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Abstract

Dividend payments compatible with several market risk/return criteria are derived. The first

criterion is that if large and small stocks have the same level of long-term risk, then the expected

long-term return on these two classes of stock should be the same. The second criterion is that

the market portfolio be optimal for the problem of maximizing logarithmic utility. The third

criterion is that the equity market be mean-variance efficient, at least in an asymptotic sense.

The dividend rates that satisfy each of these criteria in the context of a stable first-order model

for the financial market are essentially the same, and suggest that normal dividend payments on

a stock should exactly nullify the stock’s rate of return on capital gains. For the larger stocks,

these normal dividend rates appear to be much higher than actual dividend rates in the U.S.

equity market.
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1 Introduction

Miller and Modigliani (1961) showed that the value of a company as an investment should be in-
dependent of whether or not the company paid dividends. Hence, equity market models without
dividends would be as representative of reality as those with dividends. Since the inclusion of divi-
dends complicates the structure of a market model, it is not surprising that dividends are frequently
omitted from the models used in mathematical finance.

Here we shall show that dividend payments are needed in order to satisfy certain risk/return
criteria in the market. First, in a stable market without dividends small stocks will have higher
long-term return than larger stocks, even though these two classes of stock have the same level
of long-term risk. Second, dividends are necessary if the market portfolio is to be optimal for
the problem of maximizing logarithmic utility over the long term. Third, for the market to be
mean/variance efficient over the long term, dividend payments are needed.

What is perhaps surprising with the criteria we consider is that the dividend streams that satisfy
them are essentially the same in each of these three cases: they cancel the rates of return from
capital gains of the individual stocks. As a result, the total return of every stock in the market is the
same. This radical result has the benefit of transforming the total return processes for the stocks
into martingales.

Section 2 of the paper contains some basic definitions and notation regarding the market model
that we use. In Section 3 we consider the problem of large stocks versus small stocks, and in Section 4
we estimate the dividend rates that nullify the return advantage of the smaller stocks. Section 5
discusses the dividend structure required for the market portfolio to be optimal for a logarithmic
utility function. Section 6 is devoted to the mean-variance efficiency of an asymptotically stable
market. In Section 7 we conclude with a proposal for a definition of the normal dividend rate for
an equity market.

2 The market model

In this section we introduce the general market model that we shall use in the rest of the paper. This
model is consistent with the usual market models of continuous-time mathematical finance found
in, e.g., Duffie (1992) or Karatzas and Shreve (1998). The preliminary material of this section is
presented in greater detail in Fernholz (2002).

Consider a market M consisting of n stocks represented by their price processes X1, . . . , Xn. We
assume that there is a single share of each stock, so Xi(t) represents the total capitalization of the
i-th company at time t. The price processes evolve according to

Xi(t) = Xi
0 exp

(∫ t

0

γi(s) ds +
∫ t

0

n∑
ν=1

ξiν(s) dWν(s)
)

, t ∈ [ 0,∞), (2.1)

for i = 1, . . . , n. Here X1
0 , . . . , Xn

0 , are positive constants and W (t) = (W1(t), . . . , Wn(t)), t ∈ [ 0,∞),
is a standard n-dimensional Brownian motion defined on a probability space (Ω, F, P ) and adapted
to a given filtration {Ft}. The growth rate processes γi = {γi(t), Ft, t ∈ [ 0,∞)}, i = 1, . . . , n, are
measurable, adapted, and satisfy

∫ T

0
|γi(t)|dt < ∞, a.s., for all T > 0. For i, ν = 1, . . . , n, the

volatility processes ξiν = {ξiν(t), Ft, t ∈ [ 0,∞)} are measurable, adapted, and satisfy:

i)
∫ T

0
ξ2
iν(t)dt < ∞, a.s., for all T > 0;

ii) limt→∞ t−1ξ2
iν(t) log log t = 0, a.s.;

iii) ξ2
i1(t) + · · ·+ ξ2

in(t) > 0, t ∈ [ 0,∞), a.s.
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We shall assume the stock price processes satisfy:

iv) for all i 6= j, the set {t : Xi(t) = Xj(t)} has Lebesgue measure zero, a.s.;

v) for all i < j < k, the set {t : Xi(t) = Xj(t) = Xk(t)} = ∅, a.s.

