mass flux G varies little during the overpressure tran-
sient.

2. Reaction energy per unit mass q is treated as constant and
takes on an appropriate average value.

3. Properties such as C,, h,, and v, are assumed constant.

Assumption 1 results in decoupling the two differential equa-
tions, while the other two assumptions permit integral solution.
Note that if g takes on the familiar Arrhenius form or an expon-
ential form such as g = Ke®”, this will lead to a nonlinear equa-
tion that can only be solved numericallv. All three assumptions
do not result in any severe loss in a - ‘acy when compared to a
more detailed transient computer c:..culation as will be demon-
strated.

To facilitate the integration, the following dimensionless vari-
ables are defined:

T*=(T-T)[(T,-T, (14a)
t* =1/t (14b)

where
t, - :A (14c)

(Here ¢, is similar to At, in Eq. 1, but a simpler nomenclature is
preferred here.) From Eq. 7 with constant G, integration yields
the instantaneous mass given by
m=m, — GAt = m,(1 — t*) (15)
After substituting Eq. 15 into Eq. 13 and defining yet another

dimensionless variable ¥ = C,(T,, — T,)/hj,, the resulting inte-
gration takes the form

f"NdT'-f"

Expanding and evaluating at both limits yields the following
equation for the temperature history as a function of time:

dr*
(1 —1t*)?

Vo e
z,bidt' - (16)

e MUsg ~o

q. .. Vv t*

* —_—
NT hy, myug (1 — t*)

(17a)
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or in dimensional form:

T=T, +

q_r__w'L(_f_._) (1'”3)

C, mGCupit, -t

The next step is to solve for the dimensionless turnaround time
r* by differentiating Eq. 17a with respect to time and setting
dT*/dt* to zero,

Vo ohg\'?
-l -[—2 (18a)
moufg qfe
where * = 7/t,, or in dimensional form
Vhg t\'/?
r-f,—(—-——{-'-—') (18b)
Mg 4

Equation 18bsays that the turnaround time r is always less than
the emptying time as long as evaporative cooling is present. Sub-
stitution of Eq. 18a into Eq. 17a then yields an expression relat-
ing the temperature at turnaround (7* = 1.0) as a function of

:mptying time,
1/2 2
e | \Moly

Utilizing the definitions for 7, and N, Eq. 19 can be cast explic-
itly in terms of relief vent rate as,

(19)

W=GA = mA

(20)

where AT is simply the “overtemperature,” T,, — T,. Note that
for the case of no overpressure (AP = 0, AT = 0), Eq. 20 reduces
to the correct limiting form

Ml
°= o h, (21)
which can be obtained by simply equating the two terms on the
righthand side of the energy equation, Eq. 13. A number of pos-
sible ways of evaluating g are:

l. ¢ = g» (atturnaround)

2. q = '4(q, + qw) (arithmetic average)

3. ¢ = (q4m)"? (geometric average)

4. g = (gm — 4:)/In (gn/q,) (log mean)
where g, and g,, are, respectively, the energy release rate at the
set temperature and the turnaround temperature. The simple
arithmetic average is recommended here, and applying Eq. 13 to
a sealed vessel, g can be related to the temperature rise rate ina
nonvented system, i.e.,

el (5]

This expression will hence be used throughout the examples to
be discussed later.

Finally, the corresponding overpressure can be estimated via
the vapor pressure relation. For example, experimental P-T data

(22)
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can be easily correlated using the typical two- or three-constant
Antoine equation. The underlying assumption is that either the
system would exhibit pseudo one-component behavior such that
during the short venting period, the effect on pressure as a result
of composition change is negligible (constant volatility) or the
system volatility is decreasing with venting.

All-vapor and All-liquid Venting with Runaway
Reaction

All-vapor venting and all-liquid venting represent, respec-
tively, top and bottom venting modes for vessels exhibiting com-
plete vapor-liquid phase separation or disengagement. Due to
the similarity in the final equations, they are discussed together
here without detailing the mathematical steps; however, the
solution technique remains the same as in the homogeneous-
venting case. The energy equation, Eq. 12, now becomes

dT h
mC, — = mq — GAy; e

23
dt Vg ( )

where v; = v, for all-vapor venting and v; = v, for all-liquid vent-
ing. Upon integration, the temperature history is given by:

gt hg v t
=T, — +—=—In{|l - - 24
T ,+C"|+Cv%n y (24)
and the time at turnaround is
h
ret, - (= —f‘) (25)
Ug 9

The relief vent rate, GA, in this case is given implicitly by the
following

myg A by, A
T,-T, = 1 - — In{— 26
T, GACo( Aa) + UEsC.,. n - (26)
where,
M4V
-— 27
o= Goe @7

For the no-overpressure case, Eq. 26 reduces to the correct limit
with 4 = 4,

Homogeneous-Vessel Venting with External
Heating

Here we are limited to nonreacting systems subjected to con-
stant energy input, Q. In this case, Eq. 12 becomes

dT Vh
mC,,-E-Q,-—GA—ﬂ

mUg

(28)

