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Abstract

We study the distribution of the time to explosion for one-dimensional diffusions. We relate this
question to the computation of expectations of suitable nonnegative local martingales. Moreover, we
characterize the distribution function of the time to explosion as the minimal solution to a certain
Cauchy problem for an appropriate parabolic differential equation; this leads to alternative charac-
terizations of Feller’s criterion for explosions. We discuss in detail several examples for which it is
possible to obtain analytic expressions for the corresponding distribution of the time to explosion,
using the methodologies developed in the paper.
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1 Introduction and summary

Precise conditions for whether or not a one-dimensional diffusion process explodes in finite time have
been developed, most notably by William Feller. To the best of our knowledge, and rather surprisingly,
the distribution of the explosion time has rarely – if at all – been the subject of investigation (a notable
exception is the appendix in Elworthy et al. (2010), particularly its Theorem 9.1.3(ii)). With the present
work we hope to help close this gap or, at the very least, to narrow it.
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In Section 2, we recall relevant facts of the theory of one-dimensional diffusions. In Section 3, we
recall and generalize a result of McKean (1969) that associates the distribution of an explosion time to the
expectation of a related nonnegative local martingale. In Section 4, we study analytic properties of the
distribution function such as continuity, strict positivity, and full support. In Section 5, we characterize
the tail (t, ξ) 7−→ Pξ(S > t) of the probability distribution function of the time-to-explosion S, viewed
as a function of time t and starting position ξ, as the smallest nonnegative solution of an appropriate
partial differential equation of parabolic type. We also derive a similar characterization for the Laplace
transform of this tail probability distribution function in terms of an ordinary differential equation, and
present alternative characterizations of Feller’s criterion for explosions. In Section 6, we provide several
examples to illustrate the methodologies developed in Sections 3–5. In Appendices A and B, we recall
some useful facts regarding the Feller test and the Lamperti transformation. Finally, in Appendix C, we
provide a technical uniqueness result for stopped diffusions in natural scale.

Although not much work seems to exist on the distribution of the time to explosion, there is a huge
literature on the computation of first-passage times by diffusions. We refer to Pitman and Yor (2003) and
Section 2 in Göing-Jaeschke and Yor (2003) for several pointers to this literature. If a boundary is regular,
the diffusion can be extended beyond that boundary and the time to explosion can be represented as a
first-passage time for a regular diffusion; however, for an exit boundary such an extension is not possible
(one-dimensional diffusions cannot explode at natural or entrance boundaries). We refer the reader to
Section 16.7 in Breiman (1992) for a classification of boundary behavior for one-dimensional diffusions.

2 Some essentials of one-dimensional diffusions

We fix an open interval I = (`, r) with −∞ ≤ ` < r ≤ ∞ and consider the stochastic differential
equation

dX(t) = s(X(t))
[

dW (t) + b(X(t)) dt
]
, t ≥ 0, X(0) = ξ , (2.1)

where ξ ∈ I and W (·) denotes a Brownian motion. We shall impose throughout the paper the following:

Standing Assumption 2.1. The functions b : I → R and s : I → R \ {0} are measurable and satisfy∫
K

(
1

s2(y)
+

∣∣∣∣b(y)

s(y)

∣∣∣∣) dy < ∞ for every compact set K ⊂ I. (2.2)

In other words, we shall be assuming that both 1/s2(·) and the “local mean/variance ratio” function

f(·) :=
b(·)
s(·)

=
b(·)s(·)
s2(·)

(2.3)

are locally integrable over the interval I .

In the sequel we shall also need the anti-derivative

F (·) :=

∫ ·
c
f(x)dx (2.4)

of the function f(·), for some arbitrary, but fixed, constant c ∈ I .
From the arguments in Engelbert and Schmidt (1985, 1991) or Theorem 5.5.15 in Karatzas and

Shreve (1991), the standing assumption implies that the stochastic differential equation (2.1) admits a
weak solution, unique in the sense of the probability distribution and defined up until the “explosion
time”

S := lim
n↑∞

Sn , Sn := inf
{
t ≥ 0 : X(t) /∈ (`n, rn)

}
, (2.5)
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for any monotone sequences {`n}n∈N, {rn}n∈N with ` < `n < rn < r and limn↑∞ `n = `, limn↑∞ rn =
r. The endpoints of the interval I = (`, r) are absorbing for X(·), that is, we suppose that on {S <∞}
this process stays after S at the endpoint where it exits the interval. Feller’s test of explosions yields an
analytic characterization whether such an explosion occurs; see Appendix A for a review.

We shall suppose that this weak solution has been constructed on some filtered probability space
(Ω,F,P), F = {F(t)}0≤t<∞ which satisfies the usual conditions of right-continuity and augmentation
by P−null sets. Because of uniqueness in the sense of the probability distribution, the state process
X(·) in this solution has the strong Markov property. A thorough exposition and study of such equations
appears in the monograph by Cherny and Engelbert (2005).

2.1 A diffusion in natural scale

Let Xo(·) denote the state process of a solution to the equation (2.1) without drift but with the same state
space I = (`, r) , that is,

Xo(·) = ξ +

∫ ·
0
s
(
Xo(t)

)
dW o(t) , (2.6)

where W o(·) denotes a Brownian motion. Thanks to our assumptions on s(·), this equation admits
on some filtered probability space (Ωo,Fo,Po), Fo = {Fo(t)}0≤t<∞ a weak solution (Xo(·),W o(·))
which is unique in the sense of the probability distribution (see Theorem 5.5.7 in Karatzas and Shreve,
1991) up until an explosion time So , and has no absorbing points in the interval I (see Corollary 4.20
in Engelbert and Schmidt, 1991). Here So , Son denote the stopping times defined as in (2.5) with X(·)
replaced by Xo(·). We recall from Theorem 5.5.4 in Karatzas and Shreve (1991) that Po(So =∞) = 1
holds if ` = −∞ and r = ∞ . Once again, the endpoints of the interval I = (`, r) are absorbing for
Xo(·), that is, we suppose that on {So <∞} the process stays after So at the endpoint where it exits.

In order to fix ideas and notation for what follows, let us summarize the construction of this solution.
We start with ξ ∈ I and a standard Brownian motion B(·), and define the stopping time

τ := lim
n↑∞

τn , τn := inf
{
t ≥ 0 : ξ +B(t) /∈ (`n, rn)

}
(2.7)

in the spirit and the notation of (2.5). We introduce also the time change

Γ(θ) :=

∫ θ

0

dr

s2(ξ +B(r))
, 0 ≤ θ < τ

with Γ(θ) := ∞ for all θ ∈ [τ ,∞). Next, we construct the inverse A(·) of Γ(·), and from it the state
process Xo(·) ≡ Xo(· , ξ) := ξ +B(A(·)). Finally, we construct the Brownian motion

W o(t) :=

∫ A(t)

0

dB(r)

s(ξ +B(r))
, 0 ≤ t < So = Γ(τ−)

and check that the pair (W o(·), Xo(·)) satisfies (2.6) up until the explosion time

So = Γ(τ−) =

∫ τ

0

dθ

s2(ξ +B(θ))
=

∫
I

2L(τ , y)

s2(y)
dy ; (2.8)

here L(τ , y) is the local time accumulated up to τ by the Brownian motion ξ +B(·) at the site y ∈ R.
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2.2 Transformation of scale

Under the conditions of (2.2) and with the notation of (2.3), (2.4), the diffusion X(·) of (2.1) has scale
function

p(x) :=

∫ x

c
exp (−2F (z)) dz ; (2.9)

this is a strictly increasing, continuously differentiable bijection of the interval I = (`, r) onto the
interval J =

(
λ, %) with endpoints λ := p(`+) and % := p(r−). We denote the inverse mapping

q := p−1 and check that Υ(·) := p
(
X(·)

)
is a diffusion in natural scale, with state space J , dynamics

Υ(·) = p(ξ) +

∫ ·
0
σ
(
Υ(t)

)
dW (t) (2.10)

up until the (same) explosion time S, and dispersion function σ(y) :=
(
p′ · s

)
(q(y)) , y ∈ J ; see, for

instance, Section 5.5B in Karatzas and Shreve (1991). It is clear from this reduction that the explosion
time S of X(·) can be represented in the form (2.8), namely

S =

∫ ζ

0

dθ

σ2(p(ξ) +B(θ))
=

∫
J

2L(ζ, y)

σ2(y)
dy

in terms of a standard Brownian motion B(·), its local time random field L(· , ·), and the first exit time

ζ := lim
n↑∞

ζn , ζn := inf
{
θ ≥ 0 : p(ξ) +B(θ) /∈ (λn, %n)

}
(2.11)

for any monotone sequences {λn}n∈N , {%n}n∈N satisfying λ < λn < %n < % and limn↑∞ λn = λ ,
limn↑∞ %n = % . For later reference, we also introduce the time change

ΓΥ(θ) :=

∫ θ

0

dr

σ2(ξ +B(r))
, 0 ≤ θ < S

with ΓΥ(θ) :=∞ for all θ ∈ [S,∞), construct the inverse AΥ(·) of ΓΥ(·) , and note the representation
Υ(·) ≡ p(ξ) +B(AΥ(·)) for some standard Brownian motion B(·).

3 Relating explosions to the martingale property

3.1 A generalized Girsanov theorem

We present here a generalized version of the Girsanov-Van Schuppen-Wong theorem, which appeared
in Section 3.7 of McKean (1969) under conditions considerably stronger than those imposed here; see
also Exercise 5.5.38 in Karatzas and Shreve (1991) for the special case s(·) ≡ 1 and ` = −∞, r = ∞
and Theorem 9.1.3(ii) in Elworthy et al. (2010). This version can be considered a “weak” result, as it
provides a distributional identity; Ruf (2013c) uses a related “strong” (i.e., pathwise) version to provide
a proof of the sufficiency of the Novikov and Kazamaki criteria for the martingale property of stochastic
exponentials; see also Perkowski and Ruf (2014).

First, we recall the finiteness of integral functionals under additional square-integrability assumptions
on certain related functions.

Remark 3.1. Finiteness of integral functionals. Let us assume that the mean/variance ratio function f(·)
is locally square-integrable on I . Furthermore, for fixed T > 0, let us denote by ΛX(T, y) the local time
accumulated during the time interval [0, T ] by the semimartingale X(·) in (2.1) at the site y ∈ I; for the
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properties of this random field, see for example Theorem 3.7.1 in Karatzas and Shreve (1991). From the
occupation time density formula in that theorem, we have on {Sn > T} the P−a.e. property∫ T

0
b2(X(t))dt =

∫ T

0

(
b

s

)2

(X(t))d〈X〉(t) =

∫ T

0

(
f1[`n,rn)

)2
(X(t))d〈X〉(t)

= 2

∫ rn

`n

f2(y)ΛX(T, y)dy ≤ 2 max
`n≤y≤rn

(
ΛX(T, y)

)
·
∫ rn

`n

f2(y)dy <∞ , (3.1)

where the last inequality follows from the càdlàg property of the function ΛX(T, ·).

We are now ready to state and prove a first result. For its purposes, we shall need the Borel σ−algebra
B generated by the open sets inC([0,∞)), the mappings ϕt defined as (ϕtw)(s) := w(s∧t) , 0 ≤ s <
∞ , and the corresponding σ−algebras Bt := ϕ−1

t (B), for all t ∈ [0,∞) ; in this vein, see Problem 2.4.2
in Karatzas and Shreve (1991).

Theorem 3.2. Generalized Girsanov theorem. Suppose that the mean/variance ratio function f(·) is
locally square-integrable on I . For any given T ∈ (0,∞) and any Borel set ∆ ∈ BT , we then have

P
(
X(·) ∈ ∆, S > T

)
= Eo

[
exp

(∫ T

0
b (Xo(t)) dW o(t)− 1

2

∫ T

0
b2 (Xo(t)) dt

)
1{Xo(·)∈∆, So>T}

]
.

(3.2)

In particular, if both diffusions X(·) , Xo(·) are non-explosive, i.e., if P(S = ∞) = Po(So = ∞) = 1 ,
then the exponential Po−local martingale

exp

(∫ T

0
b (Xo(t)) dW o(t)− 1

2

∫ T

0
b2 (Xo(t)) dt

)
, 0 ≤ T <∞

is a true Po–martingale.

