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Abstract

Suppose that a continuously traded equity market is compliant with a weak form of antitrust
regulation that prevents the concentration of practically all the market capital into a single
company. Then the no-arbitrage hypothesis imposes certain conditions on the dividend rates
of the stocks in the market. These conditions are observable and can be used to statistically
verify the hypothesis. Analysis of U.S. equity market data over the period from 1967 to 1996
indicates that the no-arbitrage hypothesis is likely to be invalid for this market.
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1 Introduction

The no-arbitrage hypothesis is a basic tenet of current mathematical finance (see, e.g., Duffie (1992)
and Karatzas (1996)). The hypothesis states that markets do not present opportunities for riskless
arbitrage (or “free lunch”), and while there are theoretical examples of markets in which arbitrage
exists, these examples appear to be mathematical oddities which do not resemble “real” markets.
Faith in market “efficiency” (see Malkiel (1990)) makes no-arbitrage a tempting hypothesis, and it
offers a nice setting for mathematical analysis, but whether or not this hypothesis accurately repre-
sents actual market conditions has never been established, in part because it depends on technical
and unobservable conditions such as the existence of an equivalent martingale measure (see Harrison
and Kreps (1979), Harrison and Pliska (1981), and Dybvig and Huang (1988)), and in part because
its status as a fundamental axiom has rendered it beyond question.

On what grounds could no-arbitrage be questioned, if it were liable to question? To challenge
so fundamental a postulate, three rigorous criteria must be satisfied. First, it must be shown that
actual markets are subject to some unconventional constraint that has traditionally been ignored
due to its innocuous and apparently irrelevant nature. Second, it must be proved theoretically that,
due to this constraint, there exist strategies that violate no-arbitrage. Third, statistical tests must
verify that the conditions which permit such strategies are present in some important actual market.
Minor, transitory pricing anomalies are not of interest to us; they are quickly “arbitraged” away by
clever traders (see Taylor (1986) and Malkiel (1990)). Nor are we interested in theoretical constructs
that could not exist in actual markets (e.g., negative-priced options, see Jarrow and Madan (1997)).

In this paper we consider continuously traded equity markets that are compliant with a weak form
of antitrust regulation. Antitrust regulation is an unorthodox condition in mathematical finance,
and apparently has not been considered in the literature. We show that in a market of stocks that
do not pay dividends, this weak antitrust condition makes it possible to construct a well-behaved
portfolio that dominates the market portfolio. This portfolio is constructed through the use of a
portfolio generating function (see Fernholz (1999b)). The return of the generated portfolio relative
to the market portfolio can be expressed as the sum of the change in the value of the generating
function plus a monotonically increasing process. There is a positive lower bound on the value of the
generating function, and the antitrust condition ensures that the rate of increase of the monotonic
process is bounded away from zero. This combination of lower bounds implies that the generated
portfolio will dominate the market portfolio.

If the stocks in the market pay dividends, the generated portfolio will dominate the market
portfolio unless the difference between the dividend yields of the two portfolios is great enough to
offset the increasing process mentioned above. Since these processes are all observable, this permits
statistical testing of the no-arbitrage hypothesis. Analysis of data for the U.S. equity market over
the 30 year period from 1967 to 1996 indicates that the difference between these dividend yields was
not great enough. Hence, for the U.S. equity market, the evidence suggests that the no-arbitrage
hypothesis has been invalid.

The example that we consider cannot be dismissed as nothing more than a parlor trick. The
weak antitrust condition that we assume depends only on observable parameters and is broadly con-
sistent with the structure of equity markets in industrialized economies. The portfolio construction
methodology we use is not merely a mathematical construct, but has been used for actual portfolio
management since 1996 (see Fernholz, Garvy, and Hannon (1998)). It follows that the results we
obtain are not merely curiosities, but rather show that in certain markets the no-arbitrage hypothesis
may be invalid and hence may to lead to incorrect conclusions about market behavior.

We shall use a model of stock price processes represented by continuous semimartingales that is
fairly standard in continuous-time financial theory (see, e.g., Karatzas and Shreve (1991)). We shall
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make certain simplifying assumptions, among them:

1. Companies do not merge or break up, and the total number of shares of a company remains
constant. The list of companies in the market is fixed.

2. Dividends are paid continuously rather than discretely.

3. There are no transaction costs, taxes, or problems with the indivisibility of shares.

2 Stochastic portfolio theory

In this section we shall review the basic definitions and results needed in the later sections. Much
of the material in this section can also be found in Fernholz (1999a), but since the approach we use
may be unfamiliar, it is presented here also. We shall generally follow the definitions and notation
used in Karatzas and Shreve (1991) and Karatzas (1996).

Let

W = {W (t) = (W1(t), . . . ,Wn(t)), Ft, t ∈ [ 0,∞)}

be a standard n-dimensional Brownian motion defined on a probability space {Ω,F, P} where {Ft}
is the augmentation under P of the natural filtration {FW

t = σ(W (s); 0 ≤ s ≤ t)}. We say that a
process {X(t), Ft, t ∈ [ 0,∞)} is adapted if X(t) is Ft-measurable for t ∈ [ 0,∞). If X and Y are
processes defined on {Ω, F, P}, we shall use the notation X = Y if

P{X(t) = Y (t), t ∈ [ 0,∞)} = 1.