Again using treatment similar to that in the runaway reaction
system, this equation can be integrated to yield the following
temperature history during venting:

Or LA
m, Cug \t, — 1

1
T=-T, — ] -
! + GAC, In (f, - :)
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By setting the righthand side of Eq. 28 to zero, and solving for
the turnaround time, 7, we obtain:

T=1 — (V—hf'—) (30)
QTU/:

Again, this equation says that the time at turnaround is always

less than the emptying time as long as latent-heat cooling is

present. On substituting Eq. 30 into Eq. 29, the final equation

for the maximum temperature during venting is obtained:

In _’22919!5 -1 +&
V GA h, m,C,uy,

This is an expression implicit in relief vent rate such that for a
given overpressure situation, the solution for GA is via iterative

Or

T.-T =
T GAC,

€29)

or graphical methods. But in the special case of no overpressure,

+ Eq. 31 reduces to the correct limit:

- Q1movfg

A,

(32)

which is the same result as the runaway reaction case, Eq. 21, by
noting that Q, = m,q and v = V/m,. This result, presented in a
slightly different form by Forrest (1985), has found application
in the treatment of fire exposure of storage vessels.

All-Vapor and All-Liquid Venting with External
Heating '

In these two limiting cases the energy equation takes the
form,

mC, ar = Qr — GAy; by (33)
dt Uf'

Here again v; = v, for all-vapor venting and v; = v, for all-liquid
venting. However, one readily recognizes that the two terms on
the righthand side are independent of the mass inventory. Hence
any slight imbalance between these two terms would cause a
monotonic increase or decrease in temperature. At first glance,
this implies that there is no merit in allowing for overpressure. In
particular, for the all-vapor venting case, one should design for
no overpressure, with the vent area obtained by setting the right-
hand side of Eq. 33 to zero:

_ Qv
Gughyy

But for the all-liquid venting case, the pressure and tempera-
ture will eventually turn around when the vessel empties itself.
The energy equation upon integration yields the following tem-
perature history during venting:

Qr vk 2
T-T+ (GAC,, ~ Con) ™M=

In order to avoid mathematical difficulty when ¢ equals ¢,, i.e., at
complete mass depletion, we assume that the temperature turn-

A, (34)

(35)
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around occurs at 10% of the initial inventory:

t -
m_oeZT o

(turnaround criterion)

m, Z

[Note:In (2,/(2, — 7)) =In(m,/m) = In (1/0.1) = 2.303. Selec-
tion of other m/m, values of close to zero. except zero of course.
does not affect the numerical constant appreciably.]

Using this turnaround criterion, Eq. 35 yields the following vent
rate

Or

by CAT (36)
e | 2.303

W=GA =

For the case of no overpressure, this equation reduces to the cor-
rect limit

QT Vs

A, -
Guyhy,

37

Discharge Flow Evaluation

In the above development we have obtained the required relief
vent rate equations for the various situations of interest. The
remaining task is one of selecting an appropriate mass flux G
such that the ultimate vent area can be evaluated. In order to
limit the scope, the present discussion is restricted to frictionless
adiabatic flow characteristic of nozzles and short vent lines
(L/D < 50; for complex configuration see Huff, 1985). Further-
more, we can assume quasi-steady state behavior and use the
Bernoulli equation to provide an approximate description for the
flow process between surfaces 1 and 2, Figure 2:

1 3 2 :
5 (Gvy) +[ vdP = 0 (38)

Various critical low models have been developed, starting with
this equation, to account for at least two additional degrees of
freedom in two-phase flows; namely, nonequilibrium effects and
flow regime (phase slip) effects. Consider the case of a two-
phase discharge of styrene in a frictionless vent line. Figure 3
depicts the mass flux as a function of upstream stagnation void
fraction for the following discharge models:

HEM: Homogeneous equilibrium model (Starkman et al.,
1964)

SEM: Slip equilibrium model (Moody, 1965)

HFM: Homogeneous nonequilibrium model (Henry and
Fauske, 1971)

ERM: Equilibrium rate model (Fauske, 1985)

As shown, the homogeneous equilibrium model (equal veloc-
ity and temperature in both phases undergoing isentropic expan-
sion) yields the lowest flow rates over the entire two-phase
region and thus is conservative for ERS design. Recent studies
reveal that this HEM agrees quite well with the available data
for flow passage typical of a relief vent line. Based on published
water critical flow data, Moody (1975) has shown that for pipes
longer than 10 cm the equilibrium condition is closely ap-
proached, while for pipes approaching zero length the flow can
be approximated by the nonflashing orifice equation. (For the
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Figure 3. Critical flow rate for styrene as a function of
inlet void fraction.

styrene example in Figure 3, this equation would yield a Ber-
noulli mass flux of about 15,000 kg/m’, certainly an overesti-
mation of the flow in a practical vent line.) Furthermore, Moody
showed that the maximum discharge rate data from vessels were
adequately predicted by the homogeneous equilibrium model
based on vessel stagnation conditions. At the same time a slip
flow model was found to predict the equilibrium discharge rate
in terms of local conditions at the nozzle throat or pipe exit.
Thus, it appears that homogeneous choking normally occurs at
the nozzle entrance and choking again occurs in the slip flow
regime at the exit (Lahey and Moody, 1977). This relaxation
length of 10 cm was shown by Fauske (1985) to hold true aiso
for Freon-11 and Freon-12. In summary, the employment of the
homogeneous equilibrium model in the relief discharge calcu-
lation is in fact a best-estimate evaluation and will not lead to
overly conservative results.

