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Abstract
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larger stocks. This phenomenon has been called the size effect, and a number of explanations

have been proposed to account for it. Here we show that the difference in return between the

larger and the smaller stocks is likely to be due to a liquidity premium for the smaller stocks, and

we estimate the value of this premium using structural parameters for the capital distribution

of the U.S. stock market during the 1990s.
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1 Introduction

Banz (1981) and Reinganum (1981) observed that in the U.S. stock market, smaller stocks tend
to have higher returns on average than larger stocks have, even when an adjustment is made for
risk. This phenomenon has been called the size effect, and there have been a number of attempts to
justify it a number of ways (see, e.g., Roll (1981)). Here we are interested in an approach considered
by Amihud and Mendelson (1986) and Vayanos (2003), who have suggested that the size effect is
caused by a liquidity premium for smaller stocks. Since smaller stocks are more difficult and more
costly to trade than are larger stocks, they must consequently offer higher returns than do larger
stocks.

We show that in the context of large, diversified portfolios, the smaller stocks do not seem to
exhibit higher risk than the larger stocks, at least over the long term. However, it is well known that
smaller stocks are less liquid than larger stocks, so the size effect could be due to a liquidity premium
on the smaller stocks. How large would this liquidity premium have to be in order to explain the
size effect?

In this paper we attempt to answer this question. After introducing some basic definitions and
notation in Section 2, we develop a mathematical model for the relative behavior of the larger and
smaller stocks in Section 3. In Section 4 we use this model to estimate the liquidity premium that
would account for the size effect. Section 5 is on the first-order model for an asymptotically stable
market; we show that in the context of this model the liquidity premium of a stock amounts to the
stock’s entire rate of return.

2 The market model

In this section we introduce the general market model that we shall use in the rest of the paper. This
model is consistent with the usual market models of continuous-time mathematical finance found
in, e.g., Duffie (1992) or Karatzas and Shreve (1998). The preliminary material of this section is
presented in greater detail in Fernholz (2002).

Consider a market consisting of n stocks represented by their price processes X1, . . . , Xn. We
assume that there is a single share of each stock, so Xi(t) represents the total capitalization of the
i-th company at time t. The price processes evolve according to

Xi(t) = Xi
0 exp

(∫ t

0

γi(s) ds +
∫ t

0

d∑
ν=1

ξiν(s) dWν(s)
)

, t ∈ [ 0,∞), (2.1)

for i = 1, . . . , n, with d ≥ n.. Here X1
0 , . . . , Xn

0 , are positive constants and W (t) = (W1(t), . . . , Wd(t)),
t ∈ [ 0,∞), is a standard d-dimensional Brownian motion defined on a probability space (Ω,F, P )
and adapted to a given filtration {Ft}. The growth rate processes γi = {(γi(t),Ft), t ∈ [ 0,∞)},
i = 1, . . . , n, are measurable, adapted, and satisfy

∫ T

0
|γi(t)|dt < ∞, a.s., for all T > 0. For

i = 1, . . . , n and ν = 1, . . . , d, the volatility processes ξiν = {(ξiν(t), Ft), t ∈ [ 0,∞)} are measurable,
adapted, and satisfy:

i)
∫ T

0
ξ2
iν(t)dt < ∞, a.s., for all T > 0;

ii) limt→∞ t−1ξ2
iν(t) log log t = 0, a.s.;

iii) ξ2
i1(t) + · · ·+ ξ2

id(t) > 0, t ∈ [ 0,∞), a.s.

We shall assume the stock price processes satisfy:
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iv) for all i 6= j, the set {t : Xi(t) = Xj(t)} has Lebesgue measure zero, a.s.;

v) for all i < j < k, the set {t : Xi(t) = Xj(t) = Xk(t)} = ∅, a.s.

Note that condition (ii) is rather weak, and allows, e.g., for constant volatilities. This condition is
necessary in order for growth rates to be meaningful. For an idea of the type of pathology that can
occur in the absence of such a condition, see Fernholz and Karatzas (2005).