From (2.1), we see that the stock price processes satisfy

d log Xi(t) = γi(t) dt +
n∑

ν=1

ξiν(t) dWν(t), t ∈ [ 0,∞), (2.2)

for i = 1, . . . , n. In this form it is evident that these processes are continuous semimartingales,
and we shall frequently refer to them simply as stocks. The growth rate of a stock determines its
long-term behavior, since for i = 1, . . . , n,

lim
T→∞

1
T

(
log Xi(T )−

∫ T

0

γi(t) dt
)

= 0, a.s. (2.3)

A proof of this can be found in Fernholz (2002).
The market covariance process is the matrix-valued process σ defined by

σij(t) ,
n∑

ν=1

ξiν(t)ξjν(t) =
d

dt
〈log Xi, log Xj〉t, t ∈ [ 0,∞). (2.4)

Definition 2.1. A portfolio of the stocks X1, . . . , Xn in the market M is a bounded, measurable,
adapted process π : [ 0,∞)× Ω → Rn that satisfies π1(t) + · · ·+ πn(t) = 1, for t ∈ [ 0,∞), a.s.

For each i, the process πi represents the proportion, or weight, of Xi in the portfolio. A negative
value for πi(t) indicates a short sale of the i-th stock. Suppose Zπ(t) represents the value of an
investment in the portfolio π at time t. Then Zπ(t) satisfies

dZπ(t)
Zπ(t)

=
n∑

i=1

πi(t)
dXi(t)
Xi(t)

=
n∑

i=1

πi(t)
(
bi(t) dt +

n∑
ν=1

ξiν(t) dWν(t)
)
, t ∈ [ 0,∞),

(2.5)

where bi(t) , γi(t)+ 1
2σii(t) is the rate of return of the i-th stock. This equation and an initial value

Zπ(0) > 0 determine the portfolio value through time, so we shall call the process Zπ the portfolio
value process for π. Two applications of Itô’s rule transform (2.5) into

d log Zπ(t) =
n∑

i=1

πi(t) d log Xi(t) + γ∗π(t) dt, t ∈ [ 0,∞), a.s., (2.6)

where

γ∗π(t) =
1
2

( n∑

i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)
)

, t ∈ [ 0,∞), (2.7)

is called the excess growth rate process of π. Equation (2.6) is equivalent to

d log Zπ(t) = γπ(t) dt +
n∑

i,ν=1

πi(t)ξiν(t) dWν(t), t ∈ [ 0,∞), a.s., (2.8)
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where the portfolio growth rate process γπ is defined by

γπ(t) =
n∑

i=1

πi(t)γi(t) + γ∗π(t), t ∈ [ 0,∞).

The portfolio variance process for π is defined by

σππ(t) ,
n∑

i,j=1

πi(t)πj(t)σij(t), t ∈ [ 0,∞), a.s.,

with
d〈log Zπ〉t = σππ(t) dt, a.s. (2.9)

The portfolio µ defined by

µi(t) =
Xi(t)

X1(t) + · · ·+ Xn(t)
, t ∈ [ 0,∞), (2.10)

for i = 1, . . . , n, is called the market portfolio. It can easily be verified that the weights µi of (2.10)
satisfy the requirements of Definition 2.1, and that they are continuous semimartingales. With an
appropriate initial value, the value Zµ of the market portfolio satisfies

Zµ(t) = X1(t) + · · ·+ Xn(t), t ∈ [ 0,∞), a.s. (2.11)

The processes µ1, . . . , µn are called the market weight processes, or simply, market weights. A market
is called coherent if for i = 1, . . . , n we have

lim
t→∞

t−1 log µi(t) = 0, a.s.

A necessary and sufficient condition for coherence is that

lim
T→∞

1
T

∫ T

0

(
γi(t)− γj(t)

)
dt = 0, a.s., (2.12)

for all 1 ≤ i, j ≤ n; see Fernholz (2002), Proposition 2.1.2. We shall assume henceforth that the
market M is coherent.

Coherence does not imply that limT→∞ T−1
∫ T

0
γ∗µ(t)dt = 0, a.s. (i.e., that there is no long-term-

average gain from diversification). This property holds under the condition γi(t) = γj(t), a.s., for
a t ≥ 0, i 6= j, which is clearly considerably stronger than (2.12); see Proposition 2.2.3 in Fernholz
(2002). The Atlas model of section 5.3 of that book provides an example of a coherent market for
which limT→∞ T−1

∫ T

0
γ∗µ(t)dt exists a.s. and is positive.