Previously, the HEM has been rather time-consuming to use,
requiring extensive saturated thermodynamic properties. Re-
cently however, Leung (1986) has proposed a generalized corre-
lation for this model with the scaling parameter w given entirely
in terms of known stagnation properties

oo, w(ef_)’ 39

v v \h,

In equation form, the generalized correlation gives the following
normalized mass flux G/ VP/uv:
For w = 4.0 (low-quality region)

G/ VPJv = [0.6055 + 0.1356(In w)
- 0.0131(In w)?) /" (40a)

and for w < 4.0 (high-quality region)

G/ VPJv = 0.66/w™® (40b)

This greatly simplifies the discharge critical flow calculation
and is applicable over the entire two-phase region. Furthermore,
in the all-liquid inlet condition, the correlation may to a good
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approximation be replaced by

h I 0.5
G=09-2 (—) = 0.9G,

41
fo CFT ( )

where G, is called the limiting flow by Grolmes and Leung
(1984) and is also known as the approximate form for the equi-
librium rate medel by Fauske (1985). In most instances, Eq. 41
is also applicable to the homogeneous-vessel venting situation
since the flow has a rather weak dependence on the upstream
void fraction, as shown in Figure 3. On the other hand, in the
all-vapor inlet condition, the present correlation does not neces-
sarily give the same answer as the ideal gas formula (Bird et al.,
Eq. 15.5-42). This discrepancy is expected since a real vapor
does not always behave as an ideal gas, particularly at the satu-
rated region (Van Wylen and Sonntag, 1965). In applying this
choked-flow correlation, one should also check for back-pres-
sure effect (subcritical flow) particularly for high-quality flow
situations; see Leung (1986) for critical pressure ratio correla-
tion,

Styrene Polymerization Example

The first example is taken from Huff’s (1982) paper which
considers a tank of styrene monomer undergoing adiabatic poly-
merization after being heated inadvertently to 70°C. This tank
has a maximum allowable working pressure (MAWP) of 5 bar
absolute. The parameters are repeated here:

V= 13.16 m* (3,500 gal)
m,=9,500kg
P,=4.5barabs.
T,=209.4°C =482.5K
(dT/dt), = 29.6°C/min = 0.493 K /s (sealed system)
P, = 5.4 barabs. (assuming 10% above MAWP)
T,=219.5°C=492.7K
(dT/dt),, = 39.7°C/min = 0.662 K /s

Huff indicated that the above parameters were obtained from
experimental data (using CSI-ARC device) recalculated to a ¢
factor of unity. The ¢ factor (also known as thermal inertia)
according to Townsend and Tou (1980) is simply the ratio of the
combined thermal capacity of the reacting sample and the sam-
ple container to that of the sample alone. s a ¢ factor of
unity implies that the reacting sample is truly adiabatic. The fol-
lowing property data are taken from Huff’s (1982) paper.

4.5BarSet 5.4 Bar Peak
v,m’/kg 0.001388  0.001414
v, m’/kg;ideal gasassumed ~ 0.08553 0.07278
C,ki/kg-K 2.470 2514
hoki/kg 3106 302.3

Based on two-phase homogeneous-vessel venting, the step-by-
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step calculation proceeds as follow:

U [faT
=55

From Eq. 20

AT =T, -T,=102K

()

= 1.426 kJ/s - kg (here C, = C, assumed)

(9.500)(1,426)

W—GA -
[(13.16 310,600

9,500 0.08414
=256 kg/s

12 2
) + [(2.470)(10.2)]‘/2]

In the above calculation, property parameters were evaluated at
the set pressure only (using average values does not change this
result significantly). According to Eqs. 14c and 18b, the empty-
ing time and turnaround time are, respectively:

t, = 9,500/256 = 37.1s

9,500 0.08414 1,426
=371 - 115s=256s

. , 7.1\1/2
T=37l_(1316 310,600 37.1

For comparison, Huff’s (1982) method yields the following:
Case A: not accounting for vaporization time credit (i.e.,
At, =0)

T=At,=168s

W =359 kg/s
Case B: accounting for vaporization time credit

At, = 7.6 s (trial-and-error solution)
T = Af, + A, = 2445

W =267 kg/s

The current method is hence in good agreement with Huff’s
more complete method (case B) but is simpler to apply without
requiring trial-and-error solution.