Proof. We fix T ∈ (0,∞) and a Borel set ∆ ∈ BT . In addition to the stopping times of (2.5), we
consider the stopping times

Tn := Sn ∧ inf

{
t ≥ 0 :

∫ t

0
b2(X(s))ds ≥ n

}
, n ∈ N, (3.3)

as well as stopping times Son and T on , defined in the same manner as in (2.5) and (3.3), but now with X(·)
replaced by Xo(·).

We note that (3.1) implies {S > T} =
⋃
n∈N{Tn > T}, modulo P ; similarly, we have {So >

T} =
⋃
n∈N{T on > T}, modulo Po. In conjunction with the monotone convergence theorem, these

observations imply that, in order to prove (3.2), it is sufficient to show

P
(
X(·) ∈ ∆, Tn > T

)
= Eo

[
Zo(T )1{Xo(·)∈∆, T on>T}

]
(3.4)

for all n ∈ N, where we have set

Zo(·) := exp

(∫ ·∧T on
0

b(Xo(t))dW o(t)− 1

2

∫ ·∧T on
0

b2(Xo(t))dt

)
.

In the following we shall prove (3.4) for fixed n ∈ N. Towards this end, we define the processes

Ŵ (·) :=

∫ ·∧Tn
0

b(X(t))dt+W (·) , Z(·) := exp

(∫ ·∧Tn
0

b(X(t))dŴ (t)− 1

2

∫ ·∧Tn
0

b2(X(t))dt

)
5



and the P-local martingale

L(·) := exp

(
−
∫ ·∧Tn

0
b(X(t))dW (t)− 1

2

∫ ·∧Tn
0

b2(X(t))dt

)
=

1

Z(·)
.

We note that L(·) is a strictly positive martingale; cf. Corollary 3.5.13 in Karatzas and Shreve (1991).
Therefore, dQ = L(T )dP defines a new probability measure Q on (Ω,F(T )). Girsanov’s theorem (see
Theorem 3.5.1 in Karatzas and Shreve, 1991) yields that Ŵ (·) is a Q-Brownian motion. Moreover,
X̂(·) := X(· ∧ Tn) is a solution of the stochastic integral equation

X̂(·) = ξ +

∫ ·∧Tn
0

s
(
X̂(t)

)
dŴ (t).

Proposition C.1 implies that the Q–distribution of X(· ∧ T ∧ Tn) is the same as the Po–distribution of
Xo(· ∧ T ∧ T on). Finally, we note that

Z(·) = exp

(∫ ·∧Tn
0

f(X(s))dX(s)− 1

2

∫ ·∧Tn
0

b2(X(s))ds

)
,

Zo(·) = exp

(∫ ·∧T on
0

f(Xo(s))dXo(s)− 1

2

∫ ·∧T on
0

b2(Xo(s))ds

)
are also nonanticipative functionals of X(· ∧ Tn) and Xo(· ∧ T on), respectively, so we have

P
(
X(·) ∈ ∆, Tn > T

)
= E

[
L(T ) · Z(T )1{X(·)∈∆, Tn>T}

]
= EQ [Z(T )1{X(·)∈∆, Tn>T}

]
= Eo

[
Zo(T )1{Xo(·)∈∆, T on>T}

]
;

this yields (3.4) and concludes the proof.

3.2 Feynman-Kac representation

Fixing T ∈ (0,∞) and taking ∆ = C([0, T ]) in (3.2), we obtain the distribution of the explosion time
S in (2.5) as

P(S > T ) = Eo
[
exp

(∫ T

0
b
(
Xo(t)

)
dW o(t)− 1

2

∫ T

0
b2
(
Xo(t)

)
dt

)
1{So>T}

]
, (3.5)

whenever the function f(·) in (2.3) is locally square-integrable (thus also locally integrable) on I .
If we assume, in addition, that f(·) is also of finite first variation on compact subintervals of I and

left-continuous, we have in the notation of (2.4) the generalized Itô-Tanaka formula

F (Xo(T ))− F (ξ) =

∫ T

0
b
(
Xo(t)

)
dW o(t) +

∫
I

ΛX
o
(T, a) df(a)

on the event {So > T}, where ΛX
o
(T, a) denotes the semimartingale local time accumulated by Xo(·)

at the site a ∈ I during the time-interval [0, T ], and the expression (3.5) becomes

P(S > T ) = Eo
[
exp

(
F (Xo(T ))− F (ξ)−

∫
I

ΛX
o
(T, a) df(a)− 1

2

∫ T

0
b2
(
Xo(t)

)
dt

)
1{So>T}

]
.

(3.6)

6



Let us assume next, that the function f(·) is actually continuously differentiable on I; then (3.6) takes
the more “classical” form

P(S > T ) = exp
(
− F (ξ)

)
· Eo

[
exp

(
F (Xo(T ))−

∫ T

0
V (Xo(t))dt

)
· 1{So>T}

]
(3.7)

with the notation

V (x) :=
1

2
s2(x)

(
f2(x) + f′(x)

)
=

1

2

(
b2(x) + b′(x)s(x)− b(x)s′(x)

)
, x ∈ I.

In other words, the distribution of the explosion time is determined then completely by the joint distribu-
tion of Xo(T ) and

∫ T
0 V

(
Xo(t)

)
dt on the event {So > T}, for all T ∈ (0,∞).

Remark 3.3. Non-explosive Xo(·). When Po(So = ∞) = 1, the expression of (3.7) takes the simpler
form

P(S > T ) = exp
(
− F (ξ)

)
· Eo

[
exp

(
F
(
Xo(T )

)
−
∫ T

0
V
(
Xo(t)

)
dt

)]
.

In the special case s(·) ≡ 1 we haveXo(·) = ξ+W o(·), so finding the distribution of the explosion time
S as in (3.7) amounts then to computing the joint distributions of appropriate Brownian functionals.

Remark 3.4. Non-explosive X(·). Of course, the reverse situation also prevails: when P(S = ∞) = 1
and the function f(·) is continuously differentiable on I , the distribution of the explosion time of the
diffusion Xo(·) in natural scale (2.6) is given as

Po(So > T ) = exp
(
F (ξ)

)
· E
[
exp

(
−F
(
X(T )

)
+

∫ T

0
V
(
X(t)

)
dt

)]
.

This can be argued in exactly the same manner.

4 Analytic properties of the explosion time distribution

In this section, we shall discuss analytic properties of the function U : (0,∞)× I → [0, 1], defined via

U(T, ξ) := Pξ(S > T ), (T, ξ) ∈ (0,∞)× I. (4.1)

Here and in what follows, we index the probability measure by the common starting position ξ ∈ I of
the diffusions X(·) and Xo(·).

4.1 Continuity

The question of continuity of the function U(· , ·) is of interest in itself; it also will be important for our
arguments later on. Since 1−U(·, ξ) is a distribution function, it is right-continuous for all ξ ∈ I . In this
subsection we shall see, without any further assumptions on the coefficients s(·) and b(·) beyond those
of Standing Assumption 2.1, that U(· , ·) is even jointly continuous in its two arguments.

We start with a technical result in Lemma 4.1. In particular, the property in (4.5) is well known for
regular, one-dimensional diffusions; it is discussed, for instance, in the “matching numbers” Section 3.3
of Itô and McKean (1965). It is not hard to prove from first principles, so we present here a simple
argument. We then show in Lemma 4.2 the continuity of the function U(· , ·) in the first component, as a
function of time only. Finally, in Proposition 4.3 we establish the joint continuity of U(·, ·).
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Lemma 4.1. Diffusions hit nearby points fast. With the stopping times

Hx := inf {t ∈ [0,∞) : X(t) = x} , x ∈ I, (4.2)

Ĥx,y := inf {t ∈ [Hx,∞) : X(t) = y} , (x, y) ∈ I2, (4.3)

for any given ε > 0 there exist x1 ≡ x1(ε) ∈ (−∞, ξ) and x2 ≡ x2(ε) ∈ (ξ,∞) such that

Pξ
(
Ĥxi,ξ < ε

)
≥ 1− ε, i = 1, 2. (4.4)

In particular, for all δ > 0, we have
lim
y→ξ

Py (Hξ < δ) = 1. (4.5)

Proof. We first show that we have Pξ(A) = 0 for the event

A :=

{
ω ∈ Ω : ∃R(ω) > 0 such that min

t∈[0,R(ω)]
X(t, ω) ≥ ξ

}
. (4.6)

It is sufficient to show that (4.6) holds with the process Υ(·) = p
(
X(·)

)
of (2.10) instead of the diffusion

X(·), and with ξ replaced by p(ξ) , due to the strict monotonicity of the scale function p in (2.9). The
path properties of standard Brownian motion, in conjunction with the representation Υ(·) ≡ p(ξ) +
B(AΥ(·)) of Subsection 2.2 for some standard Brownian motion B(·), and with the fact that AΥ(t) > 0
holds for all t > 0, let us conclude.

The continuity (from below) of the probability measure Pξ then yields the existence of y1 ∈ (−∞, ξ)
such that Pξ(Hy1 < ε) ≥ 1 − ε/2. Replacing the minimum by a maximum in (4.6) and repeating the
argument, we obtain the existence of x2 ∈ (ξ,∞) such that Pξ(Hx2 < Hy1 < ε) ≥ 1 − ε holds; this
then implies (4.4) for i = 2. The existence of the claimed x1 ∈ (−∞, ξ) is argued in the same manner.
Finally, the strong Markov property of the diffusion X(·) implies

Py
(
Hξ < ε

)
≥ Pξ

(
Ĥy,ξ < ε

)
;

that is, the probability of the event that the diffusion X(·) started at y hits ξ before time ε dominates
the probability of the event that X(·) completes a round-trip from ξ to y and then back to ξ, before time
ε. We now fix δ > 0, ε ∈ (0, δ) and the corresponding x1 ∈ (−∞, ξ) and x2 ∈ (ξ,∞). Then for all
y ∈ (x1, x2), applying (4.4), we have

Py (Hξ < δ) ≥ Py (Hξ < ε) ≥ 1− ε .

The proof of (4.5) follows.

Lemma 4.2. Continuity of U(·, ·) as a function of time. The function T 7→ U(T, ξ) is continuous on
[0,∞), for any given ξ ∈ I .

Proof. We fix (T, ξ) ∈ (0,∞)× I and observe that it is sufficient to show p := Pξ(S = T ) = 0 , due to
the right-continuity of the function U(· , ξ). Let us consider any strictly increasing sequence of stopping
times 0 = H(0) < H(1) < H(2) < · · · . We then have, again by the strong Markov property of the
diffusion X(·), the comparison

1 ≥ Pξ
(
S ∈

{
T +H(i) : i ∈ N0

})
=
∑
i∈N0

Pξ
(
S −H(i) = T

)
≥
∑
i∈N0

Eξ
[
PX(H(i))

(
S = T

)
1{X(H(i))∈I}

]
≥ p

∑
i∈N0

Pξ
(
X
(
H(i)

)
= ξ
)
.
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Thus, in order to show the statement, it is sufficient to construct a strictly increasing sequence of stopping
times {H(i)}i∈N such that Pξ

(
X(H(i)) = ξ

)
does not converge to zero as i increases. We shall construct

such a sequence inductively, by “stitching together” the round trips of Lemma 4.1. Towards this end,
consider a sequence {qi}i∈N ⊂ I such that (4.4) holds with x1 replaced by qi and ε replaced by εi ∈
(0, 1) such that the series

∑
i∈N log(1− εi) converges. Next, define the stopping times

H̃(i) := inf
{
t ∈ [H(i−1),∞) : X(t) = qi

}
, H(i) := inf

{
t ∈ [H̃(i),∞) : X(t) = ξ

}
and use the Markov property ofX(·), along with conditioning on the event

{
X(H(i−1)) = ξ

}
, to obtain

Pξ
(
X(H(i)) = ξ

)
≥ Pξ

(
X(H(i−1)) = ξ

)
· Pξ

(
Ĥqi,ξ < εi

)
≥ Pξ

(
X(H(i−1)) = ξ

)
·
(
1− εi

)
≥ . . . ≥

i∏
j=1

(
1− εj

)
= exp

 i∑
j=1

log (1− εj)

 ,

which does not tend to zero as i increases. This concludes the proof.

Proposition 4.3. Joint continuity of U(·, ·) . The function (T, ξ) 7→ U(T, ξ) is jointly continuous on
[0,∞)× I .

Proof. We fix a pair (T, ξ) ∈ [0,∞) × I and a sequence {(tn, ξn)}n∈N ⊂ [0,∞) × I such that
limn↑∞(tn, ξn) = (T, ξ).