From (2.1), we see that the stock price processes satisfy

d log Xi(t) = γi(t) dt +
d∑

ν=1

ξiν(t) dWν(t), t ∈ [ 0,∞), (2.2)

or equivalently,

dXi(t) = Xi(t)
(
bi(t) dt +

d∑
ν=1

ξiν(t) dWν(t)
)
, t ∈ [ 0,∞), (2.3)

for i = 1, . . . , n, where

bi(t) , γi(t) +
1
2
σii(t) (2.4)

is the rate of return of the i-th stock.. In the form (2.2) it is evident that these processes are
continuous semimartingales, and we shall frequently refer to them simply as stocks. The growth rate
of a stock determines its long-term behavior, since for i = 1, . . . , n, conditions (ii) and (iii) guarantee
that

lim
T→∞

1
T

(
log Xi(T )−

∫ T

0

γi(t) dt
)

= 0, a.s. (2.5)

A proof of this can be found in Fernholz (2002).
The market covariance process is the matrix-valued process σ defined by

σij(t) ,
d∑

ν=1

ξiν(t)ξjν(t) =
d

dt
〈log Xi, log Xj〉t, t ∈ [ 0,∞). (2.6)

Definition 2.1. A portfolio of the stocks X1, . . . , Xn in the market is a bounded, measurable,
adapted process π : [ 0,∞)× Ω → Rn that satisfies π1(t) + · · ·+ πn(t) = 1, for t ∈ [ 0,∞), a.s.

For each i, the process πi represents the proportion, or weight, of Xi in the portfolio; a negative
value for πi(t) indicates a short sale of the i-th stock. These portfolios are clearly self-financing.
Suppose Zπ(t) represents the value of an investment in the portfolio π at time t. Then Zπ(t) satisfies

dZπ(t)
Zπ(t)

=
n∑

i=1

πi(t)
dXi(t)
Xi(t)

=
n∑

i=1

πi(t)
(
bi(t) dt +

d∑
ν=1

ξiν(t) dWν(t)
)
, t ∈ [ 0,∞).

(2.7)

This equation and an initial value Zπ(0) > 0 determine the portfolio value through time, so we shall
call the process Zπ the portfolio value process for π. Two applications of Itô’s rule transform (2.7)
into

d log Zπ(t) =
n∑

i=1

πi(t) d log Xi(t) + γ∗π(t) dt, t ∈ [ 0,∞), a.s., (2.8)

where

γ∗π(t) , 1
2

( n∑

i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)
)

, t ∈ [ 0,∞), (2.9)
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is called the excess growth rate process of π. Equation (2.8) is equivalent to

d log Zπ(t) = γπ(t) dt +
d∑

i,ν=1

πi(t)ξiν(t) dWν(t), t ∈ [ 0,∞), a.s., (2.10)

where the portfolio growth rate process γπ is defined by

γπ(t) ,
n∑

i=1

πi(t)γi(t) + γ∗π(t), t ∈ [ 0,∞).

The portfolio variance process for π is defined by

σππ(t) ,
n∑

i,j=1

πi(t)πj(t)σij(t), t ∈ [ 0,∞), a.s.,

with
d〈log Zπ〉t = σππ(t) dt, a.s. (2.11)

The portfolio µ defined by

µi(t) , Xi(t)
X1(t) + · · ·+ Xn(t)

, t ∈ [ 0,∞), (2.12)

for i = 1, . . . , n, is called the market portfolio. It is straightforward that the weights µi of (2.12)
satisfy the requirements of Definition 2.1, and that they are continuous semimartingales. With an
appropriate initial value, the value Zµ of the market portfolio satisfies

Zµ(t) = X1(t) + · · ·+ Xn(t), t ∈ [ 0,∞), a.s. (2.13)

The processes µ1, . . . , µn are called the market weight processes, or simply, market weights. A market
will be called coherent if for i = 1, . . . , n we have

lim
t→∞

t−1 log µi(t) = 0, a.s.

A necessary and sufficient condition for coherence is that

lim
T→∞

1
T

∫ T

0

(
γi(t)− γj(t)

)
dt = 0, a.s., (2.14)

for all 1 ≤ i, j ≤ n; see Fernholz (2002), Proposition 2.1.2. We shall assume henceforth that the
market is coherent.