For continuous, square-integrable martingales {M(t),Ft, t ∈ [ 0,∞)} and {N(t), Ft, t ∈ [ 0,∞)},
we can define the cross-variation process 〈M, N〉. The cross-variation process is adapted, continuous,
and of bounded variation, and the operation 〈 · , · 〉 is bilinear on the real vector space of continuous,
square-integrable martingales. If M = N , we shall use the notation 〈M〉 = 〈M,M〉; 〈M〉 is called the
quadratic variation process of M , and has continuous, nondecreasing sample paths. The Brownian
motion process defined above is a continuous, square-integrable martingale, and it is characterized
by its cross-variation processes

〈Wi, Wj〉t = δijt, t ∈ [ 0,∞),

where δij = 1 if i = j, and 0 otherwise.

A continuous semimartingale X = {X(t), Ft, t ∈ [ 0,∞)} is a measurable, adapted process that
has the decomposition,

X(t) = X(0) + MX(t) + VX(t), t ∈ [ 0,∞), a.s., (2.1)

where {MX(t), Ft, t ∈ [ 0,∞)} is a continuous, square-integrable martingale and {VX(t),Ft, t ∈
[ 0,∞)} is a continuous, adapted process that is locally of bounded variation. It can be shown
that this decomposition is a.s. unique (see Karatzas and Shreve (1991)), so we can define the
cross-variation process for continuous semimartingales X and Y by

〈X, Y 〉 = 〈MX ,MY 〉,

where MX and MY are the martingale parts of X and Y, respectively.
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Definition 2.1. Let X0 be a positive number. A stock X = {X(t),Ft, t ∈ [ 0,∞)} is a process of
the form

X(t) = X0 exp
(∫ t

0

γ(s) ds +
∫ t

0

n∑
ν=1

ξν(s) dWν(s)
)

, t ∈ [ 0,∞), (2.2)

where γ = {γ(t), Ft, t ∈ [ 0,∞)} is measurable, adapted, and satisfies
∫ t

0
|γ(s)|ds < ∞, for all

t ∈ [ 0,∞), a.s., and for ν = 1, . . . , n, ξν = {ξν(t), Ft, t ∈ [ 0,∞)} is measurable, adapted, and
satisfies

∫ t

0
ξ2
ν(s)ds < ∞ for all t ∈ [ 0,∞), a.s., and such that there exists a number ε > 0 for which

ξ2
1(t) + · · ·+ ξ2

n(t) > ε, t ∈ [ 0,∞), a.s.

It follows directly from Definition 2.1 that X is adapted, that X(t) > 0 for all t ∈ [ 0,∞), a.s., and
that X has initial value X(0) = X0. We shall set the initial value X0 to be the total capitalization
of the company represented by X at time t = 0, and we shall assume that this total capitalization is
positive. This is equivalent to assuming that there is a single share of stock outstanding, and X(t)
represents its price at time t. We assume that stock shares are infinitely divisible, so there is no
loss of generality in assuming a single share outstanding. The process γ is called the growth rate
(process) of X and, for each ν, the process ξν represents the sensitivity of X to the ν-th source of
uncertainty Wν .

We shall find it convenient to use a logarithmic representation for stocks (cf. Fernholz and Shay
(1982)). Equation (2.2) is equivalent to

log X(t) = log X0 +
∫ t

0

γ(s) ds +
∫ t

0

n∑
ν=1

ξν(s) dWν(s),

or, in differential form,

d log X(t) = γ(t) dt +
n∑

ν=1

ξν(t) dWν(t). (2.3)

From this it is clear that log X is a continuous semimartingale.

Suppose that we have a family of stocks Xi, i = 1, . . . , n,

Xi(t) = Xi
0 exp

(∫ t

0

γi(s) ds +
∫ t

0

n∑
ν=1

ξiν(s) dWν(s)
)

, t ∈ [ 0,∞). (2.4)

Consider the matrix valued process ξ defined by ξ(t) = (ξiν(t))1≤i,ν≤n and define the covariance
process σ where σ(t) = ξ(t)ξT (t). The cross-variation processes for log Xi and log Xj are related to
σ by

〈log Xi, log Xj〉t =
∫ t

0

σij(s) ds, t ∈ [ 0,∞), a.s. (2.5)

Since the processes ξiν are assumed to be square integrable in Definition 2.1, it follows that for all i
and j,

∫ t

0

σij(s) ds < ∞, t ∈ [ 0,∞), a.s.