We start with the case T = 0. We need to show that limn↑∞ U(tn, ξn) = Pξn(S > tn) = 1 . With
S = S(`) ∧ S(r), the minimum of the explosion times of X(·) to ` and r, respectively, let us choose
some η ∈ (`, ξ) and observe that, for sufficiently large n ∈ N, we have the upper bound

Pξn
(
S(`) > tn

)
≥ Pη

(
S(`) > tn

)
= U(tn, η).

This last quantity converges to U(0, η) = 1 as n tends to infinity , due to the right-continuity of the
function U(·, η). We obtain thus limn↑∞ Pξn(S(`) > tn) = 1; similarly limn↑∞ Pξn(S(r) > tn) = 1,
and this proves the claim for T = 0.

We assume now T > 0 and fix some ε > 0. From Lemma 4.2, there exists δ ∈ (0, T/2) so that
|U(t, ξ) − U(T, ξ)| < ε holds for all t ∈ (T − 2δ, T + 2δ). Without loss of generality, we assume
|tn − T | < δ for all n ∈ N. Next, we observe that the strong Markov property of X(·) implies

Pξn
(
{S > tn} ∩ {Hξ < δ}

)
= Eξn

[
U(tn −Hξ, ξ)1{Hξ<δ}

]
,

thus∣∣U(tn, ξn)− U(T, ξ)
∣∣ =

∣∣∣Eξn [(1{S>tn} − U(T, ξ)
)
1{Hξ<δ}

]
+ Eξn

[(
1{S>tn} − U(T, ξ)

)
1{Hξ≥δ}

] ∣∣∣
≤ Eξn

[∣∣U(tn −Hξ, ξ)− U(T, ξ)
∣∣1{Hξ<δ}]+ Pξn

(
Hξ ≥ δ

)
≤ ε+ Pξn

(
Hξ ≥ δ

)
for all n ∈ N. Here Hξ , defined as in (4.2), is the first hitting time of ξ by the process X(·); and we
have noted that the inequalities T − 2δ < tn −Hξ < T + δ hold on the event {Hξ < δ} for all n ∈ N.
Letting n tend to infinity and applying (4.5) concludes the proof.

4.2 Strict positivity

We shall show in this subsection that the distribution of the explosion time S in (2.5) cannot possibly
have compact support.
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Proposition 4.4. The explosion time distribution is not supported on a compact set. For all K ∈ R ,
we have Pξ(S > K) > 0 .

Proof. The scale considerations in Subsection 2.2 make clear that it is enough to consider diffusions in
natural scale; so we shall prove Poξ(So > K) > 0 for all K ∈ (0,∞) . In the light of the representation
(2.8), setting h := 1/s2 , and recalling the stopping time τ from (2.7) it suffices then to show

Poξ
(∫ τ

0
h
(
ξ +B(θ)

)
dθ > K

)
> 0 , ∀ K ∈ (0,∞) . (4.7)

We shall argue by contradiction, so let us suppose that (4.7) fails; to wit, that∫ τ

0
h
(
B(θ) + ξ

)
dθ ≤ K (4.8)

holds Poξ−a.e. for some real constantK > 0. To help obtain a contradiction, we first consider a diffusion
Y (·) with state space I = (`, r), solution of the stochastic equation

Y (t) = ξ +

∫ t

0

(
1

Y (θ)− `
− 1

r − Y (θ)

)
dθ +W (t) , 0 ≤ t <∞ .

This equation has a solution which is unique in the sense of the probability distribution; we also observe
that the lifetime of this diffusion is SY = ∞ , that is, the endpoints of the interval I = (`, r) are never
reached. Next, we note that

∫∞
0 h

(
Y (θ)

)
dθ =∞ holds almost surely, by Theorem 2.10(ii) in Mijatović

and Urusov (2012a); to apply this result, use f(·) = h(·)∧1 ≤ h(·). Thus, there exists some T > 0 such
that

Poξ
(∫ T

0
h(Y (θ))dθ > K

)
> 0 . (4.9)

Denoting Bτ (·) ≡ B(· ∧ τ ) , we define now a nonnegative local martingale M(·) as follows:

(i) M(·) ≡ 1, if ` = −∞ and r =∞;

(ii) M(·) ≡
(
ξ +Bτ (·)− `

)/
(ξ − `) = E

(∫ ·∧τ
0 (ξ +B(θ)− `)−1dB(θ)

)
, if ` > −∞ and r =∞;

(iii) M(·) =
(
r − ξ −Bτ (·)

)/
(r − ξ) = E

(∫ ·∧τ
0 (ξ +B(θ)− r)−1dB(θ)

)
, if ` = −∞ and r <∞;

(iv) and finally,

M(t) =

(
ξ +Bτ (t)− `

ξ − `

)(
r − ξ −Bτ (t)

r − ξ

)
· exp

(∫ t∧τ

0

dθ

(ξ +B(θ)− `)(r − ξ −B(θ))

)
= E

(∫ t∧τ

0

(
1

ξ +B(θ)− `
− 1

r − ξ −B(θ)

)
dB(θ)

)
, 0 ≤ t <∞ ,

if ` > −∞ and r <∞ ,

where E(·) denotes stochastic exponentiation. In each of these four cases, the local martingale M(·) is a
true martingale with expectation equal to M(0) = 1 ; this is obvious in the first three cases, and follows
from the considerations of Mijatović and Urusov (2012b) or of Ruf (2013b) in the last case.

Thus, we may define a probability measure Q(T ) on F(T ) via the recipe dQ(T )/dPoξ = M(T ). We
observe that the process ξ+B(·) solves the same stochastic differential equation under this new measure
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Q(T ), as the process Y (·) does under the measure Poξ , again in each of the four cases. Recalling that this
stochastic differential equation has a solution which is unique in the sense of the probability distribution,
as well as (4.8) and (4.9), we obtain the contradiction

0 < Poξ
(∫ T

0
h(Y (θ))dθ > K

)
= Q(T )

(∫ T

0
h(B(θ) + ξ)dθ > K

)
= EPoξ

[
M(T )1{∫ T0 h(B(θ)+ξ)dθ>K}

]
≤ EPoξ

[
M(T )1{∫ τ

0 h(B(θ)+ξ)dθ>K}
]

= 0 .

Here the last inequality follows from the fact thatM(T ) = 0 holds on the event {τ ≤ T}. The statement
is now proved.

Remark 4.5. Alternative argument. The referee suggests an alternative and shorter proof of Proposi-
tion 4.4: Let us recall the notation of (4.3), and observe that there exist some η ∈ I and δ > 0 such that
Pξ(δ ≤ Ĥη,ξ < S) > 0. By the strong Markov property this then yields that Pξ(nδ ≤ Ĥη,ξ < S) > 0
for each n ∈ N, and thus the statement.

4.3 Full support

We shall show now that, when explosions can occur in finite time with positive probability, Assump-
tion 4.6 below guarantees that the distribution of the explosion time has full support on the positive real
half-line. Let us start by considering the closed set

A :=

{
x ∈ I :

∫ ε

−ε

dz

s4(x+ z)
=∞, ∀ ε ∈

(
0,min{x− `, r − x}

)}
. (4.10)

Assumption 4.6. The set A in (4.10) is countable.

Every s : I → R \ {0} which is continuous or, more generally, locally bounded away from the
origin, satisfies this assumption; for then the set A is empty. In the example that follows, we construct
a non-trivial discontinuous function, not bounded away from zero locally, that satisfies Assumption 4.6.
Thus, in most cases of interest, Assumption 4.6 is satisfied; however, as Example 5.23 in Wise and Hall
(1993) illustrates, it is even possible to have A = I despite the integrability condition in (2.2).

Example 4.7. We observe that the intervals

In,m =

(
1

n+ 1
+

1

n(m+ 1)(n+ 1)
,

1

n+ 1
+

1

nm(n+ 1)

]
, (n,m) ∈ N2

are disjoint since
⋃
m∈N In,m = (1/(n + 1), 1/n] for each n ∈ N and satisfy

⋃
(n,m)∈N2 In,m = (0, 1].

Consider the function f : (−1, 1) → (0,∞) (we interpret f(·) ≡ 1/s4(·)) , defined by f(x) = 1 for all
x ∈ (−1, 0] and by

f(x) =

(
x− 1

n+ 1
− 1

n(m+ 1)(n+ 1)

)−1

for all x ∈ In,m \ {1} .

We now consider the state space I = (−1, 1), and note that

A =

{
1

n+ 1
+

1

n(m+ 1)(n+ 1)
: (n,m) ∈ N2

}⋃{
1

n+ 1
: n ∈ N

}⋃
{0};

thus, Assumption 4.6 is satisfied.
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Theorem 4.8. Distribution function of time to explosion is strictly decreasing. For any fixed starting
position ξ ∈ I , the function

[0,∞) 3 T 7−→ Pξ
(
S > T

)
∈ (0, 1]

is strictly decreasing, provided that Pξ
(
S =∞

)
< 1 and Assumption 4.6 hold.

The argument will require a few preliminaries. The next lemma contains the key idea in the proof of
the main result. It asserts that, under the local integrability of the reciprocal of the second power of its
local variance function, the diffusion in natural scale Xo(·) “can reach far away points fast, with positive
probability.”

Lemma 4.9. Xo reaches far-away points fast, with positive probability. Assume there exist z ∈ (`, ξ)
and y ∈ (ξ, r) such that

∫ y
z s−4(a) da <∞ . Then for every ε > 0 we have

Poξ (Hz < ε) > 0 . (4.11)

Proof. We start by fixing the constant

K =
(ξ − z)(y − z)
ε(y − ξ)

+ 1 > 0 ,

and considering the Poξ–local martingale

L(t) := −K
∫ t∧Hz∧Hy

0

dW o(u)

s(Xo(u))
= −K

∫ t∧Hz∧Hy

0

dXo(u)

s2(Xo(u))
, 0 ≤ t <∞ .

The stochastic integral here is well-defined, because∫ t∧Hz∧Hy

0

du

s2(Xo(u))
=

∫ t∧Hz∧Hy

0

d〈Xo〉(u)

s4(Xo(u))
=

∫ y

z
2 ΛX

o(
t ∧Hz ∧Hy, a

) da

s4(a)
< ∞

holds for all t ∈ [0,∞) . Here, the second equality follows from the occupation-time-density property
of semimartingale local time, and the strict inequality from the càdlàg property of the mapping a 7→
ΛX

o
(t ∧Hz ∧Hy, a) .

Next, we consider the stochastic exponential M = E(L). By Mijatović and Urusov (2012b),
the local martingale M(·) is a true martingale (use Theorem 2.1 in that paper, with function b(·) =
−K1[z,y](·)/s(·) along with (24) and (26) there). Consequently, by the Girsanov theorem, there exist
a probability measure Qo

ξ , absolutely continuous with respect to Poξ on F(ε) , and a Qo
ξ–Brownian

motion W̃ (·), so that Xo(·) satisfies up until the explosion time So the equation

Xo(·) = ξ −K(· ∧Hz ∧Hy) +

∫ ·
0

s
(
Xo(t)

)
dW̃ (t) . (4.12)

Now let us assume that (4.11) fails, that is, Qo
ξ (Hz ≥ ε) = 1 holds for some ε > 0 ; as a conse-

quence, the process Xo(·) is then bounded from below by z on the time-interval [0, ε]. Thus, we have∫ t

0
s(Xo(u))dW̃ (u) = Xo(t) +K(t ∧Hy)− ξ , 0 ≤ t ≤ ε

Qo
ξ−a.e., and deduce that the process on the left-hand side is a Qo

ξ–local martingale, bounded from below
by z − ξ on the interval [0, ε]. This again implies that Xo(· ∧ ε ∧Hy) is a Qo

ξ–supermartingale, and

Qo
ξ (Hy ≥ ε) ≥ Qo

ξ (Hy ≥ Hz) ≥
y − ξ
y − z

.
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Taking expectations in (4.12), we obtain

z ≤ EQoξ [Xo (ε)] ≤ ξ −Kε ·Qo
ξ (Hy ≥ ε) ≤ ξ −Kε · y − ξ

y − z
< z

by the definition of K. This apparent contradiction yields (4.11) and concludes the proof.