Remark. It might be helpful to stress that coherence does not imply limT→∞ T−1
∫ T

0
γ∗µ(t)dt = 0,

a.s. (i.e., that there is no long-term-average gain from diversification). This latter property holds
under the condition γi(t) = γj(t), a.s., for all t ≥ 0, i 6= j, which is clearly considerably stronger than
(2.14); see Proposition 2.2.3 in Fernholz (2002). The Atlas model of section 5.3 of that book provides
an example of a coherent market for which limT→∞ T−1

∫ T

0
γ∗µ(t)dt exists a.s. and is positive; see

also Banner et al. (2005). For another such example, see Section 6 of Fernholz and Karatzas (2005).

The ranks of stocks in the market will be of interest to us, so let us consider the (reverse) order
statistics for the stocks X1, . . . , Xn, represented by

X(1)(t) = max
1≤i≤n

Xi(t) ≥ X(2)(t) ≥ · · · ≥ X(n)(t) = min
1≤i≤n

Xi(t), t ∈ [ 0,∞).
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For t ∈ [ 0,∞), let pt be the random permutation of {1, . . . , n} such that for k in {1, . . . , n},

Xpt(k)(t) = X(k)(t), and pt(k) < pt(k + 1) if X(k)(t) = X(k+1)(t). (2.15)

We shall consider not only the ranked stocks, but also the ranked market weights, µ(1) ≥ . . . ≥ µ(n).
For simplicity, we shall abuse the order statistics notation a bit, and for a general portfolio π, we
shall let π(k) be the weight corresponding to the kth-ranked stock in the market.

In order to represent the behavior of the ranked weights as continuous semimartingales, it is
necessary to recall the definition of a semimartingale local time. For a continuous semimartingale
X, the local time (at 0) is the process ΛX defined for t ∈ [0, T ] by

ΛX(t) , 1
2

(
|X(t)| − |X(0)| −

∫ t

0

sgn(X(s)) dX(s)
)
,

where sgn(x) = 2I(0,∞)(x)− 1, with I(0,∞) the indicator function of (0,∞). The local time ΛX is an
increasing random function on [ 0,∞), with ΛX(0) = 0 and flat off the set {t : X(t) = 0}. For more
information about local times, see Karatzas and Shreve (1991). It was shown in Fernholz (2001,
2002) that the ranked weight processes µ(k) satisfy

d log µ(k)(t) =
n∑

i=1

I{i}(pt(k)) d log µi(t) +
1
2
dΛlog µ(k)−log µ(k+1)(t)−

1
2
dΛlog µ(k−1)−log µ(k)(t), (2.16)

for t ∈ [ 0,∞), a.s. By convention, Λlog µ(0)−log µ(1)(·) ≡ 0 ≡ Λlog µ(n)−log µ(n+1)(·).

3 The size effect

In this section we recall an alternative, structural analysis of the size effect that was proposed in
Fernholz (1998, 2001). This alternative analysis differs qualitatively from the empirical work of Banz
(1981) and Reinganum (1981), and instead is based on a stochastic analysis of the relative behavior
of small-stock portfolios and large-stock portfolios.

Suppose that we fix some integer m in {2, . . . , n − 1} and define a large-stock portfolio ξ with
weights

ξ(k)(t) ,





µ(k)(t)
µ(1)(t) + · · ·+ µ(m)(t)

for k = 1, . . . ,m,

0 for k = m + 1, . . . , n,

(3.1)

for t ∈ [ 0,∞). Similarly, we define a small-stock portfolio η with weights

η(k)(t) ,





0 for k = 1, . . . , m,
µ(k)(t)

µ(m+1)(t) + · · ·+ µ(n)(t)
for k = m + 1, . . . , n.