Using the more traditional vapor-venting model, the no-over-
pressure case as given by Eq. 27 is

(9.500)(1,219)(0.08414)

W=GA =
(310,600)(0.08553)

=37kg/s

Hence, the relief rate requirement is seven times less for all-
vapor venting. Using the discharge flow equations mentioned
earlier, we can compare the actual vent area for an ideal nozzle
geometry:
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Two-phase critical mass flux as given by the appropriate for-
mula, Eq. 41,

6209310,600[ 1

1/2
. - 3,040 kg/m’
0.08414 (2.470)(482.5)} g/m’s

(Note: Eq. 40a yields nearly identical results, 3,090 kg/m?s.)
A = W/G = 256/3,040 = 0.084 m?

D =0.327m (homogeneous-vessel venting)

All-vapor critical mass flux as given by Eq. 40b

w=14

0.66\[P\V/2 [0.66\ [450,000\!/2
G=|==l{=] =|Z==i———| =1,310kg/m?
(w‘“’)(u) (1.4“”) (0.08553) g/m’s

£

{Using the ideal gas formula with molecular weight of 104.15
and specific heat ratio of 1.05 yields 1,420 kg/m’ s, which is 8%
higher. However, the discrepancy is actually smaller due to the
fact that real-gas specific volume (0.0782 m’/kg from Redlich-
Kwong EOS) is supposed to be used in this correlation. Such a
calculation would yield a G of 1,370 kg/m?s.]

A=37/1,310 = 0.026 m’
D = 0.189 m (ali-vapor venting)

The results obtained for this example case are summarized in
Table 1 for the various design approaches. For both the Huff
and Boyle methods, HEM critical flow rates are used instead of
the discharge models suggested in their original papers. For the
Fauske method using Eq. 3, the flow model is based on the
ERM, which normally yields about 10% higher flow than the
HEM. Table 1 illustrates that Boyle’s emptying time criterion is
most conservative, yielding the largest vent size. Huff s method
accounting for vaporization time (case B) and the current
approach give nearly identical results, with the smallest relief

Table 1. Comparison of Various Design Approaches
Required Discharge [deal Nozzle
Vent Rate Mass Flux Diameter
Method W.kg/s G, kg/m? . s D.m
Eq. 20 256 3,040 0.327
Huff
Case A 359 3,360* 0.369
Case B 267 3,360 0.318
Boyle 566 3,040** 0.487
Fauske
Eq.3 459 3,560% 0.405
Nomograph — — 0.397
Vapor venting 37 1,310 0.189

*Based on HEM at peak pressure; original paper used HFM, which gave 4,490
kg/m? . s.

**Based on HEM at set pressure; original paper used nonflashing discharge flow.
+Based on ERM formula as given by G = h,/u, (1/C,D*
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Figure 4. Self-heat rate and: pressure-temperature data
for styrene polymerization example.

requirement among two-phase venting results. Fauske's meth-
ods and Huff's other method (case A) lead to intermediate vent
sizes. Finally, the all-vapor venting case yields the smallest vent
size but this is considered nonconservative. If this size were
employed, a much higher peak pressure would result since this
particular system is known to yield two-phase discharge. Again,
Eq. 20 can be used to estimate this peak pressure, as will be dem-
onstrated later.

Another necessary and revealing comparison is between the
current analytical approach and detailed computer simulations.
Huff (1984b) reexamined the same styrene polymerization
problem using computer simulation. Instead of utilizing the
same set of experimental data as presented earlier, he employed
the third-order kinetic model of Hui and Hamielec (1972) for
styrene polymerization, as well as the Flory-Huggins correction
for styrene partial pressure over polymer solution (Hildebrand
and Scott, 1950). These equations and other physical property
data were summarized in the appendix of Huff's (1982) paper.
Self-heat rate data and P-T data are generated for a sealed adia-
batic system as shown in Figure 4. We will now illustrate how
these data together with the equations derived earlier can be
used to predict the vessel behavior during relief. In Huff’s simu-
lation, a nonequilibrium discharge flow model was used. For
consistency, the simulation was repeated for this study using the
DIERS computer code (Grolmes and Leung, 1985) with the
HEM discharge flow. Great care was exercised to ensure that
this code reproduced the results shown in Figure 4 for a sealed
system. Figure 5 illustrates the mass inventory, temperature,
and pressure histories for a 5.4 bar peak pressure based on
homogeneous-vessel venting with a 0.269 m nozzle diameter.
The comparison is based on the same mass depletion rate as the
computer simulation which is 202 kg/s. According to Figure 4,
we obtain

Set Condition Peak Condition

P, bar abs. 4.54 54
T.K 488 499
dT/dt, °C/min 28 36
AIChE Journal October 1986
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Figure 5. Comparison of predicted temperature and
pressure histories (eeee) with computer simu-
lation (—) for styrene polymerization exam-
ple.

