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Ten leading causes of death, 2016 and 2017
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Issues and Actions
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Sub optimal prescribing,
with unmanaged and /
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side-effects

Inadequate health promotion
initiatives, leading to
unhealthy lifestyles and
cardiometabolic burden |

Fragmented or
inaccessible
physical-mental
health care
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Improving prescribing
of psychiatric
medications and
cardioprotective drugs

Researching digital
technologies for
monitoring and promoting
physical health

\ Increasing access to integrated
physical-mental health care:
provided from first clinical

! contact to protect physical health




Additional Systemic Trends Driving Need for
Patient-Focused Health Systems

- Escalating health care costs

- Declining number of caregivers

- Increasing need for prevention

- Increasing personal responsibility

- Personalized medicine

Customer-focused change drivers

Innovative technologies enable

Empowerment
Collaboration
Connectivity
Interoperability
Risk management
Incentives & rewards

Adapted from: mHealth Mobile technology poised to enable
anew era in health care (Ernst & Young, 2012)

Personal health management
Remote monitoring
Chronic disease management
Medication management
Wellness care
Behavioral change
Urgent care

Results
Better outcomes
Broader coverage
Lower cost

Information services enable
Cloud computing
Smart mobility
Social networking
Big data analytics




Peak of Exaggerated Expectations
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Digital Health
Hype Cycle 2017
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DE» The “All of Us” Research Program

Eric Dishman, Director

2017-2027
N=>1 Million Participants

Discover genetic and environmental
correlates with disease

Improve predictions of therapeutic
safety and efficacy

Discover disease biomarkers

Connect mobile health, digital health,
and sensor data with clinical outcomes

Develop new disease classifications
Support clinical trials
Enable machine-leaming applications

Improve understanding of health
disparities

Develop and test new therapeutic
agents



Doctoral program in
Personal Health
Informatics

This program employs a transdisciplinary approach and focuses on innovative technology to
improve care from the patient’s perspective, which distinguishes it from doctoral degree

programs in computer science and medical and health informatics

Graduates are prepared to excel as faculty, industry scientific advisors, and entrepreneurs

Northeastern Learn more at:

College of Computer and Information Science

Bouvé College of Health Sciences




Explores the intersection of unobtrusive monitoring and multiscale
computational modeling of behaviors and behavioral change

Facilitates research in the area of home monitoring of health behaviors,
including helping researchers address the challenges of big data related
to large amounts of complex and noisy streaming data from multiple
sources used to infer clinically relevant health behaviors

Coach




R, MHealth

Research Group

Prof. Stephen Intille

Self-report:
Random EMA
Context-sensitive EMA

Passive sensing

Self-report:
Random pEMA
Context-sensitive uEMA

Passive sensing

Invents and validates new systems, methodologies, and algorithms that use

wearable and ubiquitous sensors, mobile phones, and advanced human-
computer interfaces to support health and wellness research and practice

Microtemporal Processes Underlying
Health Behavior Adoption and Maintenance

Use real-time mobile technologies to collect intensive longitudinal data
examining differences in the micro-temporal processes underlying the
adoption and maintenance of:

- physical activity

- low sedentary time

- sufficient sleep duration

Goal is to identify predictors of habits in emerging adults (18-24 yrs)
-N=250

- 1-year prospective longitudinal data collection

ILHBN

INTENSIVE LONGITUDINAL
HEALTH BEHAVIOR NETWORK




E RELATIONAL AGENTS GROUP

Prof. Timothy Bickmore

Simulating face-to-face counseling, primarily in health education and health behavior change interventions,
with a particular focus on the relational aspects of these interactions and how they unfold over time

palpitations
rapid heart rate
shortness of breath
chest pain

very tired

Could you repeat that?
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COMPUTATIONAL BEHAVIORAL
SGIENGE I.AB Leverage emerging technologies

in computational, cognitive, affective,
and behavioral sciences to better evaluate,
understand, and support human development

Prof. Matthew Goodwin

Autism Research 12: 1286-1296, 2019

Predicting Aggression to Others in Youth With Autism Using a
Wearable Biosensor

Matthew S. Goodwin 9, Carla A. Mazefsky (¥, Stratis loannidis, Deniz Erdogmus, and Matthew Siegel
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D I G I T A L e e 2055-207% For Those Interested in Reading More
HEALTH npj | Digital Medicine

THE LANCET
Digital Health

in Digital Health

Health Technology Innovation
Connected Health
Health Informatics

Personalized Medicine



