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1 Introduction

Several recent results in stochastic portfolio theory have been concerned with the existence

of relative arbitrage in equity markets. Roughly speaking, relative arbitrage over a given

time horizon occurs if there exists a pair of all-long portfolios of equal initial value such

that the first portfolio is guaranteed not to underperform the second, and such that the

probability of outperformance is nonzero. We shall also consider the special case of strong

relative arbitrage, wherein the first portfolio outperforms the second with probability one.

In Fernholz, Karatzas & Kardaras (2005), it is shown that strong relative arbitrage exists

over arbitrarily short time horizons in the context of equity market models which resemble

actual equity markets. The key property of these so-called weakly diverse markets, so far as

relative arbitrage is concerned, is that the relative volatility (with respect to the market) of

the stock of largest capitalization admits an a.s. positive lower bound.
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On the other hand, two of the above authors have developed a market model with extreme

volatility at the low end of the capitalization scale, namely the volatility-stabilized model of

Fernholz & Karatzas (2005). In the aforementioned article, it is shown that the extreme

volatilities enjoyed by the small-cap stocks in this model lead to strong relative arbitrage

on time horizons greater than a fixed constant which depends on the number of stocks in

the market. The article poses the following question: does a relative arbitrage exist in this

market model on arbitrarily short time horizons?

We answer this question in the affirmative. Section 2 establishes the details of the market

model, while Section 3 provides a formal definition of weak and strong relative arbitrage

opportunities. In Section 4, we present an argument due to R. Fernholz that weak arbitrage

opportunities exist over arbitrarily short time horizons, while Section 5 contains our main

result: strong arbitrage opportunities exist in the volatility-stabilized market model over

arbitrarily short time horizons. Finally, having resolved one open question, we retaliate

with another in Section 6.

2 Preliminaries

We shall work in the context of the volatility-stabilized model given by

d (log Xi(t)) =
α

2µi
dt +

1
√

µi(t)
dWi(t), i = 1, . . . , n, (2.1)

which was first described in Fernholz & Karatzas (2005). In the above model, the quantity

Xi(t) denotes the value of the ith stock at time t ∈ [0,∞); the market weights {µi(·)}
n
i=1 are

given by

µi(t) =
Xi(t)

X1(t) + · · · + Xn(t)
, for t ∈ [0,∞), i = 1, . . . , n;

the parameter α is constant and nonnegative; and W1(·), . . . , Wn(·) are independent stan-

dard Brownian motions. The above processes are defined on a complete probability space

(Ω,F , P ) and are adapted to a given filtration which satisfies the “usual conditions” of

right-continuity and augmentation by P -negligible sets.

A portfolio is a progressively measurable process π(·) = (π1(·), · · · , πn(·))′ on [0,∞)×Ω

with values satisfying

π1(t) ≥ 0, . . . , πn(t) ≥ 0 and

n
∑

i=1

πi(t) = 1, t ∈ [0,∞).

The quantity πi(t) represents the proportion of wealth invested in the ith stock at time t.

The nonnegativity of the portfolio weights {πi(·)} indicates that short-selling of stocks is
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not permitted. The value process Zπ(·) corresponding to this portfolio is given by

dZπ(t)

Zπ(t)
=

n
∑

i=1

πi(t) ·
dXi(t)

Xi(t)
,

where Zπ(0) > 0 is the initial fortune. In the special case where πi(t) = µi(t) for all

i = 1, . . . , n and t ∈ [0,∞), the resulting portfolio “mirrors the market”, in the sense that

the ratio of its value to the total market capitalization X1(t) + · · · + Xn(t) is a.s. constant

over time. Consequently, this portfolio is referred to as the market portfolio. Note that the

market portolio process (µ1(·), . . . , µn(·)) always lies in the simplex ∆n defined by

∆n := {x = (x1, . . . , xn) ∈ Rn : x1 > 0, . . . , xn > 0 and
n
∑

i=1

xi = 1}. (2.2)

Finally, suppose that S is a positive C2 function defined on a neighborhood U of ∆n, such

that the mapping x 7→ xiDi log S(x) is bounded on U for all i = 1, . . . , n. (Here Di denotes

differentiation with respect to the ith coordinate.) Furthemore, suppose that for all x ∈ ∆n,

the Hessian D2S(x) := {D2
ijS(x)}1≤i,j≤n has at most one positive eigenvalue, and if such an

eigenvalue exists, the corresponding eigenvector is orthogonal to ∆n. Then the assignment

πi(t) :=

[

Di log S(µ(t)) + 1 −

n
∑

j=1

µj(t)Dj log S(µ(t))

]

· µi(t),

for i = 1, . . . , n and t ∈ [0,∞), defines a portfolio π(·) which is said to be generated by S.