(3.2)

With these two portfolios, it was shown in Fernholz (2002), p.87, that we have

log
(
Zη(T )/Zξ(T )

)
= log

(
µ(m+1)(T ) + · · ·+ µ(n)(T )
µ(1)(T ) + · · ·+ µ(m)(T )

)

+
1
2

∫ T

0

(
ξ(m)(t) + η(m+1)(t)

)
dΛlog µ(m)−log µ(m+1)(t), T ∈ [ 0,∞),

(3.3)

a.s. If the ratio of the relative capitalizations of the large-stock and small-stock portfolios remains
stable over time, as we might expect it would, then the logarithm on the right-hand side of (3.3)
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will remain bounded over time, but the local time integral in (3.3) is increasing, and hence will
eventually dominate. As a result, over the long term the return on the small-stock portfolio will be
greater than the return on the large-stock portfolio. This phenomenon is called the size effect, and
(3.3) shows that it is a structural feature that will be present regardless of the relative riskiness of
the two portfolios.

The size effect arises from the local-time terms in (2.16), so we are motivated to define the
size-effect process for the kth-ranked stock to be

L(k)(t) , 1
2
(
Λlog µ(k−1)−log µ(k)(t)− Λlog µ(k)−log µ(k+1)(t)

)
, t ∈ [ 0,∞), (3.4)

for k = 1, . . . , n (cf. Fernholz (2002), Problem 4.3.3). Then the size-effect process Lξ for the large-
stock portfolio ξ of (3.1) can be defined by

dLξ(t) ,
m∑

k=1

ξ(k)(t) dL(k)(t)

=
1
2

m∑

k=1

ξ(k)(t)
(
dΛlog µ(k−1)−log µ(k)(t)− dΛlog µ(k)−log µ(k+1)(t)

)

=
1
2

m∑

k=1

(
ξ(k−1)(t) dΛlog µ(k−1)−log µ(k)(t)− ξ(k)(t) dΛlog µ(k)−log µ(k+1)(t)

)

= −1
2
ξ(m)(t) dΛlog µ(m)−log µ(m+1)(t), t ∈ [ 0,∞), a.s. (3.5)

Note that (3.5) follows from the fact that the support of Λlog µ(k)−log µ(k+1) lies within the set {t :
µ(k−1)(t) = µ(k)(t)}, which is the same set as {t : ξ(k−1)(t) = ξ(k)(t)}. In a similar manner, we can
show that

dLη(t) =
1
2
η(m+1)(t) dΛlog µ(m)−log µ(m+1)(t), t ∈ [ 0,∞) (3.6)

holds almost surely for the small-stock portfolio η of (3.2). It is convenient to define the size-corrected
portfolio value process Ẑξ for ξ by

log Ẑξ(t) , log Zξ(t)− Lξ(t), (3.7)

and similarly for η and µ, in which case it follows from (3.3), (3.5), and (3.6) that a.s.,

log
(
Ẑη(t)/Ẑξ(t)

)
= log

(
µ(m+1)(t) + · · ·+ µ(n)(t)
µ(1)(t) + · · ·+ µ(m)(t)

)
, t ∈ [ 0,∞). (3.8)

We see that the size effect has been exactly neutralized by subtracting the size-effect processes of
(3.4). In particular, it is easily seen that coherence implies

lim
t→∞

1
t

log
(
Ẑη(t)/Ẑξ(t)

)
= 0, a.s. (3.9)

Note also that, for m = n, a calculation similar to (3.5) implies

Lµ(t) = 0, t ∈ [ 0,∞) (3.10)

a.s., so the size-effect process for the market as a whole is zero, as we would have expected.
An example of the size effect is presented in Fernholz (2002), pp. 133–136; it shows that over the

period from 1939 to 1998, the stocks ranked 101 to 1000 in the U.S. market had average logarithmic
return more that 1% a year greater than the stocks ranked 1 to 100. In this example, the relative
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capitalization of the small-stock portfolio versus the large-stock portfolio is mean-reverting over the
long term. This implies that the variances of the large-stock and the small-stock portfolios will be
about the same when measured using a sampling interval with length equal to or greater than the
relaxation time of the relative capitalization process. Hence, over periods of this length, the two
portfolios will have about the same risk.