We continue by showing that under Assumption 4.6, when the diffusion Xo(·) can explode in finite
time with positive probability, it can explode arbitrarily fast with positive probability. Although the proof
of the lemma that follows is somewhat tedious, the underlying idea is quite simple. First, it suffices to
show that the diffusion, started in ξ, can hit a certain point y ∈ I arbitrarily fast; let us assume, for the
moment, that y < ξ. Then, we choose someK ∈ N and decompose the interval [y, ξ] in 2K−1 intervals,
each of which the diffusion Xo(·) can cross fast enough with positive probability, so that the total time
until the diffusion Xo(·) hits y can still be made arbitrarily small with positive probability.

Among these 2K − 1 intervals, there are K ones that contain all “critical” points in the set A
⋂

[y, ξ]
as in (4.10). Their lengths are chosen so that the diffusion Xo(·) can cross each of these K intervals fast
enough; in the proof that follows, these intervals have the form (xik − δ′ik , xik + δik). The remaining
K − 1 intervals, of the form (xik+1

+ δik+1
, xik − δ′ik), do not contain any points of the set A, and may

be quite large; nevertheless, an application of Lemma 4.9 guarantees that the diffusion can cross them
fast enough with positive probability. This concludes the argument for diffusions in natural scale.

Proposition 4.10. If Xo can explode, it explodes fast with positive probability. Under Assump-
tion 4.6, and provided Poξ(So <∞) > 0 holds, the explosion time of (2.8) satisfies

Poξ
(
So < ε

)
> 0 for all ε > 0 .

Proof. We fix ε > 0 and note that there exists a point y ∈ (`, r) such that Poy(So < ε/2) > 0 and
Poξ(Hy < ∞) > 0 hold, where Hy is defined in (4.2); for otherwise, we would have Poξ(So < ∞) = 0.
Thus, we need only show Poξ(Hy < ε/2) > 0. Without loss of generality, we shall assume y ∈ (`, ξ).

We enumerate now as {xi}i∈N the points of the closed set A
⋃
{y, ξ}, where A is given right before

Assumption 4.6 (if A
⋃
{y, ξ} has only a finite number of points, say m ∈ N, we just set xm+1 =

xm+2 = . . . = ξ). Fix a sequence of strictly positive numbers {εi}i∈N such that
∑

i∈N εi < ε/4. As in
the proof of Lemma 4.1, there exist strictly positive numbers δi , δ′i such that

Poxi+δi
(
Hxi−δ′i < εi

)
> 0

holds for each i ∈ N. An application of the Heine-Borel theorem then yields the existence of an integer
K ∈ N and of K points, say ξ = xi1 > · · · > xiK = y, such that(

A
⋃
{y, ξ}

)⋂
[y, ξ] ⊂

K⋃
k=1

(
xik −

δ′ik
2
, xik + δik

)
holds for the corresponding positive numbers δik , δ′ik . We may assume xik − δ′ik > xik+1

+ δik+1
for all

k = 1, . . . ,K−1; since if one of these last inequalities did not hold, we could just merge two overlapping
intervals of the form (xik−δ′ik , xik +δik) and (xi`−δ′i` , xi` +δi`) to one of the form (xik− δ̃′ik , xik + δ̃ik)
(and replace the two corresponding εi’s by their sum) and repeat this procedure until all strict inequalities
were made to hold.

If we show now that the diffusion Xo(·) can move fast through those intervals of the form (xik+1
+

δik+1
, xik − δ′ik) with positive probability, that is, if the inequalities

Poxik−δ′ik

(
Hxik+1

+δik+1
<

ε

4K

)
> 0, ∀ k = 1, . . . ,K − 1 (4.13)
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hold, then we obtain from the Markov property

Poξ
(
So < ε

)
≥ Poξ

(
Hy <

ε

2

)
Poy
(
So <

ε

2

)
≥ Poxi1+δi1

(
HxiK−δ

′
iK
<
ε

2

)
Poy
(
So <

ε

2

)
> 0.

Here, the second inequality holds since ξ < xi1 +δx1 and y > xiK −δ′iK by construction of the sequence
(xi , i ∈ N) , and the last inequality holds since

Poxi1+δi1

(
HxiK−δ

′
iK
<
ε

2

)
≥

K−1∏
k=1

(
Poxik+δik

(
Hxik−δ

′
ik
< εik

)
Poxik−δ′ik

(
Hxik+1

+δik+1
<

ε

4K

))
· PoxiK+δiK

(
HxiK−δ

′
iK
< εiK

)
> 0 .

This yields the statement of the proposition.

In order to show (4.13), we fix k ∈ 1, . . . ,K − 1 and note A
⋂ [

xik+1
+ δik+1

, xik −
δ′ik
2

]
= ∅ ,

which implies

∫ xik−
δ′ik
2

xik+1
+δik+1

da

s4(a)
<∞

from the definition of the set A and another application of the Heine-Borel theorem (yielding that any
open cover of the compact interval [xik+1

+ δik+1
, xik − δ′ik/2] has a finite subcover). Thus, the assertion

in (4.13) follows now from Lemma 4.9, and this concludes the proof.

Propositions 4.4 and 4.10 together yield the following statement:

Proposition 4.11. Distribution function of time to explosion of Xo is strictly decreasing. Under
Assumption 4.6, the function [0,∞) 3 t 7−→ Poξ(So > t) ∈ [0, 1] is strictly decreasing, provided
Poξ(So <∞) > 0 holds.

Proof. We know from Proposition 4.10 that

Poy
(
So ≤ ε

)
> 0 , ∀ε > 0 (4.14)

holds for any y ∈ I . For all t ≥ 0 and ε > 0 , the Markov property and (4.14) give then

Poξ
(
So > t+ ε

)
= Eoξ

[
1{So>t} · PoX(t)

(
So > ε

)]
< Poξ

(
So > t

)
in conjunction with Proposition 4.4, and this establishes the strict decrease.

Proof of Theorem 4.8. We recall the reduction to natural scale in Subsection 2.2, as well as the notation
there. We also note that∫ ε

−ε

dz

σ4(y + z)
= ∞ , ∀ε ∈ (0,min{y − λ , %− y})

holds for some fixed y ∈ J , if and only if∫ q(y+ε)−q(y)

q(y−ε)−q(y)

dζ

s4(q(y) + ζ)
=

∫ ε

−ε

dz

p′ (q(y + z)) s4(q(y + z))
=∞ , ∀ε ∈

(
0,min{y−λ , %− y}

)
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holds, since the derivative p′(·) = exp(−2F (·)) of the scale function is continuous on I . However, this
last condition is equivalent to∫ δ

−δ

dz

s4(q(y) + z)
=∞ , ∀δ ∈

(
0,min{q(y)− `, r − q(y)}

)
,

so the conclusion follows now on the strength of Propositions 4.10 and 4.11.

Open Question 4.12. We have not been able to establish Theorem 4.8 without the condition of Assump-
tion 4.6 — or to find an example showing that it fails in the absence of this condition. We leave the
resolution of this issue to future research.

5 Connections with differential equations

We shall now study conditions, under which the function U(·, ·) and its Laplace transform can be char-
acterized as the minimal nonnegative solutions of appropriate linear partial and ordinary, respectively,
differential equations.

5.1 Connections with parabolic partial differential equations

In this subsection, we study conditions implying that the function U(·, ·) solves the Cauchy problem for
the linear, parabolic partial differential equation

∂U
∂τ

(τ, x) =
s2(x)

2

∂2U
∂x2

(τ, x) + b(x)s(x)
∂U
∂x

(τ, x) (5.1)

with an appropriate initial condition, namely

U(0, x) = 1, x ∈ I. (5.2)

We start with an existence result.

Lemma 5.1. Existence of a classical solution. Assume that the functions s(·) and b(·) are locally
uniformly Hölder-continuous on I . Then for any bounded, continuous function g : (0,∞)× I →∞ and
any n ∈ N, the parabolic partial differential equation of (5.1) has a unique classical solution U(· , ·) of
class C1,2((1/n,∞)× (`n, rn)), subject to the initial and lateral conditions

U(1/n, x) = g(1/n, x) and U(τ, `n) = g(τ, `n), U(τ, rn) = g(τ, rn)

for all (τ, x) ∈ (1/n,∞)× (`n, rn). Moroever, the solution U(·, ·) is bounded on [1/n,∞)× [`n, rn].

Proof. The continuity of the function s(·) yields minx∈[`n,rn] |s(x)| > 0. Moreover, our assumptions
imply that the functions s2(·) and b(·)s(·) are also uniformly Hölder-continuous on [`n, rn]. Thus, the
existence and uniqueness result of Theorem 3.9 in Friedman (1964), and the maximum principle of
Theorem 2.1 in this same book, yield the statement.

We can now show that the function U(·, ·) of (4.1) solves the Cauchy problem of (5.1), (5.2).

Proposition 5.2. Stochastic representation of a solution to the Cauchy problem. Under the assump-
tions of Lemma 5.1, the function U(· , ·) is of class C([0,∞) × I) ∩ C1,2((0,∞) × I) and solves the
Cauchy problem of (5.1), (5.2).

Proof. We have shown the continuity of the function U(·, ·) in Proposition 4.3. We now fix (T, ξ) ∈
(1/n,∞)× (`n, rn) for some n ∈ N and show that the function U(· , ·) satisfies the Cauchy problem of
(5.1) in (1/n,∞)× (`n, rn), which then yields the statement.
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Applying Lemma 5.1 with g(·, ·) = U(·, ·), we see that this Cauchy problem has a bounded classical
solution U(·, ·). Simple stochastic calculus then implies that U(T − (t ∧ ρ), X(t ∧ ρ)), 0 ≤ t ≤ T is a
bounded Pξ-martingale, where ρ denotes the smaller of T − 1/n and Sn. Optional sampling gives

U(T, ξ) = Eξ
[
U(T − ρ,X(ρ))

]
= Eξ

[
U(T − ρ,X(ρ))

]
= U(T, ξ),

where the last equality is a consequence of the strong Markov property of the diffusion X(·). We have
shown that U(·, ·) coincides with U(·, ·), and thus solves the Cauchy problem of (5.1), (5.2).

The proof of Proposition 5.2 resembles the arguments in Janson and Tysk (2006). For similar results,
see Section 3.5 in McKean (1969), Theorem 5.6.1 in Friedman (1976), Heath and Schweizer (2000),
Bayraktar et al. (2012), and Ruf (2013a). We emphasize that the Hölder exponent in Lemma 5.1 need
not be 1/2, as often postulated in related questions. Inspired by the observations made in Section 4.11 of
Itô and McKean (1965), we expect that studying solutions in the sense of distributions would allow us to
weaken the assumption of Hölder continuity in Proposition 5.2; this will be the subject of future research.
Considerable progress in this direction has been made by Wang (2014), indeed in a more general, and
multi-dimensional, setting.

This Cauchy problem of (5.1), (5.2) admits the trivial solution U(·, ·) ≡ 1; it may have lots of other
solutions. The one we are interested in, the function U(·, ·) defined in (4.1), turns out to be its minimal
nonnegative solution. The following characterization of this function is analogous to the results in Prob-
lem 3.5.1 of McKean (1969) and in Exercise 4.4.7 of Karatzas and Shreve (1991); see also Fernholz and
Karatzas (2010, 2011) and Ruf (2013a).

Proposition 5.2 yields directly the following corollary:

Corollary 5.3. Continuity of density function. Under the conditions of Lemma 5.1, the explosion time
S has a continuous (sub-)probability density function.

Proposition 5.4. Upper bounds on U(· , ·), and minimality. The function U(·, ·), defined in (4.1) as
the tail of the distribution function of the explosion time S, is dominated by every nonnegative classical
supersolution U(·, ·) of the Cauchy problem of (5.1), (5.2).

Furthermore, under the conditions of Lemma 5.1, the function U(· , ·) is the smallest nonnegative
classical (super)solution of (5.1), (5.2).

Proof. Consider any continuous function U : [0,∞)×I → [0,∞) of class C1,2((0,∞)×I) that satisfies
the partial differential inequality

∂U
∂τ

(τ, x) ≥ s2(x)

2

∂2U
∂x2

(τ, x) + b(x)s(x)
∂U
∂x

(τ, x); (τ, x) ∈ (0,∞)× I,

as well as the initial condition U(0, ·) ≥ 1. For any given T ∈ (0,∞), it is checked readily on
the strength of this inequality that the process U(T − (t ∧ Sn), X(t ∧ Sn)), 0 ≤ t ≤ T is a local
Pξ−supermartingale; as it is nonnegative, this process is actually a true Pξ−supermartingale, so

U(T, ξ) ≥ Eξ
[
U
(
T − (T ∧ Sn), X(T ∧ Sn)

)]
≥ Eξ

[
1{Sn>T} U(0, X(T ))

]
≥ Pξ (Sn > T )

by optional sampling. Letting n ↑ ∞, we obtain the first claimed result from monotone convergence; the
second then follows from Proposition 5.2.