The process (µ(1), . . . , µ(n)) is called the capital distribution process, and its component processes,
the (reverse) order statistics

µ(1)(t) = max
1≤i≤n

µi(t) ≥ µ(2)(t) ≥ · · · ≥ µ(n)(t) = min
1≤i≤n

µi(t),

are called the ranked market weights. For t ∈ [ 0,∞), let pt be the random permutation of {1, . . . , n}
such that for k in {1, . . . , n},

µpt(k)(t) = µ(k)(t), and pt(k) < pt(k + 1) if µ(k)(t) = µ(k+1)(t). (2.13)

With this notation, it can be shown (see Fernholz (2002), p.81) that the ranked weight processes
µ(k) satisfy

d log µ(k)(t) =
n∑

i=1

I{i}(pt(k)) d log µi(t) +
1
2
dΛlog µ(k)−log µ(k+1)(t)−

1
2
dΛlog µ(k−1)−log µ(k)(t), (2.14)
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for t ∈ [ 0,∞), a.s., where ΛX represents the local time at the origin of the continuous semimartingale
X. By convention, Λlog µ(0)−log µ(1)(·) ≡ 0 ≡ Λlog µ(n)−log µ(n+1)(·).

We now wish to introduce dividends into our model. Suppose we let ∆i(t) represent the cumula-
tive dividends paid by the i-th stock up to time t, and allow dividend payments to be either positive
or negative. We shall call ∆i the dividend process for Xi, and assume that all dividend processes
are adapted, continuous, and of finite first variation, a.s. With this notation, the dividend process
∆π for the portfolio π satisfies

d∆π(t) =
n∑

i=1

πi(t) d∆i(t), t ∈ [ 0,∞).

We define the total return processes X̂i, i = 1, . . . , n, by

d log X̂i(t) = d log Xi(t) + d∆i(t), t ∈ [ 0,∞), (2.15)

and for a portfolio π, the corresponding total return process Ẑπ, where

d log Ẑπ(t) = d log Zπ(t) + d∆π(t), t ∈ [ 0,∞), a.s. (2.16)

In some cases we shall have dividend rate processes δi such that

d∆i(t) = δi(t) dt, t ∈ [ 0,∞), (2.17)

for i = 1, . . . , n In this case, for a stock Xi with dividends, the total rate of return process is given
by

b̂i(t) , γi(t) +
1
2
σii(t) + δi(t) = bi(t) + δi(t), t ∈ [ 0,∞). (2.18)

An application of Itô’s rule to the equation

d log X̂i(t) = γi(t) dt + δi(t) dt +
n∑

ν=1

ξiν(t) dWν(t), t ∈ [ 0,∞),

that results from (2.2), (2.15), and (2.17) indicates that for i = 1, . . . , n we have

dX̂i(t) = X̂i(t)
(
b̂i(t) dt +

n∑
ν=1

ξiν(t) dWν(t)
)
, t ∈ [ 0,∞), a.s. (2.19)

3 Small stocks versus large stocks

Over the long term, small stocks have a tendency to outperform large stocks (see Banz (1981) and
Reinganum (1981)). Conventionally, this phenomenon has been explained by the putatively greater
risk of smaller stocks, but an alternative explanation was proposed in Fernholz (1998, 2001). Here
we follow this alternative explanation, and use it to determine dividend payment streams that will
offset the small-stock advantage.

Suppose that we fix some integer m in {2, . . . , n− 1} and define a large-stock portfolio ξ with

ξ(k)(t) =





µ(k)(t)
µ(1)(t) + · · ·+ µ(m)(t)

for k = 1, . . . ,m,

0 for k = m + 1, . . . , n,

(3.1)
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for t ∈ [ 0,∞). Similarly, we define a small-stock portfolio η with

η(k)(t) =





0 for k = 1, . . . , m,
µ(k)(t)

µ(m+1)(t) + · · ·+ µ(n)(t)
for k = m + 1, . . . , n.

(3.2)

With these two portfolios, it was shown in Fernholz (2002), p.87, that a.s., for t ∈ [ 0,∞),

d log
(
Zη(t)/Zξ(t)

)
= d log

(
µ(m+1)(t) + · · ·+ µ(n)(t)
µ(1)(t) + · · ·+ µ(m)(t)

)

+
1
2
(
ξ(m)(t) + η(m+1)(t)

)
dΛlog µ(m)−log µ(m+1)(t)

= d log
(

µ(m+1)(t) + · · ·+ µ(n)(t)
µ(1)(t) + · · ·+ µ(m)(t)

)
+

µ(m)(t) + µ(m+1)(t)
4

×
(

1
µ(1)(t) + · · ·+ µ(m)(t)

+
1

µ(m+1)(t) + · · ·+ µ(n)(t)

)

× dΛlog µ(m)−log µ(m+1)(t).