Definition 2.2. A market is a family M = {Xi, . . . , Xn} of stocks, defined as in (2.4), for which
there is a number ε > 0 such that

xσ(t)xT ≥ ε ‖x‖2, x ∈ Rn, t ∈ [ 0,∞), a.s. (2.6)
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The strong nondegeneracy condition (2.6) is fairly common and can be found, for example, in
Karatzas and Shreve (1991) and Karatzas and Kou (1996), and as uniform ellipticity in Duffie (1992).
Frequently in the literature one finds more restrictions on γi and ξiν in order to be able to prove the
existence of an equivalent martingale measure (see Harrison and Kreps (1979), Harrison and Pliska
(1981), and Dybvig and Huang (1988), as well as Duffie (1992) and Karatzas (1996)). It is known,
for example, that if γi and ξiν are a.s. bounded on [ 0,∞), then there exists an equivalent martingale
measure (see, e.g., Karatzas (1996)). But it is not difficult to show that if γi and ξiν are bounded,
then Definition 4.1 below will not hold.

Definition 2.3. Let M be a market of n stocks. A portfolio in M is a measurable, adapted process
π = {π(t) = (π1(t), . . . , πn(t)),Ft, t ∈ [ 0,∞)} such that π(t) is bounded on [ 0,∞)× Ω and

π1(t) + · · ·+ πn(t) = 1, t ∈ [ 0,∞), a.s.

The processes πi represent the respective proportions, or weights, of each stock in the portfolio.
A negative value for πi(t) indicates a short sale. Suppose Zπ(t) represents the value of an investment
in π at time t. Then the amount invested in the i-th stock Xi will be

πi(t)Zπ(t),

so if the price of Xi changes by dXi(t), the induced change in the portfolio value will be

πi(t)Zπ(t)
dXi(t)
Xi(t)

.

Hence the total change in the portfolio value at time t will be

dZπ(t) =
n∑

i=1

πi(t)Zπ(t)
dXi(t)
Xi(t)

,

or, equivalently,

dZπ(t)
Zπ(t)

=
n∑

i=1

πi(t)
dXi(t)
Xi(t)

. (2.7)

Since we are interested in the behavior of portfolios, we are interested in solutions to (2.7). The
following proposition and corollary are proved in Fernholz (1999a).

Proposition 2.1. Let π be a portfolio and let

γπ(t) =
n∑

i=1

πi(t)γi(t) + γ∗π(t), (2.8)

where

γ∗π(t) =
1
2

( n∑

i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)
)
. (2.9)

Then, for any positive initial value Zπ
0 , the process Zπ defined by

Zπ(t) = Zπ
0 exp

(∫ t

0

γπ(s) ds +
∫ t

0

n∑

i,ν=1

πi(s)ξiν(s) dWν(s)
)
, t ∈ [ 0,∞), (2.10)

is a strong solution of (2.7).
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Corollary 2.1. Let π be a portfolio and Zπ be its value process. Then for t ∈ [ 0,∞),

d log Zπ(t) =
n∑

i=1

πi(t) d log Xi(t) + γ∗π(t) dt. (2.11)

It follows from (2.11) that log Zπ is a continuous semimartingale. The process γπ in (2.8) is called
the portfolio growth rate (process) of the portfolio π, and γ∗π in (2.9) is called the excess growth rate
(process). It was proved in Fernholz (1999a) that for portfolios with non-negative weights, the excess
growth rate is non-negative, and is positive unless the portfolio consists of a single stock.

For any stock Xi and portfolio π we can consider the quotient process Xi/Zπ defined by

log
(
Xi(t)/Zπ(t)

)
= log Xi(t)− log Zπ(t). (2.12)

This process is a continuous semimartingale with

〈log(Xi/Zπ), log(Xj/Zπ)〉t =
〈log Xi, log Xj〉t − 〈log Xi, log Zπ〉t − 〈log Xj , log Zπ〉t + 〈log Zπ〉t. (2.13)

If we define the process σiπ by

σiπ(t) =
n∑

j=1

πj(t)σij(t),

for i = 1, . . . , n, then

〈log Xi, log Zπ〉t =
∫ t

0

σiπ(s) ds.

Define the relative covariance (process) τπ to be the matrix valued process

τπ(t) = (τπ
ij(t))1≤i,j≤n,

where

τπ
ij(t) = σij(t)− σiπ(t)− σjπ(t) + σππ(t), (2.14)

for i, j = 1, . . . , n, where σππ(t) = π(t)σ(t)πT (t), t ∈ [ 0,∞). Then for all i and j,

〈log(Xi/Zπ), log(Xj/Zπ)〉t =
∫ t

0

τπ
ij(s) ds. (2.15)

In the case that i = j, we know that 〈log(Xi/Zπ)〉t is non-decreasing, so

τπ
ii(t) ≥ 0, t ∈ [ 0,∞), a.s.

Lemma 2.1. Let π be a portfolio. Then the rank of τπ(t) is n− 1, for t ∈ [ 0,∞), a.s., and the null
space of τπ(t) is spanned by π(t).

Proof. It follows from (2.14) that for any portfolio η, a.s. for t ∈ [ 0,∞),

η(t)τπ(t)ηT (t) =
(
η(t)− π(t)

)
σ(t)

(
η(t)− π(t)

)T
.

By condition (2.6), a.s. for t ∈ [ 0,∞),
(
η(t)− π(t)

)
σ(t)

(
η(t)− π(t)

)T = 0

if and only if η(t) = π(t).
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The following lemma expresses the excess growth in terms of the relative covariance process.