Theorem 3.1.5 of Fernholz (2002) gives the relative return decomposition

log

(

Zπ(t)

Zµ(t)

)

= log S(µ(t)) − logS(µ(0)) +

∫ t

0

−1

2S(µ(s))

n
∑

i,j=1

DijS(µ(s))µi(s)µj(s)τij(s) ds

(2.3)

for all t ∈ [0,∞), almost surely. The conditions on the Hessian D2S(x) ensure that the

integrand on the right-hand side of (2.3) is always nonnegative.

3 Relative arbitrage opportunities

Given a fixed time horizon [t0, T ], we shall say that a weak relative arbitrage opportunity

over [t0, T ] is a pair of portfolios (π(·), ρ(·)) such that there exists a constant q = qπ,ρ,t0,T > 0
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satisfying

P

(

Zπ(t)

Zρ(t)
≥ q, for all t0 ≤ t ≤ T

)

= 1, (3.1)

P [Zπ(T ) ≥ Zρ(T )] = 1 and P [Zπ(T ) > Zρ(T )] > 0 (3.2)

whenever the value processes Zπ(·) and Zρ(·) have the same fortune at time t0; that is,

Zπ(t0) = Zρ(t0) = z > 0. If the conditions (3.2) are replaced by the stronger condition

P [Zπ(T ) > Zρ(T )] = 1, (3.3)

then we say that the portfolio pair (π(·), ρ(·)) constitutes a strong relative arbitrage oppor-

tunity over [t0, T ].

In Fernholz & Karatzas (2005), it is shown that a strong relative arbitrage opportunity

exists in the market model of (2.1) above over the time horizon [t0, T ], for any T strictly

greater than t0 + T∗, where

T∗ :=
2S(µ(t0))

n − 1
; (3.4)

here S(·) is the entropy function on ∆n defined by

S(x) := −

n
∑

i=1

xi log(xi), x = (x1, . . . , xn) ∈ ∆n. (3.5)

A pair of portfolios which provides the arbitrage opportunity is given by (π(·), µ(·)), where

µ is the market portfolio and π(·) is the “modified entropy-weighted portfolio” which is

generated by C+S, for some sufficiently large constant C depending on T . In the case where

the market is equally-weighted at time t = t0, the quantity T∗ is precisely 2 log(n)/(n − 1).

Note that T∗ → 0 as the number of stocks n tends to ∞. This observation naturally leads

to the following question:

Does there exist a weak relative arbitrage opportunity in the model of (2.1)

over arbitrarily short time horizons, regardless of the value of n?

This is posed as an open question at the end of Section 4 of Fernholz & Karatzas (2005).

In Section 5 below, we shall show that, in fact, a strong relative arbitrage opportunity

exists in the model of (2.1) over the time horizon [0, T ], for arbitrary T > 0. Although

this answers the above question in the affirmative, we shall first look at a simpler argument

which establishes the existence of strictly weak relative arbitrage over [0, T ].

4 Weak relative arbitrage over arbitrary time horizons

In this section, we prove the following proposition:
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Proposition 1 For any T > 0, a weak relative arbitrage opportunity exists in the market

model (2.1) over the time horizon [0, T ].

Proof: We adapt the argument found in Fernholz (2005). Consider the set

A =

{

x ∈ ∆n :
2S(x)

n − 1
<

T

4

}

,

where S(·) is the entropy function of (3.5) above. We define a portfolio π̃(·) by setting

π̃(t) =







µi(t) if ≤ T/2 or µ(T/2) /∈ A

πi(t) otherwise.

Here π(·) is the “modified entropy-weighted portfolio” generated by C + S, as described in

Section 3 above. The constant C is chosen large enough to ensure that (π(·), µ(·)) provides

a strong relative arbitrage opportunity on the time horizon [T/2, T ], under the assumption

that µ(T/2) ∈ A. That is, if µ(T/2) ∈ A and Zπ(T/2) = Zµ(T/2), then

P (Zπ(T ) > Zµ(T )) = 1. (4.1)

This is consistent with the definition of T∗ given in (3.4) above, since T∗ < T/4 whenever

µ(T/2) ∈ A.