(3.3)

The problem that arises here is that if the ratio of the relative capitalizations of the large-stock and
small-stock portfolios remains stable over time, as we might expect it would, then the logarithm
on the right-hand side of (3.3) will remain bounded over time, but the local time term in (3.3) is
increasing, and hence will eventually dominate. As a result, over the long term the return on the
small-stock portfolio will be greater than the return on the large-stock portfolio.

An example of this phenomenon is presented in Fernholz (2002), pp. 133–136; it shows that
over the period from 1939 to 1998, the stocks ranked 101 to 1000 in the U.S. market had average
logarithmic return more that 1% a year greater than the stocks ranked 1 to 100. Moreover, (3.3)
shows that this is a structural feature unrelated to the relative riskiness of the two portfolios, so
it would be nice to have a structural solution to this “anomaly.” Let us see if we can resolve the
problem with dividends.

Suppose we have cumulative dividend processes that satisfy

∆(k)(t) =
1
2
(
Λlog µ(k)−log µ(k+1)(t)− Λlog µ(k−1)−log µ(k)(t)

)
, t ∈ [ 0,∞), (3.4)

for k = 1, . . . , n. With these dividend processes, the cumulative dividend process ∆ξ for the large-
stock portfolio ξ of (3.1) will satisfy

d∆ξ(t) =
m∑

k=1

ξ(k)(t) d∆(k)(t)

=
1
2

m∑

k=1

ξ(k)(t)
(
dΛlog µ(k)−log µ(k+1)(t)− dΛlog µ(k−1)−log µ(k)(t)

)

=
1
2

m∑

k=1

(
ξ(k)(t)dΛlog µ(k)−log µ(k+1)(t)− ξ(k−1)(t)dΛlog µ(k−1)−log µ(k)(t)

)

=
1
2
ξ(m)(t) dΛlog µ(m)−log µ(m+1)(t), t ∈ [ 0,∞), (3.5)

a.s. Note that (3.5) follows from the fact that the support of Λlog µ(k)−log µ(k+1) lies within the set
{t : µ(k−1)(t) = µ(k)(t)}, which is the same set as {t : ξ(k−1)(t) = ξ(k)(t)}. In a similar manner, we
can show that

d∆η(t) = −1
2
η(m+1)(t) dΛlog µ(m)−log µ(m+1)(t), t ∈ [ 0,∞) (3.6)
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holds almost surely for the small-stock portfolio η of (3.2). For the total return processes corre-
sponding to those of (3.3) with cumulative dividends given by (3.4), it follows from (2.16), (3.3),
(3.5), and (3.6) that

d log
(
Ẑη(t)/Ẑξ(t)

)
= d log

(
Zη(t)/Zξ(t)

)
+ d∆η(t)− d∆ξ(t)

= d log
(

µ(m+1)(t) + · · ·+ µ(n)(t)
µ(1)(t) + · · ·+ µ(m)(t)

)
, t ∈ [ 0,∞), (3.7)

a.s., and we see that the small-stock advantage has been exactly offset by the cumulative dividend
processes of (3.4). In particular, it is easily seen that coherence implies

lim
t→∞

1
t

log
(
Ẑη(t)/Ẑξ(t)

)
= 0, a.s. (3.8)

Note also that, for m = n, (3.5) implies

∆µ(t) = 0, t ∈ [ 0,∞), a.s., (3.9)

so Ẑµ(t) = Zµ(t), t ∈ [ 0,∞), a.s. This means that in the market as a whole these dividend payments
are merely a redistribution of capital with no net effect on the market return.

In the next section we shall estimate the values of the dividend payments corresponding to the
processes in (3.4) in the context of a long-term-stable model for the U.S. equity market.