The process on the right-hand side of (3.8) is the logarithm of the ratio of the capitalizations of
the small-stock portfolio and the large-stock portfolio. In a stable market, it is reasonable to expect
that this process will be stationary, and hence the size-corrected processes log Ẑη and log Ẑξ will be
cointegrated (see Engle and Granger (1987)). If the size-corrected processes are cointegrated, then
they will have about the same variance when sampled over intervals of the order of the relaxation time
of the process in (3.8). Again we have evidence that the long-term risk of the small-stock portfolio
and the large-stock portfolio will be about the same. Since risk cannot explain the difference in
return, then, by default, the difference must be due to a liquidity premium for the smaller stocks.

4 The implied liquidity premium for an asymptotically stable

market

If a liquidity premium is the justification for the size effect, then we should be able to estimate
this liquidity premium as a function of stock rank. We have seen that the size-effect processes L(k)

represent the contribution of each ranked stock to the size effect, so our estimate of the liquidity
premium will be based on these processes.

The implied liquidity premium of a stock is the rate at which the size-effect process L(k) con-
tributes to a portfolio holding that stock while the stock resides at rank k. In this section we shall
formalize this notion of liquidity premium, and estimate its value by rank for the stocks in the
market.

We say that the market is asymptotically stable if the limits

λk,k+1 = lim
t→∞

t−1Λlog µ(k)−log µ(k+1)(t) (4.1)

and

σ2
k:k+1 = lim

t→∞
t−1〈log µ(k) − log µ(k+1)〉t (4.2)

exist a.s. for k = 1, . . . , n− 1, and are positive, real constants. (If the tail σ-algebra of the filtration
{Ft} is trivial, as is the case where {Ft} is generated by a Brownian motion, then the limits in
(4.1) and (4.2), whenever they exist, will be non-random and will take values in [0,∞].) In an
asymptotically stable market we have

lim
T→∞

1
T

∫ T

0

(
log µ(k)(t)− log µ(k+1)(t)

)
dt =

σ2
k:k+1

2λk,k+1
a.s., (4.3)

for k = 1, . . . , n− 1 (see Fernholz (2002), p.102).
It was shown in Fernholz (2002), Section 5.4, that the U.S. equity market over the period from

1990 to 1999 appears to be consistent with this asymptotically stable structure. Hence, if we assume
the market continues to behave as it did in the 1990s, it will be asymptotically stable, and we shall
be able to calculate its structural parameters by means of (4.1), (4.2), and (4.3). Accordingly, we
shall henceforth assume that the market we consider is asymptotically stable. Following Fernholz
(2002), Section 5.3, let us define the parameters

gk , 1
2
λk−1,k − 1

2
λk,k+1, (4.4)
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for k = 1, . . . , n. The 2n− 2 parameters g1, . . . , gn−1, σ
2
1:2, . . . , σ

2
n−1:n are called the characteristic

parameters of the market.
From (3.4) and (4.1), it would seem that we could estimate the liquidity premium for the kth-

ranked stock to be simply
1
2
(
λk−1,k − λk,k+1

)
= gk, (4.5)

for k = 1, . . . , n. This estimate might be adequate for individual stocks, but it will not be accurate
in a portfolio setting, as with ξ, η, and µ. This is because (4.5) does not capture the dynamics of
the process L(k) of (3.4), which increases when µ(k)(t) is near µ(k−1)(t), and decreases when µ(k)(t)
is near µ(k+1)(t). One manifestation of this problem is that with the estimate in (4.5), the total
liquidity premium for the market will not be zero. We shall try, then, to estimate L(k) in a manner
that is consistent with the dynamics of L(k), and which preserves the property that the total market
liquidity premium vanishes, as it does in (3.10). In particular, if `(k)(t) represents the liquidity
premium of the kth-ranked stock at time t, then we would like to have

∫ T

0

µ(k)(t)`(k)(t) dt ∼=
∫ T

0

µ(k)(t) dL(k)(t), (4.6)

for large enough values of T , at least if the ranked weight µ(k) remains reasonably stable over time.
Let us consider the contribution of the kth-ranked stock to Lµ, which we can express as