The portfolio π̃(·) defined above replicates the market portfolio µ(·) up until time T/2.

At that time, if the vector of market weights lies in the set A, the portfolio π̃(·) switches to

the portfolio π(·); otherwise, π̃(·) remains identical to the market portfolio.

Since the pair (π(·), µ(·)) satisfies the condition (3.1) over [0, T ], it is obvious that

(π̃(·), µ(·)) also satisfies this condition. We need to show that this pair also satisfies (3.2)

under the assumption that Zµ(0) = Zπ̃(0). If µ(T/2) /∈ A, then π̃(t) = µ(t) for all t in

[0, T ], so we clearly have P [Z π̃(T ) ≥ Zµ(T )] = 1. Otherwise, since Z π̃(T/2) = Zµ(T/2) and

π̃(t) = π(t) for all t in [T/2, T ], equation (4.1) above shows that

P (Z π̃(T ) > Zµ(T )) = 1.

All that remains is to show that P (µ(T/2) ∈ A) > 0 (since otherwise the inequality in (3.2)

will fail). In fact, P (µ(T/2) ∈ A) > 0 for any A ⊂ ∆n of positive Lebesgue measure (and

certainly our set A satisfies this). This assertion follows easily from the representation of

Xi(t) in terms of time-changed Bessel processes, as given in equation (6.6) of Fernholz &

Karatzas (2005). 2
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5 Strong relative arbitrage over arbitrary time hori-

zons

The portfolio π̃ of the previous section is equivalent to the market portfolio µ, except in the

event that the market weights lie in a special subset of the simplex at the specified time

T/2. For short time horizons, the probability of this event occurring is quite small. Although

there is some room for improvement in the above proof, the fact remains that any similar

portfolio will replicate the market over the entire time horizon with a high probability.

On the other hand, for any given time horizon, it is possible to construct a portfolio

which is guaranteed to beat the market portfolio over that time horizon:

Proposition 2 For any T > 0, a strong relative arbitrage opportunity exists in the market

model (2.1) over the time horizon [0, T ].

Proof: In the model (2.1), the variance relative to the market of the ith stock is easily seen

to be

τii(t) =
1

µi(t)
− 1, a.s. (5.1)

for i = 1, . . . , n. Suppose that the portfolio π is generated by S, where

S(x1, . . . , xn) =

n
∑

i=1

f(xi); (5.2)

here f : [0, 1] → R is a given nonnegative, bounded, increasing and concave function which

is C2 on (0, 1), such that the function y 7→ yf ′(y) is bounded on (0, 1). We shall also require

that

−f ′′(y)(y − y2) is decreasing in y on (0, 1/n); and (5.3)
∫ 1/n

0

f ′(y)

−f ′′(y)(y − y2)
dy < ∞. (5.4)

Also suppose that the initial values Zπ(0) and Zµ(0) of the portfolio π and the market

portfolio µ, respectively, are equal. It then follows from (2.3) and (5.1) that

log

(

Zπ(t)

Zµ(t)

)

= log S(µ(t)) − logS(µ(0)) +

∫ t

0

1

2S(µ(s))

n
∑

i=1

−f ′′(µi(s))
(

µi(s) − µ2
i (s)

)

ds,

(5.5)

almost surely. Now, for x ∈ ∆n, put x(n) := min{x1, . . . , xn} and note that 0 < x(n) ≤ 1/n.

In Section 7 below, we prove the estimates

S(x) =

n
∑

i=1

f(xi) ≤ f(x(n)) + (n − 1)f

(

1 − x(n)

n − 1

)

≤ nf(1/n) (5.6)
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and

S(x) ≥ (n − 1)f(x(n)) + f(1 − (n − 1)x(n)) ≥ (n − 1)f(0) + f(1). (5.7)

Setting y· := µ(n)(·) for convenience, we see that the above estimates and (5.5) lead to

log

(

Zπ(t)

Zµ(t)

)

≥ log S(µ(t)) − log S(µ(0)) +

∫ t

0

1

2S(µ(s))
(−f ′′(ys)) (ys − y2

s) ds

≥
[

log((n − 1)f(yt) + f(1 − (n − 1)yt))
]

− log(nf(1/n))

+

∫ t

0

−f ′′(ys)(ys − y2
s)

2
(

f(ys) + (n − 1)f
(

1−ys

n−1

)) ds a.s.