Hence the average heat release rate ¢is 1,310 J/kg - s according
to Eq. 22. The emptying time ¢, as given by Eq. 14¢c is 47 s. The
turnaround time 7 is calculated to be 33 s using Eq. 18b; this is in
excellent agreement with the simulation, as shown in Figure 5.
Now the temperature history can be obtained from Eq. 17bina
straightforward manner. The corresponding pressure is simply
based on a two-constant Antoine equation of the form

b
InP = -
n a+T (42)

where a and b are to be determined from Figure 5 using two rep-
resentative points. The resulting temperature and pressure pre-
dictions, shown as circles in Figure 5, are in excellent agreement
with the simulation. The faster fall-off in the temperature and
pressure at 40 s occurs well past the turnaround time and hence
is of no significance in the prediction of peak pressures during
relief.
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Phenolic Reaction Example

This example is taken from Booth et al. (1980) and the British
Plastics Federation report (1980):

V=454m’
m, = 3,628 ke (566 kg 38.3% formaldehyde aqueous solution, 2,150
kg phenol)
P, = 2.07 bar abs.
P, = 2.3 bar abs.

The second-order kinetic rate constant as given in their report is
of the form:

12,
k = 2.384 x lO"cxp[«- —2?3_—86} (kmol/kg)™" - s7',

which implies an activation energy of 24.6 kcal/mol. The ther-
mophysical values are taken to be independent of composition
and temperature, and system pressure is computed as that of
saturated water. The calculated self-heat rate and pressure data
for a sealed system are shown in Figure 6; they are in agreement
with the tabulated computer output of Appendix V of the British
Plastics Federation report prior to venting. Figure 7 illustrates
the inventory, temperature, and pressure histories for the homo-
geneous-vessel venting case with a 0.3 m vent diameter based on
their own computer program. According to Figure 7, we obtain

Set Condition Peak Condition

P, bar abs. 2.07 2.21
T.K 3944 396.7
dT/dt, °C/min 15 20

Using a specific heat value of 2,900 J/kg - K, the average heat
release is 846 J/kg - s according to Eq. 22. Again, based on the

1000/T(K)
28 27 26 25 24 23 _ oo
LT I T L I I
- PHENOLIC REACTION
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RATE OF TEMPERATURE RISE °C/min.
)
T 11T
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Figure 6. Self-heat rate and pressure-temperature data
for phenolic reaction example.
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Figure 7. Comparison of predicted temperature and
’ pressure histories (eeee) with the British Plas-
tic Federation study (——) for phenolic reac-

tion example.

same vent rate history (W = 150 kg/s), the turnaround time is
calculated to be 14.9 s (h, = 2,502 kJ/kg, v, = 0.873 m’/kg,
from the British Plastics Federation report). This is in excellent
agreement with the program calculation. Both temperature and
pressure are predicted in a fashion similar to the previous case,
and as shown in Figure 7 by the solid circles, they are in close
agreement with the British Plastics Federation study.

Vent Area Prediction Comparison

For homogeneous-vessel venting, Figure 8 depicts how the
vent area varies with overpressure for the styrene example prob-
lem (using the Hui-Hamielec kinetic model). The analytical
vent area predictions based on Eq. 20 are in good agreement
with the computer simulation results over a wide range of over-
pressure. The slight discrepancy can be attributed to the mass

AICRE Journal
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Figure 8. Vent area and turnaround time v. overpressure
for styrene polymerization example.

flux estimations. The analytical prediction based on Eq. 41 and
ideal gas vapor specific volume yields 3,040 kg/m? - s. The com-
puter simulation, on the other hand, accounts for the compressi-
bility effect in the vapor phase and yields a slightly higher flow
of 3,400 kg/m? . s. If the real-gas specific volume of 0.0782 m®/
kg were used in Eq. 41, the flow would have been 3,350 kg/
m? - 5. A key observation, however, is the fact that a drastic
reduction in vent area is obtained with a slight overpressure; this
phenomenon has been noted earlier (Booth et al., 1980). Here
the percent overpressure is defined conventionally in terms of

gage set pressure as
— l) 100

Thus, allowing for 10% overpressure in this case, the vent area is
about six times smaller than the no-overpressure case. The
reduction in area is a direct result of mass depletion in the reac-
tor by venting. At the time of temperature turnaround, the total
energy release term and the energy removal term on the right-
hand side of Eq. 13 are equal, i.e.,

Pn(bar g)

P,(bar g) @3

% overpressure = (

Vh
mq =Ga—-24
m Uz,

(44)

Thus the mass depletion contributes to reduction in vent area via
two ways: (1) a decrease in total energy release, and (2) an
increase in volumetric discharge at a higher two-phase specific
volume which then leads to an increase in the energy removal
rate via latent heat of vaporization. For the no-overpressure
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case, the turnaround time is O s; the relief requirement has to
handle the energy release for the whole batch. But for the 10%
overpressure case, the turnaround time is 15.3 s, as shown in
Figuré 8, and at this moment only 40% of the initial batch
remains. Hence one readily obtains a sixfold [(1/0.4)’~ 6
according to Eq. 44] reduction in vent area.