If there are no explosions, then the Cauchy problem of (5.1), (5.2) actually has a unique bounded
classical solution.
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Proposition 5.5. Unique bounded solution. Assume that the function U(·, ·) ≡ 1 is the smallest non-
negative classical solution of the Cauchy problem (5.1), (5.2), and let V (·, ·) be any bounded classical
solution of this Cauchy problem. Then we have V (·, ·) ≡ U(·, ·) ≡ 1.

Proof. Let V : [0,∞)×I → [−K,K] be a bounded classical solution of the Cauchy problem (5.1), (5.2),
for some K ∈ (0,∞). Then the function V̂ (·, ·) =

(
V (·, ·) + K

)
/(1 + K) is a bounded, nonnegative

classical solution of the same Cauchy problem, so by assumption we must have V̂ (·, ·) ≥ 1.

Let us assume that V̂ (· , ·) is not identically equal to the constant function U(·, ·) ≡ 1, so that we
have K2 := sup(t,x)∈[0,∞)×(`,r) V̂ (t, x) ∈ (1, 2) . The function Ṽ (· , ·) =

(
K2 − V̂ (·, ·)

)
/(K2 − 1) is

then a classical solution of the Cauchy problem (5.1), (5.2) with values in [0, 1], and not identically equal
to the constant function U(· , ·) ≡ 1; but this contradicts the assumption that the function U(· , ·) ≡ 1 is
the smallest nonnegative classical solution of the Cauchy problem (5.1), (5.2).

We note that it is not possible to remove the boundedness assumption in Proposition 5.5; see for ex-
ample Rosenbloom (1958). Bayraktar and Xing (2010) characterize one-dimensional time-homogeneous
Cauchy problems with a unique solution. For the relevance of super- and sub-solutions in the study of
partial differential equations of parabolic type we refer to the recent paper by Bayraktar and Sı̂rbu (2012)
and the references therein. Let us also note that the characterizations of Propositions 5.4 and 5.5 are
impervious to boundary conditions at the endpoints of the state space I = (`, r) .

5.2 Connections with second-order ordinary differential equations

Let us consider now, for any given real number λ > 0, the Laplace transform or “resolvent” of the
function U(·, ξ) in (4.1), namely

Ûλ(ξ) =

∫ ∞
0

exp(−λT )U(T, ξ)dT =

∫ ∞
0

exp(−λT )Pξ(S > T )dT =
1

λ

(
1− Eξ

[
exp(−λS)

])
.

(5.3)

Proposition 5.6. Stochastic representation of a solution to an ordinary differential equation. If the
functions b(·) and s(·) are continuous on I , then the function Ûλ(·) is of class C2(I) and satisfies the
second-order ordinary differential equation

s2(x)

2
u′′(x) + b(x)s(x)u′(x)− λu(x) + 1 = 0, x ∈ I. (5.4)

Proof. For some fixed n ∈ N, we consider the ordinary differential equation

s2(x)

2
v′′(x) + b(x)s(x)v′(x)− λv(x) = 0, x ∈ (`n, rn) (5.5)

with boundary condition v(`n) = v(rn) = 0, and note that it has the unique solution v(·) ≡ 0. To
see why, let us assume that (5.5) has a non-constant solution v̂(·), and try to arrive at a contradiction.
This solution v̂(·) must have a local maximum or minimum at some y ∈ (`n, rn) with v̂′(y) = 0;
assuming that y is the location of a positive local maximum with v̂(y) > 0, we obtain the absurdity
0 > s2(y) v̂ ′′(y) = 2λv̂(y). This yields the asserted uniqueness.

Thereom 12.3.1 in Hartman (1982) shows now that the differential equation in (5.4) has a unique
solution in (`n, rn) with boundary conditions u(`n) = g1 and u(rn) = g2 for all n ∈ N and g1, g2 ∈ R.
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Finally, we fix a ξ ∈ I and a sufficiently large n ∈ N so that ξ ∈ (`n, rn) and let u(·) denote the
solution of the differential equation in (5.4) with boundary conditions u(`n) = Ûλ(`n) and u(rn) =
Ûλ(rn). Simple stochastic calculus shows that the process

M(t) := exp(−λ(t ∧ Sn))

(
u
(
X(t ∧ Sn)

)
− 1

λ

)
, 0 ≤ t <∞ (5.6)

is a Pξ-local martingale; we conclude that M(·) is a uniformly integrable martingale, as it is bounded.
Since classical results yield Pξ(Sn <∞) = 1, recalled in (A.2), we obtain that

u(ξ)− 1

λ
= Eξ

[
exp(−λSn)

(
u(X(Sn))− 1

λ

)]
= Eξ

[
exp(−λSn)

(
Ûλ(X(Sn))− 1

λ

)]
= − 1

λ
Eξ
[
exp(−λSn) · EX(Sn) [exp(−λS)]

]
= − 1

λ
Eξ [exp(−λS)] = Ûλ(ξ)− 1

λ
;

the result now follows.

For related results, see Theorem 5.9.3 in Itô (2006), and Theorem 13.16 on page 51 in Volume II
of Dynkin (1965). Once again, the ordinary differential equation in (5.4) may have lots of classical
solutions, in addition to the obvious u(·) ≡ 1/λ.

The function of (5.3) we are interested in, turns out to be the smallest nonnegative classical superso-
lution of (5.4).

Proposition 5.7. Upper bounds on Ûλ(·), and minimality. The function Ûλ(·), defined in (5.3) as the
Laplace transform of the tail of the distribution function of the explosion time S, is dominated by every
nonnegative classical supersolution of the second-order equation (5.4).

Furthermore, under the conditions of Proposition 5.6, the function Ûλ(·) is the smallest nonnegative
classical (super)solution of (5.4).

Proof. Consider any function u : I → [0,∞) of class C2(I) that satisfies

s2(x)

2
u′′(x) + b(x)s(x)u′(x)− λu(x) + 1 ≤ 0, x ∈ I.

Simple stochastic calculus shows that the process M(·), defined in (5.6), is now a supermartingale, so

u(ξ) ≥ Eξ
[
exp(−λSn)

(
u(X(Sn))− 1

λ

)]
+

1

λ
≥ Eξ

[∫ ∞
0

exp(−λt)1{Sn>t}dt
]

=

∫ ∞
0

exp(−λt)Pξ(Sn > t)dt.

Letting n tend to infinity, we conclude that

u(ξ) ≥
∫ ∞

0
exp(−λt)P(S > t)dt = Ûλ(ξ)

holds for any given initial position ξ ∈ I; the first claim follows. The second is a consequence of
Proposition 5.6.

By analogy with the situation in Subsection 5.1, in the absence of explosions the second-order equa-
tion (5.4) actually has a unique bounded solution.
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Proposition 5.8. Unique bounded solution. Assume that the function Ûλ(·) ≡ 1/λ is the minimal
nonnegative classical solution of the second-order equation (5.4), and let u(·) be any bounded classical
solution of (5.4). Then we have u(·) ≡ Ûλ(·) .

Proof. This result can be proved in exactly the same manner as Proposition 5.5.

Again, it is not possible to remove the boundedness assumption in Proposition 5.8; for instance, with
I = R, s(·) ≡

√
2 , b(·) ≡ 0, and λ = 1 in (5.4), the (smallest nonnegative and) unique bounded solution

of the second-order equation (5.4) is of course Ûλ(·) ≡ 1, but there is a host of unbounded solutions
uκ,ϑ(x) = 1 + κ exp(x) + ϑ exp(−x) for all κ, ν ∈ R (nonnegative, as long as κ ≥ 0 , ϑ ≥ 0).

Finally, we remark that solving the ordinary differential equation in (5.5) has been the standard way
to compute Laplace transformations of the distributions of hitting times, a computation that is a special
case of the computation of the distributions of explosion times; see for example Barndorff-Nielsen et al.
(1978), Kent (1978), or Salminen and Vallois (2009).

5.3 Equivalent formulations for the Feller test

The next theorem summarizes several of our previous observations; it amounts to an extended version of
the celebrated Feller test for explosions, which we recall in Appendix A.

Theorem 5.9. Characterization of explosions. The following conditions are equivalent:

(i) the diffusion process X(·) of (2.1) has no explosions, i.e., P(S =∞) = 1 ;

(ii) w(`+) = w(r−) =∞ hold for the “Feller test” function defined in (A.1) for some c ∈ (`, r).

If the function f(·) of (2.3) is locally square-integrable on I , then conditions (i)-(ii) are equivalent
to:

(iii) the truncated exponential Po−supermartingale

Z[(T ) = exp

(∫ T

0
b(Xo(t))dW o(t)− 1

2

∫ T

0
b2(Xo(t))dt

)
· 1{So>T}, 0 ≤ T <∞,

appearing in (3.5), is a Po-martingale.

If the functions s(·) and b(·) are continuous on I , conditions (i)–(iii) are equivalent to:

(iv) the smallest nonnegative classical solution of the second-order differential equation in (5.4) is
u(·) ≡ 1/λ ;

(iv)′ the unique bounded classical solution of the equation in (5.4) is u(·) ≡ 1/λ .

If, in addition, the functions s(·) and b(·) are locally uniformly Hölder-continuous on I , conditions
(i)–(iv) are equivalent to:

(v) the smallest nonnegative classical solution of the Cauchy problem (5.1), (5.2) is U(·, ·) ≡ 1 ;

(v)′ the unique bounded classical solution of the Cauchy problem (5.1), (5.2) is U(·, ·) ≡ 1.

Proof. The equivalence of (i) and (ii) is the subject of the Feller test for explosions (see for example
Theorem 5.5.29 in Karatzas and Shreve, 1991). The equivalence of (i) and (iii) follows from Theo-
rem 3.2. Under the stated conditions, the equivalence of (i) and (iv) is covered by Propositions 5.6 and
5.7; whereas the equivalence of (i) and (v) is covered by Propositions 5.2 and 5.4. The equivalence of
(iv) and (iv)′ (resp., (v) and (v)′) is the subject of Proposition 5.8 (resp., Proposition 5.5).

It would be of some interest to have a more “circular” proof of this result, in particular, a direct
derivation of the Feller test (ii) from one of the minimality properties (iv), (v).
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6 Examples

Let us consider some illustrative examples. In several of these examples, we will rely on the Lamperti
transformation, reviewed in Appendix B.

Example 6.1. Reciprocal of Brownian motion. Let us take I = (0,∞) and

s(x) = −x2, b(x) = −x, (6.1)

implying f(x) = 1/x. With a given initial condition ξ ∈ (0,∞), the driftless equation of (2.6) becomes

Xo(·) = ξ −
∫ ·

0

(
Xo(t)

)2
dW o(t),

and is easily seen to take values in I = (0,∞) for all times, as it is identified with the reciprocal
Xo(·) = 1/R(·) of the three-dimensional Bessel process

dR(t) =
1

R(t)
dt+ dW o(t), R(0) =

1

ξ
.

In particular, the condition in (A.6) is satisfied, and we have Po(So =∞) = 1. It has been known since
the work of Johnson and Helms (1963) that Xo(·) is a strict local martingale; and the connection with
the Bessel process allows the computation of the distribution of Xo(T ) as in Ekström and Tysk (2009),
namely

P(Xo(T ) ∈ dy) =
ξ

y3
√

2πT

(
exp

(
−((1/y)− (1/ξ))2

2T

)
− exp

(
−((1/y) + (1/ξ))2

2T

))
.

On the other hand, with the choices of (6.1), the equation of (2.1) becomes

X(·) = ξ −
∫ ·

0
X2(t)dW (t) +

∫ ·
0
X3(t)dt , (6.2)

whereas the functions of Subsection 3.2 take the form F (x) = log(x) and V (·) ≡ 0. The condition in
(A.7) of the Feller test clearly fails in this case, so we have P(S =∞) < 1 ; in fact, it follows from (3.7)
that

P(S > T ) =
1

ξ
· Eo

[
1

R(T )

]
= 2

∫ 1/(ξ
√
T )

0

1√
2π

exp

(
−r

2

2

)
dr =: U(T, ξ) (6.3)

holds for 0 < T < ∞ , so in fact P(S = ∞) = 0 . This is also quite straightforward to check directly,
as follows: we observe that (6.2) is of the special form

dX(t) = s(X(t))

(
dW (t) +

1

2
s′(X(t)) dt

)
, X(0) = ξ , (6.4)

or equivalently the function b(·) is of the form (B.1) withµ = 0. Following the procedure of Appendix B,
we see that (6.2) can be solved “pathwise” in terms of the function ϑξ(w) = (w + (1/ξ))−1, namely as

X(t) =
1

W (t) + (1/ξ)
, 0 ≤ t < S .