4 Dividend rates that offset the small-stock advantage

We would like to estimate the value of dividend rate processes that correspond closely to the cumu-
lative dividend processes defined by (3.4). Let us assume that the asymptotic values

λk,k+1 = lim
t→∞

t−1Λlog µ(k)−log µ(k+1)(t) (4.1)

exist a.s. for k = 1, . . . , n. (It was shown in Fernholz (2002), Section 5.4, that this assumption
appears to be valid for the U.S. equity market.) It is tempting to consider dividend rates of the form

δ(k)(t) =
1
2
(
λk,k+1 − λk−1,k

)
,

for k = 1, . . . , n, however this does not capture the dynamics of the dividends ∆(k) defined in (3.4).
The cumulative dividend processes in (3.4) are increasing when µ(k) is near µ(k+1) and decreasing
when µ(k) is near µ(k−1), and unless the dividend rates are positive when µ(k) is near µ(k+1) and
negative when µ(k) is near µ(k−1), equations analogous to (3.5) and (3.6) will not be valid.

Now, the cumulative dividend process is increasing when µ(k)(t) is near µ(k+1)(t), so if we consider
the average of these two weights, this should approximate their common value when positive dividend
payments take place. Hence, these positive payments correspond to positive dividend rates

(
µ(k)(t) + µ(k+1)(t)

2µ(k)(t)

)
λk,k+1, t ∈ [ 0,∞), (4.2)

and similar reasoning leads to negative dividend rates of

−
(

µ(k)(t) + µ(k−1)(t)
2µ(k)(t)

)
λk−1,k, t ∈ [ 0,∞), (4.3)
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which correspond to negative dividend payments. Accordingly, the dividend rates will be chosen as

δ(k)(t) =
1
2

(
µ(k)(t) + µ(k+1)(t)

2µ(k)(t)

)
λk,k+1 − 1

2

(
µ(k−1)(t) + µ(k)(t)

2µ(k)(t)

)
λk−1,k, (4.4)

for all t ∈ [ 0,∞), for k = 1, . . . , n. With these dividend rates, it is not difficult to see that an
equation similar to (3.5) will hold, so that

d∆ξ(t) =
1
2

(
ξ(m)(t) + ξ(m+1)(t)

2

)
λm,m+1 dt, t ∈ [ 0,∞), a.s., (4.5)

and similarly,

d∆η(t) = −1
2

(
η(m)(t) + η(m+1)(t)

2

)
λm,m+1 dt, t ∈ [ 0,∞), a.s. (4.6)

Since µ(m) and µ(m+1) are equal on the support of Λlog µ(m)−log µ(m+1) , it follows that (3.5) and (4.5)
are likely to be close in value, at least over the long term, and that the same is true for (3.6) and (4.6).
Hence, the dividend rates given by (4.4) should approximately offset the small-stock advantage, as in
(3.7). In particular, the augmented portfolio-value processes Ẑη and Ẑξ of the small- and large-stock
portfolios that correspond to the dividend rate processes of (4.4) satisfy

d log
(
Ẑη(t)/Ẑξ(t)

)
= d log

(
µ(m+1)(t) + · · ·+ µ(n)(t)
µ(1)(t) + · · ·+ µ(m)(t)

)
+

µ(m)(t) + µ(m+1)(t)
4

×
(

1
µ(1)(t) + · · ·+ µ(m)(t)

+
1

µ(m+1)(t) + · · ·+ µ(n)(t)

)

× (
dΛlog µ(m)−log µ(m+1)(t)− λm,m+1 dt

)
.

In conjunction with coherence and (4.1), this implies

lim
t→∞

1
t

log
(
Ẑη(t)/Ẑξ(t)

)
= 0, a.s.,

as in (3.8).

5 The stable first-order model

A first-order model for the market was proposed in Fernholz (2002), Section 5.5, and this model can
be used to provide an estimate of the dividend rates given by (4.4) in the context of the U.S. equity
market. The first-order model is a model of the asymptotic structure of the market, and hence gives
a representation of long-term behavior. Let us recall the structure of this model.

Suppose that the limits in (4.1) exist, as well as the limits

σ2
k:k+1 = lim

t→∞
t−1〈log µ(k) − log µ(k+1)〉t,

for k = 1, . . . , n− 1. In this case we say that the market is asymptotically stable, and it was shown
in Fernholz (2002), p.102, that in an asymptotically stable market,

lim
T→∞

1
T

∫ T

0

(
log µ(k)(t)− log µ(k+1)(t)

)
dt =

σ2
k:k+1

2λk,k+1
a.s., (5.1)

for k = 1, . . . , n− 1. We shall henceforth assume that the market is asymptotically stable.
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For k = 1, . . . , n, let us define the parameters

gk =
1
2
λk−1,k − 1

2
λk,k+1. (5.2)

The 2n− 2 parameters g1, . . . , gn−1, σ
2
1:2, . . . , σ

2
n−1:n are called the characteristic parameters of the

market. Consider the quantities σ2
1, . . . , σ

2
n defined by

σ2
k =

1
4
(σ2

k−1:k + σ2
k:k+1), k = 2, . . . , n− 1,

σ2
1 =

1
2
σ2

1:2, and σ2
n =

1
2
σ2

n−1:n.