Lemma 2.2. Let π and η be portfolios. Then for t ∈ [ 0,∞),

γ∗η(t) =
1
2

( n∑

i=1

ηi(t)τπ
ii(t)−

n∑

i,j=1

ηi(t)ηj(t)τπ
ij(t)

)
.

Proof. The proof is a direct calculation using (2.14).

Lemma 2.3. Let π be a portfolio. Then there exists an ε > 0 such that for i = 1, . . . , n,

τπ
ii(t) ≥ ε

(
1− πi(t)

)2
, t ∈ [ 0,∞), a.s. (2.16)

Proof. For any i and t ∈ [ 0,∞), let x(t) = (π1(t), . . . , πi(t)− 1, . . . , πn(t)). Then,

τπ
ii(t) = σii(t)− 2σiπ(t) + σππ(t)

= x(t)σ(t)xT (t)

≥ ε ‖x(t)‖2, t ∈ [ 0,∞), a.s.,

where ε is chosen as in (2.6). Since,

‖x(t)‖2 ≥ (
1− πi(t)

)2
,

the lemma follows.

Lemma 2.4. Let π be a portfolio with non-negative weights, and let πmax(t) = max1≤i≤n πi(t).
Then there exists an ε > 0 such that

γ∗π(t) ≥ ε(1− πmax(t))2.

Proof. If we let η = π in Lemma 2.2, then Lemma 2.1 implies that

γ∗π(t) =
1
2

n∑

i=1

πi(t)τπ
ii(t)

≥ ε

2
(1− πmax(t))2,

where ε is chosen as in Lemma 2.3, since the πi(t) are non-negative.

The total capitalization of the market can be represented by a portfolio. Let us assume from
now on that the market is M = {X1, . . . , Xn}, with n stocks.

Definition 2.4. The portfolio

µ = {µ(t) = (µ1(t), . . . , µn(t)), Ft, t ∈ [ 0,∞)},

where

µi(t) =
Xi(t)

X1(t) + · · ·+ Xn(t)
, (2.17)

for i = 1, . . . , n, is called the market portfolio (process).
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It is clear that the µi defined by (2.17) satisfy the requirements of Definition 2.3. If we let

Z(t) = X1(t) + · · ·+ Xn(t), (2.18)

then Z(t) satisfies (2.7) with weights µi(t) given by (2.17). Hence, the value of the market portfolio
represents the combined capitalization of all the stocks in the market. We shall use the notation
Z = Zµ to represent the market portfolio value process, and τij = τµ

ij to represent its relative
covariance processes.

3 Portfolio generating functions

In this section we shall show that certain real-valued functions of the market weights can be used to
construct dynamic portfolios. These functionally generated portfolios are of interest because their
return relative to the market portfolio is governed by a stochastic differential equation that can
be used to establish a dominance relationship between the two portfolios. A general discussion of
portfolio generating functions, including examples, can be found in Fernholz (1999b).

We shall consider real-valued functions defined on the open simplex

∆n = {x ∈ Rn : x1 + · · ·+ xn = 1, 0 < xi < 1, i = 1, . . . , n}.
It will be convenient to use the standard coordinate system in Rn, even though it is not a coordinate
system on ∆n. For this reason we shall consider functions that are defined in an open neighborhood
U ⊂ Rn of ∆n. A real-valued function defined on a subset of Rn is C2 if it is twice continuously
differentiable in all variables. We shall use the notation Di for the partial derivative with respect to
the i-th variable, and Dij for the second partial derivative with respect to the i-th and j-th variables.

Definition 3.1. Let U be an open neighborhood of ∆n and S be a positive C2 function defined in
U . Then S is the generating function of the portfolio π if there exists a measurable, adapted process
Θ = {Θ(t), Ft, t ∈ [ 0,∞)} such that

d log
(
Zπ(t)/Z(t)

)
= d log S(µ(t)) + Θ(t)dt, t ∈ [ 0,∞), a.s. (3.1)

Θ is called the drift process corresponding to S.

We shall say that the function S generates π. What follows is the main theorem on portfolio
generating functions.

Theorem 3.1. Let S be a positive C2 function defined on a neighborhood U of ∆n such that for
i = 1, . . . , n, xiDi log S(x) is bounded on ∆n. Then S generates the portfolio π with weights

πi(t) =
(
Di log S(µ(t)) + 1−

n∑

j=1

µj(t)Dj log S(µ(t))
)
µi(t), t ∈ [ 0,∞), a.s., (3.2)

for i = 1, . . . , n, and drift process

Θ(t) =
−1

2S(µ(t))

n∑

i,j=1

DijS(µ(t))µi(t)µj(t)τij(t), t ∈ [ 0,∞), a.s. (3.3)

Proof. The weight process µi is a quotient process with µi(t) = Xi(t)/Z(t) for all t. By (2.15) it
follows that

d〈log µi, log µj〉t = τij(t) dt, t ∈ [ 0,∞), a.s.,
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so by Itô’s Lemma,

dµi(t) = µi(t) d log µi(t) +
1
2
µi(t)τii(t) dt, t ∈ [ 0,∞), a.s., (3.4)

and

d〈µi, µj〉t = µi(t)µj(t)τij(t) dt, t ∈ [ 0,∞), a.s. (3.5)

Itô’s lemma, along with (3.5), implies that a.s. for all t ∈ [ 0,∞),

d log S(µ(t)) =
n∑

i=1

Di log S(µ(t)) dµi(t) +
1
2

n∑

i,j=1

Dij log S(µ(t))µi(t)µj(t)τij(t) dt.