µ(k)(t) dL(k)(t) = µ(k)(t)
1
2

(
dΛlog µ(k−1)−log µ(k)(t)− dΛlog µ(k)−log µ(k+1)(t)

)

=
µ(k−1)(t) + µ(k)(t)

4
dΛlog µ(k−1)−log µ(k)(t) (4.7)

− µ(k)(t) + µ(k+1)(t)
4

dΛlog µ(k)−log µ(k+1)(t),

for k = 1, . . . , n, by the same reasoning that was used for (3.5). Besides being formally correct, this
representation recalls the property that the local time Λlog µ(k)−log µ(k+1) contributes to the market
size effect when µ(k)(t) and µ(k+1)(t) are close in value, for all k. Following (4.7), we are motivated
to define

`(k)(t) ,
(

µ(k)(t) + µ(k−1)(t)
4µ(k)(t)

)
λk−1,k −

(
µ(k)(t) + µ(k+1)(t)

4µ(k)(t)

)
λk,k+1, (4.8)

for all t ∈ [ 0,∞). With this definition, if the ranked weights are reasonably stable over time, then
the approximate equality (4.6) should follow from (4.1).

With the definition (4.8), it is not difficult to verify that the liquidity premium `µ for the entire
market satisfies almost surely

`µ(t) ,
n∑

k=1

µ(k)(t)`(k)(t) = 0, t ∈ [ 0,∞). (4.9)

This equality implies that the liquidity premium for some of the stocks will be negative, so perhaps
we should call it a liquidity “penalty” in those cases. But, nevertheless, we shall continue to call it
a premium even in the negative cases.

For the portfolios η and ξ, it is not difficult to see that reasoning similar to (3.5) will hold, so
the liquidity premium for the large-stock portfolio ξ will be given by

`ξ(t) = −
(

ξ(m)(t) + ξ(m+1)(t)
4

)
λm,m+1, t ∈ [ 0,∞), a.s., (4.10)
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and the liquidity premium for the small-stock portfolio η will be given by

`η(t) =
1
2

(
η(m)(t) + η(m+1)(t)

4

)
λm,m+1, t ∈ [ 0,∞), a.s. (4.11)

Since µ(m) and µ(m+1) are equal on the support of Λlog µ(m)−log µ(m+1) , it follows that the integrals
of (3.5) and (4.10) are likely to be close in value, at least over the long term, and that the same is
true for the integrals of (3.6) and (4.11). Hence, for these portfolios, the liquidity premium given
by (4.8) approximates the size-effect process of (3.4), and should approximately neutralize the size
effect, as in (3.8) and (3.9).

With gk from (4.4), the liquidity premium in (4.8) becomes

`(k)(t) = gk +
(

µ(k−1)(t) + µ(k)(t)
4µ(k)(t)

− 1
2

)
λk−1,k −

(
µ(k)(t) + µ(k+1)(t)

4µ(k)(t)
− 1

2

)
λk,k+1

= gk +
1
4

(
µ(k−1)(t)
µ(k)(t)

− 1
)

λk−1,k − 1
4

(
µ(k+1)(t)
µ(k)(t)

− 1
)

λk,k+1,

for t ∈ [ 0,∞), a.s. Since log x ∼= x− 1 for x sufficiently close to 1, this becomes

`(k)(t) ∼= gk +
1
4

log
(

µ(k−1)(t)
µ(k)(t)

)
λk−1,k − 1

4
log

(
µ(k+1)(t)
µ(k)(t)

)
λk,k+1, t ∈ [ 0,∞), a.s.