Figure 8 also illustrates another important aspect of homoge-
neous-vessel venting: at higher overpressure the relative reduc-
tion in vent area becomes increasingly smaller. In fact, it is not
recommended to design the relief system for such high overpres-
sures even though the calculated maximum pressure may be less
than or equal to the MAWP of the vessel. This is because a
slight reduction in area can bring about a drastic increase in
peak pressure reached. This portion of the curve is in essence
operating on Boyle's emptying time concept with most of the
energy release being stored as sensible heat in the batch. Due to
the Arrhenius behavior typical of most reactions, this speeds up
the reaction rate in an exponential fashion. The ultimate turn-
around in pressure is due principally to the emptying of the reac-
tor. This is obvious by considering Eq. 20 in the limit that the
sensible heat accumulation term C,AT is more pronounced than
the evaporative cooling term vh, /v, and the resulting equation
approaches

m.q m,

A— === 45
GC,AT  GAt, (45)
0.18 T r r ' r l
0.1 ANALYTICAL 1
PREDICTION A(m?)
® £q. (20) 0.318
0.14f i
o Eq. (28) 0.372  (LIQ)
s Eq. (26) 0.0032 (VAP)
0.12p -
— COMPUTER SIMULATION
0.10 -
(<]
-
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5
[+ 4
<
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& o
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Figure 9. Vent area for three modes of venting v. over-
pressure for phenolic reaction example.
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. which is Boyle's formula. In summary, aliowing for overpressure
is both beneficial and permissible, and the amount of overpres-
sure can best be guided by the knee of the curve, as shown in
Figure 8, and in some cases by the MAWP of the vessel.

For the phenolic reaction example, all three venting modes
are compared in Figure 9. The analytical predictions based on
Eq. 20 for homogeneous-vessel venting and on Eq. 26 for all-
vapor venting or for all-liquid venting, are in good agreement
with the computer simulation results. The mass flux estimation
likewise is based on Eq. 40a or Eq. 41 for the all-liquid and
homogeneous-vessel venting cases, and on E._. 40b for the all-
vapor venting case. As expected, the all-liquid venting results
are quite similar to the homogeneous-vessel venting behavior,
both showing again the reduction in vent area with overpressure.
The vent area corresponding to all-vapor venting is drastically
smaller than all-liquid and two-phase discharge. Even though
Eq. 26 yields the relationship between overpressure and vent
area, it predicts little reduction in area with overpressure. This
stems from the fact that in all-vapor venting no significant mass
is lost, while the total energy release increases due to higher
reaction rate with higher overpressure. Thus in practice there is
little gain in allowing for overpressure in the case of all-vapor
venting (Huff, 1982).

In the final example, we consider a LPG storage tank sub-
jected to external fire without undergoing any chemical reac-
tion. The problem is specified as follows:

M, = 44 (propane)
V = 100 m’ (spherical)

m, = 50,700 kg

Qr = 3,126 kJ/s (based on 30 kW /m? surface heat flux)
P, = 4.5 bar abs. (no pad)

T, = 271.5K

hy = 3.74 x 10° J/kg

Ug = 0.1015 m’/kg

The analytical predictions based on Eqgs. 31, 36, and 34 for
homogeneous-vessel venting, all-liquid venting, and all-vapor
venting, respectively, are shown in Figure 10 to be in good agree-
ment with the computer simulation results. Similar to the run-
away reaction considered earlier, there is some reduction in vent
area with overpressure for the homogeneous-vessel case al-
though the relative reduction is less drastic here. Since the total
energy input Q; is treated as constant, the main cause for this
vent area reduction is via increased two-phase specific volume in
the discharge flow as a result of mass outage during venting. As
for all-liquid venting, this reduction in area with overpressure is
even less pronounced, as expected. In this situation the turn-
around in pressure is due to emptying out the vessel content, and
indeed this is assumed in the derivation of Eq. 36.

0.14 | T T | Y T
LPG TANK (PROPANE)
0.12 100 m® 50,700 kg -
e Eq. (31) .
ANALYTICAL
0.10 © Ea. (38) (ppepicTiON -~
A Eq. (34) -
0.08 —— COMPUTER SIMULATION -
ALL LIQUID

VENT AREA m’
g
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0.04— -
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0 1 L 1 1 1 1
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Figure 10. Vent area for three modes of venting v. overpressure for LPG storage vessel example.
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Discussion and Limitation

Vent sizing equations presented in this paper also allow quick
assessment of the effect on vent size due to changes or uncertain-
ties in input parameters. Key parameters are identified as fol-
lows:

. V., m,

2. G,, C, (liquid)

3 My g

4. P-T data

5. dT/dtv. T (sealed system)

Since specific heat at constant volume C, is not commonly avail-
able, specific heat at constant pressure C, can be used instead
and the difference is small (C, = C, for incompressible fluid). In
the examples discussed in this paper, C, vaiues were used
throughout. Because C, values are always larger than C, values
(as discussed in most thermodynamic textbooks), this would
only lead to slightly more conservative results. This can be seen
from Eq. 20 in which the energy release rate g in the numerator
is proportional to C,, while the effect of C, present in the denom-
inator is somewhat lessened by the additive term. At zero over-
pressure, Eq. 20 says that the vent area is proportional to C)/?,
while at higher overpressure the proportionality becomes half-
power. Hence for typical design at intermediate overpressure,
the vent area is roughly proportional to the C, value.