=: S1(yt) − log(nf(1/n)) +

∫ t

0

Θ1(ys) ds. (5.8)

In light of (5.7) and the nonnegativity of f(·) and Θ1(·), we see that the condition (3.1) is

satisfied for the pair (π(·), µ(·)) with q = log(f(1)) − log(nf(1/n)). We now claim that

Θ1(·) is decreasing on (0, 1/n). (5.9)

Indeed, by our assumption (5.3), the numerator −f ′′(r)(r − r2) of Θ1(r) is decreasing in r.

As for the denominator, we note that

1 − r

n − 1
> r for r ∈ (0, 1/n);

now, since f is concave, f ′ is decreasing, so

f ′(r) − f ′

(

1 − r

n − 1

)

> 0 for r ∈ (0, 1/n).

The left-hand side of this inequality is one-half of the derivative of the denominator of Θ1(r)

(with respect to r). This shows that this denominator is increasing in r, hence Θ1(·) is

indeed decreasing on (0, 1/n).

Now, fix t0 ≥ 0, and define a function T1(·) on [0, 1/n] by

T1(Y ) := t0 +

∫ Y

1/n

−
S ′

1(r)

Θ1(r)
dr

= t0 +

∫ 1/n

Y

(n − 1)f ′(r) − (n − 1)f ′(1 − (n − 1)r)

(n − 1)f(r) + f(1 − (n − 1)r)

(

−f ′′(r)(r − r2)

2
(

f(r) + (n − 1)f
(

1−r
n−1

))

)−1

dr.

(5.10)
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To see that T1(0) is well defined, note that

T1(0) ≤ t0 +
(n − 1)2nf(1/n)

(n − 1)f(0) + f(1)

∫ 1/n

0

f ′(r)

−f ′′(r)(r − r2)
dr (5.11)

≤ t0 + 2n(n − 1)

∫ 1/n

0

f ′(r)

−f ′′(r)(r − r2)
dr < ∞; (5.12)

here we have used the estimates (5.6) and (5.7), as well as the fact that f ′(1− (n− 1)r) > 0

for all r in (0, 1/n), to obtain (5.11), while the first inequality in (5.12) follows from the

simple observations f(1/n) ≤ f(1) and f(0) ≥ 0. The finiteness of the expression in (5.12)

is a consequence of our assumption (5.4).

The function T1(·) satisfies the differential equation T ′
1(Y ) = −S ′

1(Y )/Θ1(Y ). Since

S ′
1(Y ) > 0 and Θ1(Y ) > 0 for all Y ∈ (0, 1/n), we see that T1(·) is decreasing. It therefore

possesses an inverse Y (·), defined on the interval [t0, T1(0)]. Since Y ′(t) = 1/T ′
1(Y (t)), we

have S ′
1(Y (t))Y ′(t) + Θ1(Y (t)) = 0. In light of the initial condition Y (t0) = T−1

1 (t0) = 1/n,

we see that Y (·) satisfies the integral equation

S1(Y (t)) +

∫ t

t0

Θ1(Y (s)) ds ≡ S1(1/n) = log(nf(1/n)), t ∈ [t0, T1(0)]. (5.13)

We now set

f(y) := Γ(c + 1,− log y),

where c is a positive real number to be determined, and Γ(·, ·) is the incomplete Gamma

function defined by

Γ(c, z) =

∫ ∞

z

e−rrc−1 dr

for c ∈ R+, z ∈ R+ ∪ {0}. The resulting generating function S, as given by (5.2) above, is

a generalization of the “modified entropy function” 1 + S(·); here S is the entropy function

of (3.5). In fact, an integration by parts shows that S ≡ 1 + S when c = 1. In general, it is

easy to check that

f ′(y) = (− log y)c, f ′′(y) = −
c(− log y)c−1

y
on (0, 1),

and that f satisfies all the assumptions leading up to, and including, the conditions (5.3)

and (5.4) above. With this choice of f , (5.12) becomes

T1(0) ≤ t0+2n(n−1)

∫ 1/n

0

(− log r)c

c(− log r)c−1

r
(r − r2)

dr = t0+
2n(n − 1)

c

∫ 1/n

0

− log r

1 − r
dr = t0+

An

c
.