From this and (4.3), we obtain the long-term approximation

`(k)(t) ∼= gk +
1
8
σ2

k−1:k +
1
8
σ2

k:k+1, t ∈ [ 0,∞), a.s. (4.12)

The values in (4.12) can be estimated for actual equity markets. In Fernholz (2002), p. 109,
estimates were given for the terms on the right-hand side of (4.12) for the U.S. equity market
under the assumption that the market behaves asymptotically as it did during the period from 1990
to 1999. From those estimates, we have calculated the liquidity premium rates `(k)(t), and the
results are shown in Figure 1. The values are smoothed by convolution with a Gaussian kernel with
±3.16σ spanning 1000 units on the horizontal axis, with reflection at the ends of the data. Dividend
payments could partially offset the liquidity premium for a stock, so, to correct for this, we added
the dividend yield for each ranked stock to the stock’s liquidity premium. This dividend-corrected
liquidity premium was then renormalized to satisfy (4.9). We can see from Figure 1 that the liquidity
premium is essentially nil for the largest 1000 stocks, but then grows to nearly 20% annually for the
stock ranked 5000. The values used in Figure 1 are based on the values from Figures 5.4 and 5.5 in
Fernholz (2002).

5 The liquidity premium in the first-order model

The first-order model for the market, proposed in Fernholz (2002), Section 5.5, is a model of the
asymptotic structure of the market, and hence gives a representation of the market’s long-term
behavior. Let us now recall the structure of the first-order model.

Consider the quantities σ2
1, . . . , σ

2
n defined by

σ2
k , 1

4
(σ2

k−1:k + σ2
k:k+1), k = 2, . . . , n− 1,

σ2
1 , 1

2
σ2

1:2, and σ2
n , 1

2
σ2

n−1:n.

(5.1)
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Figure 1: Implied annual liquidity premium for the U.S. equity market, 1990–1999,
corrected for dividends and renormalized to satisfy (4.9).

Then the model given by

d log Xi(t) = gqt(i) dt + σqt(i) dVi(t), t ∈ [ 0,∞), (5.2)

for i = 1, . . . , n, where qt is the inverse permutation of pt and (V1, . . . , Vn) is n-dimensional Brown-
ian motion, is called the first-order model for the market. (Here, there are exactly as many driving
processes as there are stocks; d = n.) It was shown in Fernholz (2002) that the first-order model de-
fines an asymptotically stable market with characteristic parameters g1, . . . , gn−1,

(
3σ2

1:2 +σ2
2:3

)
/4,(

σ2
k−1:k + 2σ2

k:k+1 + σ2
k+1:k+2

)
/4 for k = 2, . . . , n − 2, and

(
σ2

n−2:n−1 + 3σ2
n−1:n

)
/4. Since this is

a smoothed version of the original variance parameters, if the original parameters are sufficiently
smooth, the first-order parameters will match them closely. A more complete discussion of this
relationship can be found in Fernholz (2002), Section 5.5, and a study of the probabilistic structure
of the system (5.2) of stochastic differential equations appears in Banner et al. (2005).

If we compare (4.12) with (5.1) and recall the rate of return processes bi from (2.4), we see that
for the first-order model, the “ranked” rate of return processes are given by

b(k)(t) = `(k)(t), t ∈ [ 0,∞), a.s., (5.3)

for k = 2, . . . , n − 1, with b(1)(t) = `(1)(t) + σ2
1/4 and b(n)(t) = `(n)(t) + σ2

n/4. The discrepancies
for k = 1 and n are a consequence of the approximation (4.8), and have little effect on the liquidity
premium for the portfolios η, ξ, and µ.

We see from (5.3) that in the first-order model, the asymptotic rate of return of a stock investment
is equal to the stock’s liquidity premium. While it may be reasonable for long-term investors to
benefit from holding stocks that pose short-term trading difficulties, it seems surprising that the
entire asymptotic rate of return should be due to the liquidity premium alone.
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6 Conclusion

In a stable market, a small-stock portfolio is likely to outperform a large-stock portfolio, even though
the two portfolios have about the same intermediate-term risk. This phenomenon, known as the size
effect, can be characterized in terms of the semimartingale local times of the ranked market weights.
In an asymptotically stable market, the contributions of these local times, and, hence, of the size
effect, can be calculated analytically. This contribution, since it is not due to risk, is attributed to a
liquidity premium for the smaller stocks. This liquidity premium is approximately equal to the rate
of return for the first-order model, a model of the asymptotic behavior of the market.

Acknowledgement: The authors wish to express their gratitude to an anonymous referee for a very
thorough and incisive reading, as well as for many constructive suggestions that have significantly
improved this paper.
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