Now,

Dij log S(µ(t)) =
DijS(µ(t))

S(µ(t))
−Di log S(µ(t))Dj log S(µ(t)),

so, a.s., for all t ∈ [ 0,∞),

d log S(µ(t)) =
n∑

i=1

Di log S(µ(t)) dµi(t) +
1

2S(µ(t))

n∑

i,j=1

DijS(µ(t))µi(t)µj(t)τij(t) dt

− 1
2

n∑

i,j=1

Di log S(µ(t))Dj log S(µ(t))µi(t)µj(t)τij(t) dt. (3.6)

In order for (3.1) to hold, the martingale parts of log S(µ(t)) and log
(
Zπ(t)/Z(t)

)
must be equal.

Corollary 2.1 implies that for the portfolio π, a.s. for all t ∈ [ 0,∞),

d log
(
Zπ(t)/Z(t)

)
=

n∑

i=1

πi(t) d log
(
Xi(t)/Z(t)

)
+ γ∗π(t) dt

=
n∑

i=1

πi(t) d log µi(t) + γ∗π(t) dt

=
n∑

i=1

πi(t)
µi(t)

dµi(t)− 1
2

n∑

i,j=1

πi(t)πj(t)τij(t) dt (3.7)

by Lemma 2.2. Suppose that

πi(t) =
(
Di log S(µ(t)) + ϕ(t)

)
µi(t), (3.8)

where ϕ(t) is chosen such that
∑n

i=1 πi(t) = 1. Then, a.s. for all t ∈ [ 0,∞),

n∑

i=1

πi(t)
µi(t)

dµi(t) =
n∑

i=1

Di log S(µ(t)) dµi(t) + ϕ(t)
n∑

i=1

dµi(t)

=
n∑

i=1

Di log S(µ(t)) dµi(t),

since
∑n

i=1 dµi(t) = 0. Hence, the martingale parts of log S(µ(t)) and log
(
Zπ(t)/Z(t)

)
are equal. If

ϕ(t) = 1−
n∑

j=1

µj(t)Dj log S(µ(t)),
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then
∑n

i=1 πi(t) = 1, and (3.2) is proved.

If πi(t) satisfies (3.8), then a.s. for all t ∈ [ 0,∞),

n∑

i,j=1

πi(t)πj(t)τij(t) =
n∑

i,j=1

Di log S(µ(t))Dj log S(µ(t))µi(t)µj(t)τij(t)

+ 2ϕ(t)
n∑

i,j=1

Di log S(µ(t))µi(t)µj(t)τij(t) + ϕ2(t)
n∑

i,j=1

µi(t)µj(t)τij(t)

=
n∑

i,j=1

Di log S(µ(t))Dj log S(µ(t))µi(t)µj(t)τij(t),

since µ(t) is in the null space of τ(t) by Lemma 2.1. Hence, a.s. for all t ∈ [ 0,∞),

d log
(
Zπ(t)/Z(t)

)
=

n∑

i=1

Di log S(µ(t)) dµi(t)− 1
2

n∑

i,j=1

Di log S(µ(t))Dj log S(µ(t))µi(t)µj(t)τij(t) dt.

This equation and (3.6) imply that a.s. for all t ∈ [ 0,∞),

d log
(
Zπ(t)/Z(t)

)
= d log S(µ(t))− 1

2S(µ(t))

n∑

i,j=1

DijS(µ(t))µi(t)µj(t)τij(t) dt,

so (3.3) is proved. The process Θ defined by (3.3) is clearly measurable and adapted.

The next proposition is proved in Fernholz (1999b). It implies that we could have defined
generating functions on ∆n rather than in a neighborhood. We prefer Definition 3.1 because it
allows us to use the standard coordinate system on Rn.

Proposition 3.1. Let S1 and S2 be portfolio generating functions. Then S1 and S2 generate the
same portfolio if and only if S1/S2 is constant on ∆n.

4 Antitrust, arbitrage, and dividends

In this section we shall show that if a weak antitrust condition is imposed on the market, then
generating functions can be used to construct well-behaved portfolios that dominate the market
portfolio. We show that if there is a portfolio that dominates the market portfolio, then arbitrage
opportunities exist and the no-arbitrage hypothesis fails. Finally, we show that with the introduction
of dividends into our model, antitrust can be made compatible with no-arbitrage.