(5.3)

Then the model given by

d log Xi(t) = gqt(i) dt + σqt(i) dVi(t), t ∈ [ 0,∞), (5.4)

where qt is the inverse of pt and V1, . . . , Vn are independent Brownian motions, is called the first-
order model for the market. It was shown in Fernholz (2002) that the first-order model defines an
asymptotically stable market with characteristic parameters g1, . . . , gn−1,

(
3σ2

1:2+σ2
2:3

)
/4,

(
σ2

k−1:k+
2σ2

k:k+1 + σ2
k+1:k+2

)
/4 for k = 2, . . . , n− 2, and

(
σ2

n−2:n−1 + 3σ2
n−1:n

)
/4. Since this is a smoothed

version of the original variance parameters, if the original parameters are sufficiently smooth, the
first-order parameters will match them closely. A more complete discussion of this relationship can
be found in Fernholz (2002), Section 5.5.

With the first-order model and (5.2), the dividend rate in (4.4) becomes

δ(k)(t) = −gk +
1
2

(
µ(k)(t) + µ(k+1)(t)

2µ(k)(t)
− 1

)
λk,k+1 − 1

2

(
µ(k−1)(t) + µ(k)(t)

2µ(k)(t)
− 1

)
λk−1,k

= −gk +
1
4

(
µ(k+1)(t)
µ(k)(t)

− 1
)

λk,k+1 +
1
4

(
µ(k−1)(t)
µ(k)(t)

− 1
)

λk−1,k.

for t ∈ [ 0,∞), a.s. Since log x ∼= x− 1 for x sufficiently close to 1, this becomes

δ(k)(t) ∼= −gk +
1
4

log
(

µ(k+1)(t)
µ(k)(t)

)
λk,k+1 − 1

4
log

(
µ(k−1)(t)
µ(k)(t)

)
λk−1,k, t ∈ [ 0,∞), a.s.

From (5.1) and (5.3), over the long term we have the approximation

δ(k)(t) ∼= −gk −
1
8
σ2

k:k+1 −
1
8
σ2

k−1:k

= −gk −
1
2
σ2

k, (5.5)

for t ∈ [ 0,∞), a.s. This will hold for k = 2, . . . , n− 1, and we can define it to hold for k = 1 and n.
In terms of rates of return in (2.18) for the first-order model, this means that

b̂(k)(t) ∼= 0, t ∈ [ 0,∞), a.s., (5.6)

for k = 1, . . . , n. But b̂i(·) ≡ 0 makes the process in (2.19) a martingale, and means that under the
first-order model with these dividend rates, all portfolios will have the same null rate of return.

The values in (5.5) can be estimated for actual equity markets. In Fernholz (2002), estimates
were given for each of the terms in (5.5) for the U.S equity market over the period from 1990 to
1999. From those estimates, we have calculated the dividend rates δ(k)(t), and the results are shown
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in Figure 1. The values are smoothed by convolution with a Gaussian kernel with ±3.16σ spanning
1000 units on the horizontal axis, with reflection at the ends of the data. The rates are normalized
so that none of them are negative. The actual dividend rates over the period are also presented
(broken line), with the same smoothing performed.
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Figure 1: Dividend rates for U.S. equity market, 1990–1999.
Calculated rates (solid line), actual (broken line).

As is obvious from Figure 1, for the larger stocks, the calculated dividend rates are much higher
than the corresponding actual rates. Liang and Sharpe (1999) suggest that over the period we
consider, the rate of share repurchase by large companies, corrected for the issuance of stock options,
might have almost doubled the effective dividend rate for these large companies. However, from
Figure 1 it is clear that even with this adjustment, for the period under consideration the dividend
rates of the large companies would not have been nearly high enough to offset the small-stock
advantage.