Another approximation can be made regarding h, and v, val-
ues, which always appear in the ratio Ag,/v,. Invoking the
Clapeyron relation, this group can be replaced by

apP
by _ 2P (46)
Uf‘ ' dT

which holds true for single-component fluids and is generally a
good approximation for multicomponent mixtures where com-
position change is minimal (Dodge, 1944; Stein, 1979). This is
immensely useful since available P-T data can be utilized.

Finally, the self-heat rate in runaway reactions can best be
obtained experimentally in an apparatus that offers little heat
capacity of its own (Fauske and Leung, 1985). The alternative
would require detailed reaction kinetic modeling, which is both
time-consuming and expensive.

In this development, partial liquid-vapor disengagement has
not been considered. In a churn-turbulent regime (Wallis,
1969), the two-phase quality entering the relief vent line can be
substantially higher than the vessel average (Grolmes and
Fauske, 1984). This results in a higher volumetric flow and a
smaller required vent size than that of homogeneous-vessel
treatment. Since this kind of flow regime cannot be predicted a
priori without actual flow-regime characterization data, it is
prudent to assume homogeneous-vessel venting in order to
assure a safe ERS design (Fauske, 1984b).

The present treatment has been limited to a liquid phase sys-
tem; pure gaseous phase and solid phase systems are not covered
in this paper. For reactions that generate gaseous products—so-
called gassy reactions—the runaway exotherm may or may not
be tempered by evaporative cooling. Examples have been given
by Huff (1984a), but treatment of such systems is far more com-
plex and should receive further investigation.

Finally, it should be noted that the present treatment would
break down as the thermodynamic critical region is approached.
Fortunately, for most of the exothermic reacting systems the
relief set pressures are far removed from this regime.
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Notation

A = ideal vent area
A, = zero overpressure vent area
C, = liquid specific heat at constant pressure
C, = liquid specific heat at constant volume
C,; = specific heat at constant pressure of jth phase
C,; = specific heat at constant volume of jth phase
D = ideal vent diameter
e, = specific energy entering vent line
G = mass velocity or flux, mass flow rate per unit area
G, = limiting flow corresponding to ERM model, Eq. 41
h = specific enthalpy
hy, = latent heat of vaporization
k = reaction rate constant
L =~ pipe length
m = instantaneous mass in vessel
m, = initial mass in vessel
M, = molecular weight
P = system pressure, absolute unless specified
q = heat release rate per unit mass
Q = total heat input or release rate
R = gas law constant
t = time
{, = emptying time, Eq. 14¢
T = system temperature
u = specific internal energy
v = specific volume
V = volume of vessel
W = relief mass flow rate or vent rate
x = quality or mass fraction of vapor

Greek letters

8 = parameter, Eq. 5
v = specific heat ratio
p = density
AP = overpressure, P,, — P,
AT = temperature rise above set, T,, — T,, corresponding to AP
At, = time for pressure to rise from set point to specified level in sealed
system
At, = vaporization time, Figure |
T = turnaround time in pressure ( p) or temperature (¢)
w = critical flow scaling parameter, Eq. 39

Subscripts

I = location at vent line entry point, Figure 2
2 = location at vent line exit point, Figure 2
ext = external
Jf = liquid phase
g = gas (vapor) phase
Jg = difference between gas (vapor) phase and liquid phase
i = ith phase
m =~ at peak pressure or temperature
o = initial
rxn — reaction
5 = set point
T = total

Literature cited

Bird, R. B., W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,
Wiley New York (1960).

Booth, A. D., M. Karmarkar, K. Knight, and R. C. L. Potter, “Design of
Emergency Venting System for Phenolic Resin Reactors. 1, 2,”
Trans. Inst. Chem. Eng., 58, 75 (1980).

Vol. 32, No. 10 1633



*

Boyle, W. J., Jr., “Sizing Relief Area for Polymerization Reactors,”
Chem. Eng. Prog., 63 (8), 61 (Aug., 1967).

British Plastics Federation, “Guidelines for the Safe Production of Phe-
nolic Resins,” Report by Thermosetting Materials Group (1980).

Diss, E.. H. Karam, and C. Jones. “Practical Way to Size Safety Discs,”
Chem. Eng., 68 (19), 187 (Sept. 18. 1961).

Dodge. B. F.. Chemical Engineering Thermodynamics, McGraw-Hill,
New York (1944).

Duxbury, H. A., “Relief System Sizing for Polymerization Reactors,”
Chem. Eng., 31 (Jan.. 1980).

Fauske, H. K., “Scale-up for Safety Relief of Runaway Reactions,”
Plant/Operations Prog.. 3 (1. 7 (Jan., 1984a).

. **A Quick Approach to Reactor Vent Sizing.” Plant/Operations

Prog., 3 (3), 145 (July, 1984b).

. "Generalized Vent Sizing Nomogram for Runaway Chemical

Reactions,” Plant/Operations Prog., 3 (4), 213 (Oct., 1984c).

, “Flashing Flows—Some Practical Guidelines for Emergency
Releases,” Plant/Operations Prog., 4 (3), 132 (July, 1985).

Fauske, H. K., and J. C. Leung, “New Experimental Technique for
Characterizing Runaway Chemical Reactions,” Chem. Eng. Prog.,
81 (8), 39 (Aug., 1985).