It has long been accepted that excessive concentration of production or capital in a single com-
pany is likely to interfere with competition and be detrimental to the national economy (see, .e.g.,
Smith (1776) or Blair (1972)). For this reason the U.S. has enacted antitrust legislation to prevent
such excessive concentration. Here we are not interested in the economic rationale for antitrust
legislation, but rather in the effect such legislation has on the distribution of capital in the equity
market. Any credible antitrust regulations will prevent prolonged concentration of practically all
the market capital into a single company. From a realistic point of view, in an economy like that
of the U.S., it is unlikely that a single company could account for even half of the total market
capitalization. The condition we shall impose is a weak consequence of actual antitrust regulations,
and any market model bearing even a remote resemblance to the U.S. equity market can safely be
assumed to satisfy it.
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Definition 4.1. Let µmax(t) = max1≤i≤n µi(t). The market M is weakly antitrust compliant if there
exists a number δ > 0 and a time T0 such that

1
T

∫ T

0

µmax(t) dt ≤ 1− δ, T > T0, a.s. (4.1)

It is necessary to restrict the class of portfolios we consider in order to prevent the use of
“doubling” strategies that will permit unlimited returns at unlimited risk (see Karatzas (1996)).
Here we are interested only in portfolios without short sales.

Definition 4.2. A portfolio π is admissible if

i) For i = 1, . . . , n, πi(t) ≥ 0, t ∈ [ 0,∞);

ii) There exists a constant c > 0 such that

Zπ(t)/Zπ(0) ≥ cZ(t)/Z(0), t ∈ [ 0,∞), a.s.

Admissibility conditions of this nature are not uniform in the literature, and a portfolio that
satisfies Definition 4.2 may not be “admissible” in other settings. Condition ii implies limited risk
with respect to the market as numeraire. The market is a natural numeraire for equity managers
whose performance is measured versus the market as benchmark. Note that the market portfolio is
admissible.

Definition 4.3. Let η and ξ be portfolios. Then η strictly dominates ξ if there is a number T > 0
such that for any positive initial values Zη(0) and Zξ(0),

P{Zη(T )/Zη(0) > Zξ(T )/Zξ(0)} = 1. (4.2)

An arbitrage opportunity is a combination of investments in portfolios such that the total initial
value of the investments is zero and such that the total value will be positive at some given future time
T , with probability one (see, e.g., Duffie (1992) or Karatzas (1996)). The no-arbitrage hypothesis
states that there exist no arbitrage opportunities composed of investments in admissible portfolios.

Suppose that η and ξ are admissible portfolios that satisfy Definition 4.3. Proposition 2.1 implies
that the value of an investment in a portfolio is scalable by setting its initial value. Hence, we can
buy one dollar worth of η at time 0, and finance this purchase by selling one dollar worth of ξ short
at the same time. Therefore, the total initial value of our portfolio holdings is zero. At time T , the
dollar value of our holdings in η will be

Zη(T )/Zη(0), (4.3)

and the dollar value we owe on the short sale of ξ will be

Zξ(T )/Zξ(0). (4.4)

Definition 4.3 implies that, with probability one, (4.3) is greater than (4.4), so the total value of our
holdings at time T will be strictly positive. Hence, this combination of investments is an arbitrage
opportunity. Therefore, if there exist admissible portfolios that satisfy Definition 4.3, an arbitrage
opportunity exists and the no-arbitrage hypothesis fails. The next theorem shows that if an equity
market is weakly antitrust compliant, then such portfolios exist.

Theorem 4.1. If the market M is weakly antitrust compliant then there exists an admissible port-
folio that strictly dominates the market portfolio.

10



Proof. Let p be a number 0 < p < 1, and consider the function Dp : Rn → R defined by

Dp(x) =
( n∑

i=1

xp
i

)1/p

. (4.5)

By Theorem 3.1, Dp generates a portfolio π with weights

πi(t) =
µp

i (t)(
Dp(µ(t))

)p , (4.6)

for i = 1, . . . , n, and drift process

Θ(t) = (1− p)γ∗π(t). (4.7)

Let us first show that π is admissible. It is obvious from (4.6) that πi(t) ≥ 0 for i = 1, . . . , n.
Lemma 2.4 implies that γ∗π(t) ≥ 0, so,

log
(
Zπ(T )/Zπ(0)

)− log
(
Z(T )/Z(0)

) ≥ log
(
Dp(µ(T ))/Dp(µ(0))

)
, T ∈ [ 0,∞), a.s.

From the definition of Dp it follows immediately that

1 < Dp(µ(t)) ≤ n(1−p)/p, t ∈ [ 0,∞), a.s., (4.8)

so,

Zπ(T )/Zπ(0) ≥ n(p−1)/pZ(T )/Z(0), T ∈ [ 0,∞), a.s.,

and hence π is admissible.

Now we must show that π strictly dominates µ. By (4.6), πmax(t) ≤ µmax(t), for all t ∈ [ 0,∞),
a.s., and since M is weakly antitrust compliant there is a δ > 0 such that

1
T

∫ T

0

(
1− πmax(t)

)
dt ≥ δ, T > T0, a.s.,

where T0 is chosen as in Definition 4.1. By Schwarz’s inequality,

1
T

∫ T

0

(
1− πmax(t)

)2
dt ≥ δ2, T > T0, a.s.