6 Log-utility optimality of the market portfolio

We shall see in this section that the dividend rate structure of (5.5) is suggested by a rather dif-
ferent consideration: the optimality of the market portfolio (2.10) when maximizing the expected
logarithmic utility in the context of the first-order model (5.4).

Suppose that the i-th stock pays dividends at the rate δi as in (2.17). Then for the total return
process Ẑπ of a portfolio π, equation (2.5) becomes

dẐπ(t)

Ẑπ(t)
=

n∑

i=1

πi(t)
((

γi(t) + σii(t) + δi(t)
)
dt +

n∑
ν=1

ξiν(t) dWν(t)
)
, t ∈ [ 0,∞).

It is well known (see, e.g., Karatzas and Shreve (1998)) that a portfolio π is optimal for the problem
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of maximizing expected logarithmic utility E
(
log Ẑπ(T )

)
if

n∑

j=1

σij(t)πj(t) = γi(t) +
1
2
σii(t) + δi(t), t ∈ [ 0,∞), (6.1)

for i = 1, . . . , n. What dividend rates are required in order to have π(·) ≡ µ(·)? In the context of
the first-order model (5.4), equation (6.1) reads σ2

kµ(k)(t) = gk + 1
2σ2

k + δ(k)(t), for k = 1, . . . , n,
and leads to

δ(k)(t) , δpt(k)(t) = σ2
k

(
µ(k)(t)−

1
2

)
− gk

∼= −gk −
1
2
σ2

k, (6.2)

for k = 1, . . . , n. We are using here the approximation µ(k)(t) ¿ 1
2 , which is sensible in a large,

well-regulated market as in the U.S. Clearly, the same dividend structure emerges as in (5.5).

7 Mean-variance efficiency of the first-order model

Markowitz (1952) defined a portfolio to be mean-variance efficient if, among all portfolios with
the same rate of return, there is no portfolio with lower variance. Sharpe (1964) showed that
under certain ideal circumstances the market portfolio will be mean-variance efficient. With the
understanding that the first-order model represents merely a stable version of the market, and
not necessarily the market itself, let us nevertheless determine the dividend rates compatible with
mean-variance efficiency for the first-order model.

Suppose we start with the dividend rates (5.5), and perturb these rates rates by δ′(k)(t), for
k = 1, . . . , n. In this case,

σ2
µ(t) =

n∑

k=1

µ2
(k)(t)σ

2
k (7.1)

will be minimum under the constraints
n∑

k=1

µ(k)(t)
(
b(k)(t) + δ′(k)(t)

)
= constant (7.2)

and
n∑

k=1

µ(k)(t) = 1. (7.3)

By (5.3), (7.2) reduces to
n∑

i=1

µ(k)(t)δ′(k)(t) = constant.

Since (7.1) represents a minimum under the constraints (7.2) and (7.3), we have

µ(k)(t)σ2
k = λ1δ

′
(k)(t) + λ2,

where λ1 and λ2 are constants. If we multiply this by µ(k)(t) and sum over k, then we obtain

σ2
µ(t) = λ1δ

′
µ(t) + λ2, (7.4)

where

δ′µ(t) =
n∑

k=1

µ(k)(t)δ′(k)(t).
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Equation (7.4) will be satisfied if λ1 = 1, λ2 = 0, and δ′µ(t) = σ2
µ(t), from which we can conclude

that
δ′(k)(t) = µ(k)(t)σ2

k.

How large are the perturbations δ′(k)(t)? We have δ′(1)(t) ∼= .0014, and the rest of the δ′(k)(t)
decline rapidly with increasing k. Hence, the Figure 1 remains essentially unchanged with the
perturbed dividend rates.

8 Conclusion: normal dividend rates

As we have seen in Sections 4, 5, and 6, the dividend rates that eliminate the small-stock advantage,
those that maximize the log-utility of the first-order model of the market, and those that make the
first-order model mean-variance efficient, are all essentially the same. These dividend rates cause all
the stocks in the market to have the same rate of return, which normalizes to zero. We shall call
these dividend rates the normal dividend rates for the market. With normal dividend rates, the
stock price processes for the first-order market model become martingales.

From empirical data, we have seen that for the larger stocks in the market, the normal dividend
rates are much higher than actual historical rates. Since the first-order model is an asymptotic
model, it provides insight into long-term market behavior. The insight provided here would appear
to be that unless the larger companies start to pay significantly higher dividends, small stocks are
likely to be a better long-term investment than large stocks.
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