Forrest, H. S., “Emergency Relief Vent Slzmg for Fire Exposure when -

Two-Phase Flow Must Be Considered,” Paper No. 56e, [9th Loss
Prevention Symp., AIChE Nat. Meet., Houston (Mar., 1985).

Grolmes, M. A., and H. K. Fauske, “An Evaluation of Incomplete
Vapor Phase Separation in Freon-12 Top-Vented Depressurization
Experiments,” Multiphase Flow Heat Transfer I, A: Fundamen-
tals, T. N. Veziroglu and A. E. Bergles, eds., Elsevier, Amsterdam
(1984).

Grolmes, M. A., and J. C. Leung, “Scaling Considerations for Two-
Phase Critical Flow,” Multiphase Flow and Heat Transfer Iil, A:
Fundamentals, T. N. Veziroglu and A. E. Bergles, eds., Elsevier,
Amsterdam (1984).

, “Code Method for Evaluating Integrated Relief Phenomena,”
Chem Eng. Prog.. 81 (8), 47 (Aug., 1985).

Harmon, G. W., and H. A. Martin, “Sizing Rupture Discs for Vessels
Contatining Monomers,” Prepr. No. 58a, 67th Nat. Meet. AIChE
(Feb., 1970).

Henry, R. E., and H. K. Fauske, “The Two-Phase Critical Flow of One-
Component Mixtures in Nozzles, Orifices, and Short Tubes,” J. Heat
Trans., Trans. ASME, 93,179 (1971).

Hildebrand, J. H., and R. L. Scott, The Solubility of Nonelectrolytes,
Reinhold, New York (1950).

Huff, J. E., “Computer Simulation of Polymerizer Pressure Relief,”
Chem. Engr. Prog., Loss Prevention Tech. Manual, 7, 45 (1973).

1634

October 1986  Vol. 32, No. 10

, “A General Approach to the Sizing of Emergency Pressure
Relief Systems.” Proc. 2nd Int. Symp. Loss Prevention Safety Pro-
motion in Process Industries, Heidelberg, (Sept., 1977); also “"Sup-
porting Derivations and Discussion for Paper: A General Approach to
the Sizing of Emergency Pressure Relief Systems,” supplement issued

at symposium, Dechema, Frankfurt (1977).

“Emergency Venting Requirements,”

1(4).211 (Oct., 1982).

, “Emergency Venting Requirements for Gassy Reactions from

Closed-System Tests,” Plant/Operations Prog., 3 (1), 50 (Jan.,

1984a).

“Computer Simulation of Runaway Reaction Venting,” /.

Chem. E., Symp. Ser. No. 85, 109 (Apr., 1984b).

, “Multiphase Flashing Flow in Pressure Relief Systems,™ Plant/
Operations Prog., 4 (4), 191 (Oct., 1985).

Hui, A. W., and A. E. Hamielec, “Thermal Polymerization of Styrene
at High Conversions and Temperatures. An Experimental Study,” J.
Appl. Polymer Sci., 16, 749 (1972.)

Lahey, R. T., and F. J. Moody, The Thermal-Hydraulics of a Boiling
Water Nuclear Reactor. Am. Nuclear Soc., Hinsdale, IL (1977).

Leung, J. C., “A Generalized Correlation for One-Component Homoge-
neous Equilibrium Flashing Choked Flow,” to be published in the
AIChE J. (1986).

Moody, F. J., “Maximum Flow Rate of a Single-Component, Two-
Phase Mixture,” J. Heat Transfer, Trans. ASME, 87, 134 (1965).

, “Maximum Discharge Rate of Liquid Vapor Mixtures from
Vessels,” Nonequilibrium Two-Phase Flows, ASME Symp. Vol.,
Am. Soc. Mech. Eng. (19795).

Smith, J. M., Chemical Engineering Kinetics, 2nd Ed. McGraw-Hill,
New York (1970).

Starkman, E. S., V. E. Shrock, K. F. Neusen, and D. J. Maneely, “Ex-
pansion of a Very Low-Quality Two-Phase Fluid Through a Conver-
gent-Divergent Nozzle,” J. Basic Eng., Trans. ASME, 68 (2), 247
(1964).

Stein, H. N., “Some Thermodynamic Relations for Binary Liquid-Gas
Equilibria,” Boiling Phenomena, S. van Stralen and R. Cole, eds..
Hemisphere, McGraw-Hill, New York 2, 535 (1979).

Townsend, D. I., and J. C. Tou, “Thermal Hazard Evaluation by an
Accelerating Rate Calorimeter,” Thermochimica Acta, 37, 1
(1980).

Van Wylen, G. J., and R. E. Sonntag, Fundamentals of Classical Ther-
modynamics, Chapter 14, John Wiley, New York (1965).

Wallis, G. B., One-Dimensional Two-Phase Flow, McGraw-Hill, New
York, (1969).

Plant/Operations Prog.,

Manuscript received July 11, 1985, and revision received Feb. 21, 1986.

AIChE Journal