(5.14)

Here the finite constant An is independent of c.
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To establish that strong relative arbitrage exists in the volatility-stabilized market of

(2.1) on an arbitary time horizon [0, T ] for some T > 0, first set c = 2An/T , so that

An

c
= T/2. (5.15)

Set t0 = T/2, let Y (·) be as in (5.10) above, and put

T0 = inf{t ≥ T/2 : yt > Y (t)}.

(Recall that y· := µ(n)(·).) Clearly T0 is a stopping time, and we also claim that T0 ≤ T a.s.;

indeed, since yT1(0) > 0 a.s. (for the function T1(·) defined in (5.10) above), we must have

T0 ≤ T1(0). On the other hand, (5.14) and (5.15) show that T1(0) ≤ T , so T0 ≤ T a.s., as

claimed.

Define a portfolio π̃(·) by setting

π̃(t) =







π(t), t < T0

µ(t), t ≥ T0.

Since the condition (3.1) is satisfied for the pair (π(·), µ(·)) and q = log(f(1))−log(nf(1/n)),

it is clearly also satisfied for the pair (π̃(·), µ(·)) with the same value of q. It remains to

establish the condition (3.3) for the pair (π̃(·), µ(·)).

We now return to the estimate (5.8). Using the facts that yt ≤ 1/n on [0, T/2], yt ≤ Y (t)

on [T/2, T0], and Θ1(·) is decreasing, as well as (5.13), we have

log

(

Z π̃(T )

Zµ(T )

)

= log

(

Zπ(T0)

Zµ(T0)

)

≥ S1(yT0
) − log(nf(1/n)) +

∫ T/2

0

Θ1(ys) ds +

∫ T0

T/2

Θ1(ys) ds

≥ S1(Y (T0)) − log(nf(1/n)) +

∫ T/2

0

Θ1(1/n) ds +

∫ T0

t0

Θ1(Y (s)) ds

=

∫ T/2

0

Θ1(1/n) ds = (T/2)Θ1(1/n), a.s.

This establishes the desired relative strong arbitrage, since the quantity (T/2)Θ1(1/n) is a

positive constant (depending on T , c and n). 2

It is interesting to note that the portfolio π̃ switches from the functionally-generated

portfolio π to the market portfolio µ, while the corresponding portfolio in the proof of

Proposition 1 does the opposite. Also note that the precise form of the growth rate term

α/2µi(t) dt of (2.1) does not appear in the above proof. In other words, the relative arbitrage

is driven purely by volatility considerations. In principle, the growth rate term could be
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replaced by another suitable growth rate term γi(t) dt, although the resulting market may

lack the long-term stability of the market of (2.1).

Finally, we briefly examine the constants An and (T/2)Θ1(1/n) which appear in the

above proof. For fixed large n, we have

An := 2n(n − 1)

∫ 1/n

0

− log r

1 − r
dr ≈ 2(n − 1) log n.

Since T/2 = An/c, we have

(T/2)Θ1(1/n) =
An

c

c(log n)c−1(1 − 1/n)

2nΓ(c + 1, log n)
≈

(n − 1)2

n2

(log n)c

Γ(c + 1, log n)

≈
(log n)2(n−1) log n/T

Γ(1 + 2(n − 1) log n/T, log n)
.

Setting C0 = log n, C1 = 2(n − 1) log n and U = 1/T , we see that the above quantity is

CC1U
0 /Γ(1 + C1U, C0). The denominator grows at the order of [U ]!, so the above quantity

tends to 0 very quickly as T → 0+.

6 Another open question

Propositions 3.1 and 3.8 of Fernholz & Karatzas (2005) states that strong relative arbitrage

opportunities exist over long enough time horizons in any market satisfying the condition

Γ(t) ≤

∫ t

0

γµ,p
∗ (s) ds < ∞, a.s. (6.1)

for some p > 0 and continuous, strictly increasing function Γ : [0,∞) → [0,∞) with Γ(0) = 0

and Γ(∞) = ∞. In the above equation, γµ,p
∗ (·) is the generalized excess growth rate of the

market, which can be expressed as a weighted-average relative volatility of the market:

γµ,p
∗ (t) =

1

2

n
∑

i=1

(µi(t))
pτii(t).