By Lemma 2.4 there exists an ε > 0 such that

γ∗π(t) ≥ ε
(
1− πmax(t)

)2
,

so,

1
T

∫ T

0

γ∗π(t) dt ≥ εδ2, T > T0, a.s. (4.9)

It follows that if T > max(T0, log n/pεδ2), then P{Zπ(T )/Zπ(0) > Z(T )/Z(0)} = 1.

Remark. Generating functions that are symmetric and concave, as is Dp, are called measures of
diversity. Portfolios generated by measures of diversity have non-decreasing drift processes and
positive weights πi for which the weight ratios πi/µi decrease with increasing µi. See Fernholz
(1999b) for details.
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In the mathematical finance literature, for reasons of convenience it is often assumed that com-
panies pay no dividends. Of course, this assumption is not realistic. Let us now formally introduce
dividends into our model, and see how this affects the conclusions of Theorem 4.1.

A dividend rate (process) is a process δ = {δ(t), Ft, t ∈ [ 0,∞)} that is measurable, adapted,
and satisfies

∫ t

0
|δ(s)|ds < ∞, for all t ∈ [ 0,∞), a.s. Usually dividend rates are assumed to be

non-negative, but this assumption is not necessary. We shall henceforth assume that all stocks have
dividend rates, even if in some cases the dividend rate is identically zero.

We define the total return process X̂ for a stock X by

X̂(t) = X(t) exp
(∫ t

0

δ(s) ds
)
. (4.10)

If δ = 0, then X̂ = X. It follows from (4.10) that X̂(0) = X(0) and that

d log X̂(t) = d log X(t) + δ(t) dt.

Let δ1, . . . , δn be the respective dividend rates of the stocks X1, . . . , Xn in the market M. For
any portfolio π, we define the portfolio dividend rate (process) δπ by

δπ(t) =
n∑

i=1

πi(t)δi(t), t ∈ [ 0,∞),

and the total return (process) Ẑπ of π by

Ẑπ(t) = Zπ(t) exp
(∫ t

0

δπ(s) ds
)
. (4.11)

As for individual stocks,

d log Ẑπ(t) = d log Zπ(t) + δπ(t) dt.

The process Ẑπ represents the value of a portfolio with the same weights π1(t), . . . , πn(t) as π, but in
which all dividends are reinvested proportionally across the entire portfolio according to the weight
of each stock. Hence the reinvestment of the dividends modifies the value of Ẑπ while preserving
the weights of the portfolio π.

We shall use the notation Ẑ to represent the total return process of the market portfolio µ, and
δµ to represent its dividend rate. We must extend Definition 4.3 so that it applies to stocks with
dividends.

Definition 4.4. Let η and ξ be portfolios. Then η strictly dominates ξ if there is a number T > 0
such that for any positive initial values Ẑη(0) and Ẑξ(0),

P{Ẑη(T )/Ẑη(0) > Ẑξ(T )/Ẑξ(0)} = 1. (4.12)

This definition coincides with Definition 4.3 for portfolios of stocks which pay no dividends. The
following proposition generalizes (3.1) to the total return processes.

Proposition 4.1. Suppose that S generates the portfolio π with drift process Θ. Then

d log
(
Ẑπ(t)/Ẑ(t)

)
= d log S(µ(t)) +

(
δπ(t)− δµ(t) + Θ(t)

)
dt, t ∈ [ 0,∞), a.s. (4.13)
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Proof. This follows immediately from Theorem 3.1 and (4.11).

Theorem 4.1 is not valid for π and µ because the differential dividend rate δπ(t)− δµ(t) in (4.13)
can offset the drift process Θ(t) and prevent dominance from occurring. Instead we have

Proposition 4.2. Suppose that S generates the portfolio π with drift process Θ. If there exist
positive constants c1 and c2 such that a.s. for all t ≥ 0,

S(µ(t)) > c1 (4.14)

and
(
δπ(t)− δµ(t) + Θ(t)

)
> c2, (4.15)

then π strictly dominates µ.

Proof. It is easily seen that if T > log
(
c2/S(µ(0))

)
/c2, then P{Ẑπ(T )/Ẑπ(0) > Ẑ(T )/Ẑ(0)} = 1.

This proposition shows that the validity of the no-arbitrage hypothesis depends on the behavior
of the processes S(µ), δπ, δµ, and Θ. The processes S(µ), δπ, and δµ are all observable, and Θ can
be calculated from observable processes using (4.13). Hence Proposition 4.2 provides the basis for
statistical testing of the no-arbitrage hypothesis.

5 Statistical testing of the no-arbitrage hypothesis

We can think of at least two reasons why the no-arbitrage hypothesis has become dogma in math-
ematical finance. First, on the surface, it appears to be a satisfactory representation of actual
markets—Karatzas (1996) characterizes it as “a basic tenet of the reality available to most of
us.” Arbitrage opportunities are probability-one events, and outside mathematics there are no
probability-one events (except for death and taxes, of course), so one could argue that no-arbitrage
holds by default. But we must remember that no-arbitrage is a strong hypothesis and it has been
levered into strong conclusions, particularly regarding market equilibrium (see, e.g., Sharpe (1964),
Merton (1971) and Karatzas, Lehoczky, and Shreve (1990)). Mathematical models should provide
a faithful representation of reality—are these conclusions faithful to reality?