Thus, the explosion time S is the first hitting time of the level (−1/ξ) by a standard Brownian motion
started at the origin, that is, the right-hand side of (6.3). Note that the process explodes at S = limn↑∞ S

′
n
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where S′n = inf{t ≥ 0 : X(t) ≥ n}; the left endpoint ` = 0 of the state space is inaccessible by
X(·). This is consistent with the observation made in Proposition A.1(i) since

∫ 1
0 s−1(z)dz = ∞ and∫∞

1 s−1(z)dz = 1 <∞.
Here, it is easy to verify “by hand” that the function U(·, ·), defined in (6.3), satisfies both the linear

parabolic equation of (5.1), now in the form

∂U
∂τ

(τ, x) =
x4

2

∂2U
∂x2

(τ, x) + x3∂U
∂x

(τ, x), (τ, x) ∈ (0,∞)× I,

and the initial condition U(0+, x) ≡ 1 for all x ∈ I . (It also satisfies the lateral condition U(T, 0+) ≡ 1
for all T ∈ (0,∞) but this is immaterial, as the left endpoint ` = 0 of the state space is inaccessible.)
The function of (6.3) is not the only classical solution of this Cauchy problem, as U(·, ·) ≡ 1 is clearly
a solution; from Proposition 5.4, however, U(·, ·) is its smallest nonnegative classical solution.

Let us consider next the second-order ordinary differential equation in (5.4), written here as

x4

2
u′′(x) + x3u′(x)− λu(x) + 1 = 0 , x ∈ I. (6.5)

It is easy to see that a general solution of this differential equation takes the form

u(x) = A exp

(
−2λ

x

)
+B exp

(
2λ

x

)
+

1

λ
, x ∈ I

for some real constantsA,B. We are interested in the smallest nonnegative solution Ûλ(·) in (6.5), which
we obtain by first setting B = 0 and then A = −1/λ. We thus have

Ûλ(·) =
1

λ

(
1− exp

(
−2λ

x

))
,

which is clearly smaller than the constant 1/λ. This illustrates the validity of the characterization of an
explosive diffusion in (v) of Theorem 5.9.

Example 6.2. Stochastic equations of Bessel-type. With a given constant δ ∈ (−∞, 2) and state space
I = (0,∞), let us consider the stochastic equation

dX(t) =
δ − 1

2X(t)
dt+ dW (t), X(0) = ξ . (6.6)

The solution of this equation does not explode to infinity, but reaches the origin in finite time: P(S <
∞) = 1, where S = limn↑∞ S

′
n with S′n = inf{t ≥ 0 : X(t) ≤ 1/n}. When δ ∈ (1, 2) , this

corresponds to a Bessel process, with “dimension parameter” δ and absorption at the origin.
In our notation s(·) ≡ 1 and, with index ν = 1− (δ/2) > 0, we have

f(x) =
1/2− ν

x
, F (x) = log

(
x1/2−ν

)
, V (x) =

ν2 − 1/4

2x2

in the notation of Subsection 3.2. The representation in (3.7) then helps us compute the distribution of
S as the expectation of a functional of the Brownian motion Xo(t) = ξ + W (t), 0 ≤ t < So with
So = inf{t ≥ 0 : ξ +W (t) = 0}; to wit,

P(S > T ) = Eo
[(

Xo(T )

ξ

)−2ν

·
(
Xo(T )

ξ

)ν+1/2

exp

(
1/4− ν2

2

∫ T

0

dt

(Xo(t))2

)
· 1{So>T}

]

= EQν
[(

Xo(T )

ξ

)−2ν
]

(6.7)

=
1

T
ξν exp

(
−ξ2

2T

)∫ ∞
0

x1−ν exp

(
−x2

2T

)
Iν

(
ξx

T

)
dx . (6.8)
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Here, Qν is the probability measure under which the process Xo(·) is Bessel of dimension 2ν + 2 =
4− δ > 2 ; the change of measure is proved in Exercise XI.1.22, and the density of the process Xo(·) is
derived on page 446, of Revuz and Yor (1999). In (6.8) and throughout the paper, we denote by Iν(·)
the modified Bessel function of the second type, namely

Iν(u) :=
∑
n∈N0

(u/2)ν+2n

n! Γ(n+ ν + 1)
. (6.9)

Now with the help of the monotone convergence theorem and of the substitutions z = x/
√

2T and
y = ξ2/(2T ), the expression in (6.8) simplifies to

P(S > T ) = 2yν/2 exp (−y)

∫ ∞
0

z1−ν exp
(
−z2

)
Iν (2z

√
y) dz

= 2yν/2 exp (−y)
∞∑
k=0

yν/2+k

k! Γ(ν + k + 1)

∫ ∞
0

z1+2k exp
(
−z2

)
dz

= exp (−y)
∞∑
k=0

yν+k

Γ(ν + k + 1)

=
1

Γ(ν)

∫ y

0
exp (−θ) θν−1dθ =

1

Γ(ν)

∫ ξ2/(2T )

0
exp (−θ) θν−1dθ .

Thus, we have

P(S > T ) = P
(
G <

ξ2

2T

)
= Hν

(
ξ2

2T

)
, where Hν(u) :=

∫ u

0

tν−1 exp(−t)
Γ(ν)

dt (6.10)

is the cumulative Gamma(ν) probability distribution function, and the random variable G has Gamma
distribution with parameter ν .

Of course, it is well known from the time-reversal considerations in Section 2.1 of Göing-Jaeschke
and Yor (2003) – based on the results in Getoor (1979) and Pitman and Yor (1981) – that S has the
distribution of ξ2/(2G); see also Section 14 in Kent (1982). Here we just derived this fact from rather
elementary Bessel process computations, with no need for time-reversal. Alternatively, Proposition 6.1
in Yor (2001) yields the representation of the explosion time S as in (6.10) by using the identity in (6.7)
but now via a representation of negative powers as an integral of exponentials.

It can be checked “by hand” that the function (T, ξ) 7→ Pξ(S > T ) = Hν

(
ξ2/(2T )

)
in (6.10) is a

classical solution of the linear parabolic equation

∂U
∂T

(T, ξ) =
1

2

∂2U
∂ξ2

(T, ξ) +
δ − 1

2 ξ

∂U
∂ξ

(T, ξ), (T, ξ) ∈ (0,∞)× I,

and satisfies also the initial condition U(0+, ξ) = 1 for ξ ∈ I (as well as the lateral condition U(T, 0+) =
0 for T ∈ (0,∞)). From Proposition 5.4, this function is the smallest nonnegative classical solution of
the initial / boundary value problem under consideration.

Remark 6.3. A generalization of Example 6.2. Barndorff-Nielsen et al. (1978) construct, for a given set
of parameters, a one-dimensional diffusion X(·) on the interval I = (0,∞) such that the corresponding
time to explosion S has a generalized Gamma distribution. If the parameters are chosen so that the
generalized Gamma distribution is exactly a Gamma distribution, then their construction yields the Bessel
process of Example 6.2.
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Example 6.4. A generalization of Example 6.1, and h-transforms. The special case I = (0,∞) and
f(x) = 1/x, or equivalently b(x) = s(x)/x, corresponds exactly to the situation in which the diffusion
processX(·) of (2.1) is the h-transform of the nonnegative local martingale and diffusion in natural scale
Xo(·) of (2.6); see for example Doob (1957) or Section 3.3 in Perkowski and Ruf (2012). We observe
that Example 6.1 is a special case of this setup. The above choices lead to F (x) = log(x) and V (·) ≡ 0
in the notation of Subsection 3.2, and (3.7) becomes

P(S > T ) =
1

ξ
Eo
[
Xo(T ) · 1{So>T}

]
=

1

ξ
Eo
[
Xo(T ∧ So)

]
, 0 ≤ T <∞ . (6.11)

This can be seen from first principles, as Xo(·) is a nonnegative local martingale, which gets absorbed
at the origin the first time it reaches it. Consequently, we have P(S =∞) = 1 if and only if the stopped
diffusion in natural scale Xo(·) of (2.6) is a martingale.

Let us recall from Proposition A.1(iii) that we have w(∞) =∞ and P(S =∞) = 1 , if and only if
the condition in (A.7) holds. That is,Xo(·) is a martingale, if and only if the condition in (A.7) holds; see
also Delbaen and Shirakawa (2002). Alternatively, we observe that the process Y (·) = 1/X(·) satisfies
the equation

Y (·) =
1

ξ
−
∫ ·

0
Y 2(t) · s

(
1

Y (t)

)
dW (t)

and reaches the origin if and only if ∫ 1

0

z

z4 s2(1/z)
dz =∞ ,

by virtue of (A.6). This, however, is again equivalent to (A.7).
The equation for Y (·) can be solved by the familiar method of time-changing a standard Brownian

motion B(·), namely Y (t) = 1/ξ +B(A(t)); here

A(t) =

∫ t

0
h2(Y (s)) ds , 0 ≤ t <∞ ,

with h(y) := y2 s(1/y) , is the inverse of the continuous, strictly increasing, real-valued function

Γ(u) :=

∫ u

0
h−2

(
1

ξ
+B(v)

)
dv, 0 ≤ u <∞

with Γ(∞) =∞. The explosion time S of X(·) is thus related to the first hitting time

τ := inf

{
u ≥ 0 : B(u) = − 1

ξ

}
for the auxiliary Brownian motion B(·) via

P(S > T ) = P
(
τ > A(T )

)
= P

(
Γ(τ ) > T

)
. (6.12)

We now consider the special case s(x) = κxp for all x > 0 for some real numbers κ > 0 , p > 0 .
First, by (A.6), we observe that Xo(·) is a martingale and P(S = ∞) = 1, if and only if p ≤ 1, that is,
the function s(·) grows at most linearly. We note that in the case p = 1/2 we have

dX(t) = κ2dt+ κ
√
X(t) dW (t), X(0) = ξ. (6.13)

In particular, with κ = 2 we see that X(·) is the square of a Bessel process in dimension δ = 4.
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For the case p > 1 = κ we would like to compute the distribution of the random variable

Γ(τ ) =

∫ τ

0

(
x+B(t)

)µ
dt , where we have set x =

1

ξ
, µ = 2p− 4 , (6.14)

and thus the distribution of the explosion time S via (6.12). Let us consider two special cases first.
(i) For the value p = 2, we have h(·) ≡ 1, Γ(u) ≡ u and P(S > T ) = P(τ > T ) is given by (6.3).
(ii) For the value p = 3/2, Borodin and Salminen (2002) provide in Formula (2.19.2) on page 208

the distribution of the random variable

Γ(τ ) =

∫ τ

0

dv

ξ−1 +B(v)
as P

(
Γ(τ ) ∈ dt

)
=

2

ξt2
exp

(
− 2

ξt

)
dt

or equivalently the distribution of the explosion time

P(S > T ) = P(Γ(τ ) > T ) = 1− exp

(
− 2

ξT

)
=

1

ξ
· Eo [Xo(T )] , 0 < T <∞ (6.15)

for the diffusion

X(·) = ξ +

∫ ·
0

(
X(t)

)3/2
dW (t) +

∫ ·
0

(
X(t)

)2
dt ,

thus Xo(·) = ξ +
∫ ·

0(Xo(t))3/2dW o(t) ; a related diffusion is discussed in Example 6.8. It is checked
“by hand”, that the functionU(T, ξ) = 1−exp(−2/(ξT )) in (6.15) satisfies the linear parabolic equation

∂U
∂T

(T, ξ) = s2(ξ)

(
1

2

∂2U
∂ξ2

(T, ξ) +
1

ξ

∂U
∂ξ

(T, ξ)

)
, (T, ξ) ∈ (0,∞)× I (6.16)

subject to the initial condition U(0+, ·) ≡ 1 on I , for s(ξ) = ξ 3/2 ; from Propositions 5.2 and 5.4, the
function U of (6.15) is the smallest nonnegative (super)solution of the Cauchy problem.
• In order to compute the distribution of the random variable Γ(τ ) of (6.14) in any generality, the
crucial observation, for which we are grateful to Marc Yor, is that for any given x > 0, % > 0 and for
standard Brownian motion B(·), the representation(

x+B(t)
)2%

= R

(
k

∫ t

0

(
x+B(s)

)µ
ds

)
, 0 ≤ t ≤ τ (6.17)

holds, where R(·) is a Bessel process started in x2% with dimension

δ = 2− 1

2%
, and k = 4%2 , µ = 2

(
2%− 1

)
, x = 1/ξ . (6.18)

This is verified easily, via stochastic calculus and the dynamics in (6.6) for the process R(·); consult also
Proposition XI.1.11 in Revuz and Yor (1999). However, now the representation (6.17) identifies k Γ(τ )
as the first time the Bessel process R(·) visits the origin, and (6.12), (6.14), (6.18) give the distribution
of the explosion time S as

P
(
S > T ) = Hν

(
x 4%

2 k T

)
= Hν

(
2 ν2

T ξ 1/ν

)
, with ν = 1− δ

2
=

1

4%
and % =

p− 1

2
> 0

in the notation of (6.10); see also Hammersley (1961), Getoor and Sharpe (1979), Pitman and Yor (1981),
and Proposition 1 in Khoshnevisan et al. (2006). Once again, it is checked by hand that this function
solves the equation (6.16) subject to the initial condition U(0+, ·) ≡ 1 on I , for s(ξ) = ξ p , p > 1; and
from Propositions 5.2, 5.4 that it is the smallest nonnegative (super)solution of this Cauchy problem.
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In Example 6.4 (cf. (6.11)), we proved the following result, which appeared under slightly stronger
assumptions in Delbaen and Shirakawa (2002).