The existence of long-term strong relative arbitrage opportunities in the model of (2.1)

follows as a corollary, since γµ,1
∗ (t) is identically equal to (n − 1)/2 in this model. Provided

that the market portfolio is not confined to a subset of ∆n whose complement in ∆n has

positive Lebesgue measure, it turns out that the argument in Section 4 can be adapted to

show that short-term weak relative arbitrage opportuntities in models stasifying (6.1).

On the other hand, the proof of Proposition 2 relies on the precise structure of the model

of (2.1). It is straightforward to adapt the proof to similar models where the variance term

dWi(t)/
√

µi(t) is replaced by dWi(t)/(µi(t))
p for some other power p > 1/2, but we have

10



not been able to generalize to the broader class of models satisfying condition (6.1). Conse-

quently, we conclude as follows:

Open question: do strong relative arbitrage opportunities exist over arbitrarily short time

horizons in any market model satisfying the condition (6.1)?

7 Appendix: some properties of concave functions

We now prove equations (5.6) and (5.7) from Section 5 by using the following pair of lemmas

relating to concave functions:

Lemma 7.1 If f is concave on [A, B] and a1, . . . , am ∈ [A, B], then

m
∑

i=1

f(ai) ≤ mf

(

1

m

m
∑

i=1

ai

)

.

Lemma 7.2 Suppose that f is concave on [A, B] and a1, . . . , am ∈ [A, B] are chosen such

that a − (m − 1)A ≤ B, where a :=
∑m

i=1 ai. Then

m
∑

i=1

f(ai) ≥ (m − 1)f(A) + f(a − (m − 1)A). (7.2)

To prove these lemmas, we first recall that a concave function on [A, B] satisfies the inequality

m
∑

i=1

wif(ai) ≤ f

(

m
∑

i=1

wiai

)

(7.3)

whenever a1, . . . , am ∈ [A, B] and w := (w1, . . . , wm) ∈ ∆m. (The simplex ∆m is defined in

(2.2) above.) Note that (7.3) follows easily (by induction) from the more commonly-quoted

property

(1 − λ)f(a1) + λf(a2) ≤ f((1 − λ)a1 + λa2), (7.4)

valid for any 0 ≤ λ ≤ 1 and a1, a2 in the domain of the concave function f . In any case,

Lemma 7.1 follows from (7.3) by setting wi = 1/m for all i = 1, . . . , m. As for Lemma 7.2,

we set λi = (ai − A)/(a − mA). It is straightforward to check that 0 ≤ λi ≤ 1 and that

(1 − λi)A + λi(a − (m − 1)A) = ai.

It follows from (7.4), with λ replaced by λi, that

f(ai) ≥ (1 − λi)f(A) + λif(a − (m − 1)A)

11



for any i = 1, . . . , m. Adding all m inequalities establishes (7.2), since
∑m

i=1 λi = 1. 2

In the case where x := (x1, . . . , xn) lies in ∆n, and x(n) := min{x1, . . . , xn}, we may as

well suppose that xn = x(n); then by Lemma 7.1 with A = 0, B = 1, m = n− 1 and ai = xi

for each i = 1, . . . , m, we have

n
∑

i=1

f(xi) = f(x(n)) +

n−1
∑

i=1

f(xi) ≤ f(x(n)) + (n − 1)f

(

1 − x(n)

n − 1

)

.

Reapplying Lemma 7.1, this time with m = n, a1 = · · · = an−1 = (1 − x(n))/(n − 1) and

an = x(n), we get

f(x(n)) + (n − 1)f

(

1 − x(n)

n − 1

)

≤ nf(1/n).

Taken together, the previous two inequalities give (5.6). As for (5.7), an application of

Lemma 7.2 with m = n, A = x(n), B = 1 and ai = xi for i = 1, . . . , n gives

n
∑

i=1

f(xi) ≥ (n − 1)f(x(n)) + f(1 − (n − 1)x(n)).

Reapplying the lemma with A = 0, a1 = · · · = an−1 = x(n) and an = 1 − (n − 1)x(n) gives

(n − 1)f(x(n)) + f(1 − (n − 1)x(n)) ≥ (n − 1)f(0) + f(1).

The previous two inequalities give (5.7). 2
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