Second, until now it has been difficult, if not impossible, to test the hypothesis empirically. In the
literature, no-arbitrage frequently follows from the assumed existence of an equivalent martingale
measure, and the existence of such a measure is not amenable to statistical verification (see Harrison
and Kreps (1979), Harrison and Pliska (1981), and Dybvig and Huang (1988)). While statistical
tests of various versions of the efficient market hypothesis have appeared, none of these constitute a
test of no-arbitrage (see, e.g., Taylor (1986) and Malkiel (1990)).

Proposition 4.2 makes it possible to test the no-arbitrage hypothesis in actual markets. Here we
test it in the U.S. equity market over the 30 year period from 1967 to 1996. The analysis we present
is exploratory in the sense of Tukey (1977), and our conclusions should not be considered definitive.
Nevertheless, our results provide some insight into the validity of this hypothesis which until now
has never been subjected to scientific verification.

Since the composition of actual equity markets is continually changing, certain modifications must
be made to Proposition 4.2 in order that it be applicable. Changes in the value of the generating
function S(µ(t)) in (4.13) that are caused by changes in the composition of the market or by corporate
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actions such as takeovers and breakups must be excluded since they have no effect on the returns
of the portfolios π and µ. Hence we include only return induced changes in the generating function.
This exclusion has the same purpose as adjustments made to the “divisor” of a stock index. However,
this also means that any natural lower bound on S(µ(t)) such as (4.8) will no longer be valid, and
some other argument will be needed to establish (4.14) in Proposition 4.2.

The data used for our analysis were the monthly stock data from the Center for Research in
Security Prices at the University of Chicago (CRSP). The market portfolio consisted of all the U.S.
exchange traded and NASDAQ stocks with market weight greater than one half of a basis point,
after the removal of REITs, closed-end funds, and ADRs not included in the S&P 500 Index. There
were about 6000 stocks in this market. The generating function of the portfolio π was Dp defined
in Theorem 4.1 with p = .5. The market weights were calculated each month using the monthly
closing prices and shares outstanding, and π was generated from the market weights.

Table 1: Relative return decomposition, 1967–1996
Annual means (logarithmic)

Relative Change in Drift Differential
return Dp process dividend rate

1.57% −.45% 2.45% −.43%

The results of the data analysis are presented in Table 1. All the values are logarithmic and are
in the form of annual averages. The relative return is equal to the difference of the average annual
logarithmic return of the portfolio π minus the average annual logarithmic return of the market
portfolio. The three components add up to this difference (up to roundoff error). As can be seen,
the contribution of the drift process is substantially greater than either of the other two components
of the relative return.

Figures 1 through 4 show the cumulative values of the components of the relative return. Figure 1
shows that π generated about 47% higher logarithmic return than the market over the 30 year period,
and this resulted in the 1.57% average relative return in Table 1.

The change in Dp in Figure 2 was responsible for almost all of the volatility of the relative
return, but over the 30 years total change was only about −14%. The negative change in Dp is
small compared to total variation over the period (t = −.58), and the time series appears to be
mean-reverting and stable. Dp is a measure of diversity, and there is reason to believe that the
diversity of a large equity market like that of the U.S. is likely to remain stable over time (see
Fernholz (1999a) and Fernholz (1999b)).

The drift process in Figure 3 is close to a pure trend process (t = 54.) that added more than
73% to the relative return of π over the period studied. Since Θ(t) = (1− p)γ∗π(t), the slope of this
process depends on the relative variances of the stocks in the market. From the looks of Figure 3,
these relative variances appear to have been fairly stable over the period.

The contribution of the differential dividend rate in Figure 4 was significantly less than that of
the drift process (two-sample t = 44.). Although the differential dividend rate was flat for the first
few years, after 1975 it averaged about .57% a year in favor of the market portfolio. But to neutralize
the drift process, it would have to have been more than four times greater even after 1975.

The evidence from this exploratory analysis indicates that the change in Dp is mean-reverting
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and stable with no significant trend, and that the rate of increase of the drift process is significantly
greater than the rate of decrease of the differential dividend process. If we accept the results of this
analysis, then over the period studied, the conditions of Proposition 4.2 are satisfied, and we must
conclude that the no-arbitrage hypothesis did not accurately represent the U.S. equity market.

6 Conclusion

The no-arbitrage hypothesis must be subjected to the same verification process as any other scien-
tific principle. We have presented prima facie evidence that the no-arbitrage hypothesis has been
invalid for the U.S. equity market. We have shown theoretically that no-arbitrage fails under certain
conditions, and the evidence indicates that these conditions have prevailed in the U.S. equity market.
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Figure 1: Relative return (logarithmic), 1967–1996
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Figure 2: Change in Dp, 1967–1996
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Figure 3: Drift process, 1967–1996
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Figure 4: Differential dividend rate, 1967–1996
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