Corollary 6.5. Martingale property of nonnegative diffusions in natural scale. Suppose that the
function 1/s(·) is locally square-integrable on I = (0,∞) , and that Xo(·) is a nonnegative Po-local
martingale which satisfies the stochastic differential equation

Xo(·) = ξ +

∫ ·
0
s
(
Xo(t)

)
dW o(t)

of (2.6), and becomes absorbed at the origin the first time it gets there. ThenXo(·) is a true Po−martingale,
if and only if the condition of (A.7) holds, namely∫ ∞

1

z dz

s2(z)
= ∞ .

Example 6.6. Lamperti transformation for affine variance diffusions. Let us consider a modification
of the stochastic differential equation (6.13), namely I = (0,∞) and

dX(t) =
κ2

4
dt+ κ

√
X(t) dW (t), X(0) = ξ ∈ (0,∞) (6.19)

for some κ > 0. This corresponds to s(x) = κ
√
x , b(x) = κ/(4

√
x ), thus

f(x) =
1

4x
, F (x) =

1

4
log(x), and V (x) = − 3κ2

32x
.

We note that b(x) = s′(x)/2 holds, and thus Appendix B applies. The result is X(·) = ϑξ(W (·)),
now in terms of the function

ϑξ(w) =
( κ

2
w +

√
ξ
)2
, namely X(t) =

( κ
2
W (t) +

√
ξ
)2
, 0 ≤ t < S.

It follows that S is the first hitting time of the point (−2
√
ξ /κ) by standard Brownian motion started

at the origin. Thus, the process X(·) explodes by hitting the left endpoint 0 of the state space; the right
endpoint∞ is inaccessible by the diffusion X(·); that is, X(S−) = 0. Of course, this is again consistent
with Proposition A.1(i) since

∫ 1
0 s−1(z)dz = 2κ <∞ and

∫∞
1 s−1(z)dz =∞.

From (3.7), we conclude that

P(S > T ) = 2

∫ 2
√
ξ/(κ
√
T )

0

1√
2π

exp

(
−y

2

2

)
dy (6.20)

= Eo
[(

Xo(T )

ξ

)1/4

exp

(
3κ2

32

∫ T

0

dt

Xo(t)

)
· 1{So>T}

]
;

here Xo(·) is a martingale and diffusion in natural scale with

dXo(t) = κ
√
Xo(t) dW o(t), Xo(0) = ξ.

Once again, it is easy to check by direct computation that the function of (6.20) solves the linear
parabolic equation of (5.1), namely

∂U
∂τ

(τ, x) =
κ2x

2

∂2U
∂x2

(τ, x) +
κ2

4

∂U
∂x

(τ, x), (τ, x) ∈ (0,∞)× I,

subject to the initial condition U(0+, x) = 1 for x ∈ I (and to the lateral condition U(T, 0+) = 0 for
T ∈ (0,∞)). Arguing then by analogy with Proposition 5.4, it is checked that the function of (6.20) is
the smallest nonnegative classical solution of this initial / boundary value problem.
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Example 6.7. Diffusion with quartic variance function. Let us consider, for some given real number
µ ∈ R, the stochastic differential equation

dX(t) =
(
1 +X2(t)

)[
dW (t) + (µ+X(t)) dt

]
, X(0) = ξ (6.21)

of the form (2.1) with s(x) = 1 + x2 and b(x) = µ + x for all x ∈ I = R . In this case the diffusion
in natural scale

dXo(t) =
(
1 + (Xo(t))2

)
dW o(t) , Xo(0) = ξ

of (2.6) does satisfy Po(So = ∞) = 1 but does not satisfy the condition of (A.7): it is a strict local
martingale, studied for example in Carr et al. (2013). We have

f(x) =
µ+ x

1 + x2
, F (x) = µ tan−1(x) +

log(1 + x2)

2
, V (x) =

1 + µ2

2
,

in the notation of Subsection 3.2. Then (3.7) and Corollary 1 and Lemma 2 in Carr et al. (2013), which
provide a distributional identity of the local martingale Xo(·) in terms of the Brownian motion W o(·),
applied with

g̃(x) = cos(x+ c)/ cos(c), f̃(x) = tan(x+ c) h̃(x) = (1 + x2)1/2 exp(µ tan−1(x))

and C = 1, where c = tan−1(ξ), yield the representation

P(S > T ) = Eo
[(

1 + (Xo(T ))2

1 + ξ2

)1/2

exp

(
µ tan−1

(
Xo(T )

)
− µ tan−1(ξ)− 1 + µ2

2
T

)]

= Eo
[
exp

(
µW o(T )− µ

2T

2

)
1{τo>T}

]
with τ o the first time that W o(·) hits either

a = a(ξ) := −(π/2)− tan−1(ξ) or b = b(ξ) := (π/2)− tan−1(ξ).

Alternatively, we observe that the function b(·) is of the form (B.1), and thus, following Appendix B,

X(t) = tan
(
W (t) + µt+ tan−1(ξ)

)
, 0 ≤ t < S

identifies the explosion time as a first exit time for Brownian motion with drift

S = inf
{
t ≥ 0 : W (t) + µt /∈ (a, b)

}
from the open interval (a, b). Formula (3.0.2) on page 309 of Borodin and Salminen (2002) now com-
putes the distribution of this exit time as

P(S > T ) =

∫ ∞
T

exp

(
−µ2t

2

)(
exp(µa)Θ (t; b, b− a) + exp(µb)Θ (t;−a, b− a)

)
dt , (6.22)

where

Θ(t;u, v) :=
∑
k∈Z

v − u+ 2kv√
2πt3

exp

(
−(v − u+ 2kv)2

2t

)

denotes a certain inverse Laplace transform.
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In this example, the explosion time S has actually finite expectation. From Propositions 5.2 and 5.4,
the function on the right-hand side of (6.22) is the smallest nonnegative classical solution of the Cauchy
problem

∂U
∂τ

(τ, x) =
(1 + x2)2

2

∂2U
∂x2

(τ, x) + (µ+ x)(1 + x2)
∂U
∂x

(τ, x), (τ, x) ∈ (0,∞)× R

with boundary condition U(0, x) = 1 for all x ∈ R.

Example 6.8. Diffusion with cubic variance function. In a similar manner, we consider the stochastic
differential equation

dX(t) =
(
X(t)

)3/2 [
dW (t) +

(
µ+

3

4

(
X(t)

)1/2)
dt

]
, X(0) = ξ ∈ I

with state space I = (0,∞), for some given real number µ ∈ R. This equation is of the form (2.1) with
s(x) = x3/2, b(x) = µ+ (3/4)x1/2, and the diffusion in natural scale

dXo(t) =
(
Xo(t)

)3/2
dW o(t), Xo(0) = ξ

of (2.6) satisfies the conditions of (A.6). We note that

f(x) =
µ

x3/2
+

3

4x
, F (x) =

−2µ√
x

+ log(x3/4), V (x) =
µ2

2
− 3x

32

in the notation of Subsection 3.2, so (3.7) gives the representation

Pξ(S > T ) = exp

(
2µ√
ξ
− µ

2T

2

)
Eo
[(

Xo(T )

ξ

)3/4

exp

(
3

32

∫ T

0
Xo(T )dt− 2µ√

Xo(T )

)]
.

This probability can be computed explicitly via the observations in Appendix B. We obtain the
diffusion X(·) explicitly as

X(t) =

(
1√
ξ
− 1

2

(
W (t) + µt

))−2

, 0 ≤ t < S.

This shows that the origin is inaccessible by the diffusion X(·), which can only explode to infinity,
consistent with Proposition A.1(i). The explosion happens at the Brownian first passage time

S = inf

{
t ≥ 0 : W (t) + µt =

2√
ξ

}
,

whose distribution is of course well known, namely

Pξ(S > T ) = 1−
∫ T

0

(
2

πξt3

)1/2

exp

(
− 1

2t

(
2√
ξ
− µt

)2
)

dt =: U(T, ξ) ;

see also Section 3.5.C in Karatzas and Shreve (1991). In particular, with µ < 0 we have P(S < ∞) =
exp(4µ/

√
ξ); whereas, with µ ≥ 0, we have P(S < ∞) = 1. It is checked by direct computation, that

the above function U(·, ·) solves the parabolic partial differential equation

∂U
∂τ

(τ, x) =
x3

2

∂2U
∂x2

(τ, x) +

(
µx3/2 +

3

4
x2

)
∂U
∂x

(τ, x), (τ, x) ∈ (0,∞)× R

with boundary condition U(0, x) ≡ 1 for all x ∈ I; indeed, from Proposition 5.4, U(· , ·) is the smallest
nonnegative (super)solution of this linear parabolic equation.

We remark that a related example is discussed in Corollary 1 of Andreasen (2001).

27



Example 6.9. Explosion to infinity. Let us now consider the situation with I = R, s(·) ≡ 1 and
b(x) = exp(βx) for some β > 0. In this case the Brownian motion Xo(·) = ξ + W o(·) has no
explosions, i.e., Po(So =∞) = 1; the process X(·) with dynamics

X(·) = ξ +

∫ ·
0

exp
(
βX(t)

)
dt+W (·)

explodes (to +∞) in finite time, that is P(S <∞) = 1; and

P(S > T ) = Eo
[
exp

(
1

β

(
eβX

o(T ) − eβξ
)
− β

2

∫ T

0
eβX

o(t)dt− 1

2

∫ T

0
e2βXo(t)dt

)]
holds for all T ∈ (0,∞). From Formula (1.30.7) on page 196 in Borodin and Salminen (2002), we
obtain the distribution of the explosion time as

P(S > T ) = β2

∫ ∞
−∞

∫ ∞
0

exp
(
(eβz − eβξ)/β − (βy/2)

)
8 sinh(βy/2)

exp

(
− eβξ + eβz

β tanh(βy/2)

)
· iβ2T/8

(
2eβ(ξ+z)/2

β sinh(βy/2)

)
dy dz ,

where

it(z) := L−1
t

(
I√t (z)

)
=
z exp(π2/(4t))

π
√
πt

∫ ∞
0

exp

(
−z cosh(u)− u2

4t

)
sinh(u) sin

(πu
2t

)
du

denotes an inverse Laplace transform related to the modified Bessel function of the second type in (6.9).
We obtain

P(S > T ) =
2 exp(2π2/(β2T ))

√
2η

πβ
√
πT

∫ ∞
0

∫ ∞
0

∫ ∞
0

exp
(
ζ2 − η2 − ψ

)
(sinh(ψ))2

exp

(
− η

2 + ζ2

tanh(ψ)

)
· exp

(
− 2ηζ

cosh(u)

sinh(ψ)
− 2u2

β2T

)
sinh(u) sin

(
4πu

β2T

)
dudψ dζ,

after applying the substitutions of βy/2 by ψ, and of exp(βz/2)/
√
β by ζ, and the change of variable

η = exp (βξ/2) /
√
β .

A Appendix: Feller test

A well-known criterion for deciding whether the diffusion X(·) can explode or not (to wit, whether we
have P(S < ∞) > 0 or P(S < ∞) = 0) is Feller’s test; see Theorem 5.5.29 in Karatzas and Shreve
(1991). This criterion relies on the Feller test function defined as

w(x) :=

∫ x

c

(
exp (2F (z))

s2(z)

(∫ x

z
exp

(
− 2F (y)

))
dy

)
dz , x ∈ I (A.1)

for some fixed constant c ∈ I , where F (·) is the function of (2.4). Feller’s test then states that P(S =
∞) = 1 holds, if and only if w(`+) = w(r−) = ∞ . Moreover, the finiteness or nonfiniteness of
w(·) does not depend on the choice of the constant c. Alternative characterizations are discussed in
Subsection 5.3.
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Since the function 1/s2(·) is locally square-integrable thanks to the assumption in (2.2), and since
the anti-derivative F (·) is continuous, we have w(`n) + w(rn) <∞ and, in particular,

P(Sn <∞) = 1 , (A.2)

for all n ∈ N; in fact, we even have E[Sn] <∞, see Proposition 5.5.32 in Karatzas and Shreve (1991).
There are several situations in which the Feller test function w(·) can be simplified:

• If the function s(·) is differentiable and b(·) = a s′(·) for some a ∈ R , then

w(x) =

∫ x

c

(
s2a−2(z)

∫ x

z
s−2a(y)dy

)
dz.

In particular, we have the following two special cases:

– a = 1/2:

w(x) =

∫ x

c

(
1

s(y)

∫ y

c

1

s(z)
dz

)
dy =

1

2

(∫ x

c

1

s(z)
dz

)2

; (A.3)

– a = 1:

w(x) =

∫ x

c

z − c
s2(z)

dz.

• If b(·) = a s(·) for some a ∈ R \ {0}, then

w(x) =
1

2a

∫ x

c

1− exp(2a(z − x))

s2(z)
dz .

• If b(x) = a s(x)/x for all x ∈ R for some a ∈ R \ {1/2}, then

w(x) =
1

1− 2a

∫ x

c

x(z/x)2a − z
s2(z)

dz . (A.4)

In particular, with a = 0, we have

w(x) =

∫ x

c

x− z
s2(z)

dz . (A.5)

From these observations we obtain the following useful corollary.

Proposition A.1. Conditions for explosions in special cases. Feller’s test simplifies in the following
cases:

(i) Suppose that the function s(·) is differentiable (without loss of generality, we then assume that
s(·) > 0 on I), and that b(·) = s′(·)/2 . Then P(S =∞) = 1 holds, if and only if for some c ∈ I
we have ∫ c

`

dz

s(z)
=∞ =

∫ r

c

dz

s(z)
.
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(ii) Suppose that I = (0,∞) and b(·) = 0. Then w(0+) =∞ holds, if and only if we have∫ 1

0

z

s2(z)
dz =∞ ; (A.6)

moreover, w(∞) =∞. Therefore, P(S =∞) = 1 holds in this case, if and only if (A.6) does.

(iii) Suppose that I = (0,∞) and b(x) = s(x)/x for all x ∈ I . Then w(∞) =∞ holds, if and only
if we have ∫ ∞

1

z

s2(z)
dz =∞ ; (A.7)

moreover, w(0+) =∞ . Therefore, P(S =∞) = 1 holds in this case, if and only if (A.7) does.

Proof. Part (i) is an application of the identity in (A.3) and Feller’s test. For part (ii), we first observe that
the condition w(0+) = ∞ , along with the representation in (A.5) with c = 1, imply that (A.6) holds.
For the reverse direction, we assume that (A.6) holds and define m(y) :=

∫ 1
y s−2(z)dz for all y ∈ [0, 1].

If lim supy↓0(ym(y)) <∞ holds, then w(0+) =∞ by (A.5) with c = 1. If lim supy↓0(ym(y))) =∞
holds, we observe that we may rewrite (A.5) as

w(0+) = lim
x↓0

∫ 1

x

z − x
s2(z)

dz = lim
x↓0

(∫ 1

x

∫ z

x

1

s2(z)
dy

)
dz =

∫ 1

0
m(y)dy ≥

∫ y

0
m(y)dy ≥ ym(y)

for all y ∈ [0, 1], which yields w(0+) = ∞. Moreover, we have w(x) ≥ (x − 2)
∫ 2

1 s−2(z)dz for all
x ≥ 2, which yields w(∞) =∞.

For part (iii), we use (A.4) with a = 1 and c = 1 to obtain the representation

w(x) =

∫ x

1

z − z2/x

s2(z)
dz =

∫ x

1

(
1

y2

∫ y

1

z2

s2(z)
dz

)
dy. (A.8)

In the same manner as above we have w(0+) = ∞ under (A.7), and need only show that (A.7) implies
w(∞) = ∞ . We may assume again lim supy↑∞(k(y)/y) = ∞, where k(y) =

∫ y
1 z

2s−2(z)dz for all
y ∈ [1,∞), as otherwise the statement is clear. Under this assumption, we obtain from (A.8) that

w(∞) ≥
∫ ∞
y

k(z)

z2
dz ≥ k(y)

∫ ∞
y

dz

z2
=

k(y)

y

holds for all y ≥ 1, which concludes the proof.

Of course, additional statements in the form of the last proposition can be proved; we focused here
on those needed in the body of the paper. An alternative proof of the equivalence in part (ii) under
slightly stronger assumptions and using the Ray-Knight theorem, appears in Theorem 1.4 of Delbaen
and Shirakawa (2002). In Example 6.4, we discuss the setup of part (iii) in Proposition A.1, and its
connection to part (ii) will then become clearer; see also Corollary 6.5.

B Appendix: Explosions as Brownian exits via Lamperti transformations

In Subsection 3.1 we saw how to remove drifts by changing the underlying probability measure. We
discuss now ways to transform the dispersion term into a constant, by distorting the space as Y (·) =
h(X(·)), for some strictly increasing and continuous function h : (`, r) → (˜̀, r̃ ) and suitable −∞ ≤˜̀< r̃ ≤ ∞. We shall assume in this section that the function s(·) is continuously differentiable on the
interval I = (`, r); without loss of generality, we shall also assume that s(·) is strictly positive.
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We shall consider the function

hc(x) =

∫ x

c

dz

s(z)
, x ∈ (`, r)

for some c ∈ (`, r). We observe that hc(·) is strictly increasing and twice differentiable. We set ˜̀=
hc(`) := limx↓` hc(x) ∈ [−∞,∞) and r̃ = hc(r) := limx↑r hc(x) ∈ (−∞,∞] and define the process
Y (·) via

Y (t) := hc(X(t)) for all t ∈ [0, S) and Y (t) = lim
u↑S

hc(X(u)) for all t ∈ [S,∞).

It is clear that limt↑S Y (t) ∈ {˜̀, r̃ } holds on {S < ∞}, and that the new process Y (·) leaves its state
space Ĩ := (˜̀, r̃ ) at exactly the time S. In particular, the (distribution of the) explosion time S of X(·)
is exactly the (distribution of the) explosion time S̃ of Y (·).

With ϑc : Ĩ → I denoting the inverse function of hc, simple stochastic calculus yields that

dY (t) =

(
b(ϑc(Y (t)))− s′(ϑc(Y (t)))

2

)
dt+ dW (t), Y (0) = hc(ξ) =: ξ̃ ∈ Ĩ

hold for all t ∈ [0, S). In particular, with the function ν : Ĩ → I defined by

ν(y) := b(ϑc(y))− 1

2
s′(ϑc(y)) , y ∈ Ĩ

we have the simple dynamics

dY (t) = ν(Y (t))dt+ dW (t), Y (0) = hc(ξ) = ξ̃

for all t ∈ [0, S). As Lamperti (1964) stresses (see also Section 3.4 in McKean, 1969), this equation
can be solved pathwise by simple Picard iterations, without any need for stochastic integration or other
probabilistic tools, as long as the function ν(·) is Lipschitz continuous. In particular, if

b(·) =
1

2
s′(·) + µ (B.1)

for some constant µ ∈ R, the computation of the time to explosion reduces to to computing the distribu-
tion of the time to explosion for a Brownian motion with drift.

This approach has been generalized in an effort to study the pathwise solvability of stochastic differ-
ential equations by Lamperti (1964), Doss (1977), Sussmann (1978), and Karatzas and Ruf (2014).

C Appendix: A technical result on uniqueness in distribution

In this appendix, we revisit the diffusion Xo(·) of Subsection 2.1. Theorem 5.5.7 in Karatzas and Shreve
(1991) yields the uniqueness in the sense of the probability distribution of the stochastic integral equation
in (2.6); however, the proof of Theorem 3.2 requires a slightly stronger uniqueness statement. Towards
this end, and using the notation of the paragraph right before Theorem 3.2, we call a function ϑ :
C([0,∞))→ [0,∞] a stop-rule, if{

w ∈ C([0,∞)) : ϑ(w) ≤ t
}
∈ Bt := ϕ−1

t (B) holds for all 0 ≤ t <∞ .
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Proposition C.1. Uniqueness up to stopping times. Let ϑ denote a stop-rule satisfying w(t) ∈ I for
all w ∈ C([0,∞)) and 0 ≤ t < ϑ(w) . The solution of the “stopped” version of the stochastic integral
equation in (2.6), namely

X̂(·) = ξ +

∫ ·∧ϑ(X̂)

0
s
(
X̂(t)

)
dŴ (t) , (C.1)

is unique in the sense of the probability distribution.

Proof. Let us consider any weak solution of (C.1) and denote % = ϑ(X̂). The solvability of (C.1)
implies that the time change A(·) :=

∫ ·
0 s

2(X̂(t))1{%>t}dt is well-defined, and we note that this process
is the quadratic variation of the continuous local martingale M(·) =

∫ ·
0 s(X̂(t))1{%>t}dŴ (t).

According to the Dambis-Dubins-Schwarz theory (see Theorem 3.4.6 and Problem 3.4.7 in Karatzas
and Shreve, 1991) there exists a standard Brownian motion B(·) on (an extension of) the underlying
probability space, such that

X̂(·) = ξ +

∫ ·
0
s
(
X̂(t)

)
1{%>t}dŴ (t) = ξ +B(A(·)).

We consider now the inverse time change Γ(θ) := inf{t ≥ 0 : A(t) > θ} for all 0 ≤ θ < A(%) and
Γ(θ) :=∞ for all θ ≥ A(%), and note that

Γ′(θ) =
1

A′(Γ(θ))
=

1

s2
(
X̂(Γ(θ))

) , thus Γ(θ) =

∫ θ

0

dr

s2(ξ +B(r))

for all 0 ≤ θ < A(%). Next, we define the function s∗(x) := s(x)1(`,r)(x) + 1R\(`,r)(x) and the
corresponding time change

Γ∗(θ) =

∫ θ

0

dr

s2
∗(ξ +B(r))

, 0 ≤ θ <∞ ,

along with its inverse A∗(t) := inf{θ ≥ 0 : Γ∗(θ) > t} for all 0 ≤ t <∞.
We note that we have the ordinary integral equations

A(· ∧ %) =

∫ ·∧%
0

s2
(
ξ +B(A(t))

)
dt , (C.2)

A∗(· ∧ Γ∗(τ )) =

∫ ·∧Γ∗(τ )

0
s2
(
ξ +B(A∗(t))

)
dt

in the notation of (2.7). We also have % ≤ Γ∗(τ ), a consequence of our assumption that ξ+B(A(t)) ∈ I
for all t < %. The uniqueness of solutions to (C.2) implies then A(· ∧ %) = A∗(· ∧ %); therefore, the
process X∗(·) := ξ +B(A∗(·)) satisfies X̂(·) = X̂(· ∧ %) = X∗(· ∧ %) and

% = ϑ
(
X̂(·)

)
= ϑ

(
X̂(· ∧ %)

)
= ϑ (X∗(· ∧ %)) = ϑ (X∗(·)) .

We note that the process A∗(·) is FB(∞)−measurable, thus so is X∗(·) and hence also X̂(·). In partic-
ular, the distribution of X̂(·) is determined uniquely.
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