Texas Math Outcomes Analysis 2014/15

Grade Levels: 3, 4, 5 ST Math Program: Gen-5 Analysis Type: Two-Year Treatment-Year: 2014/15
Baseline-Year: 2012/13

Jessica Guise
MIND Research Institute
2015-12-17 RLL Version 1.0 (S.A.M.01.12.15)

Abstract

This analysis covers all grades using ST Math in Texas for two years, from 2013/14 to $2014 / 15$. It identifies those grades with nominal or better implementation of the ST Math program, and matches them to randomly selected, similar math-performance, comparison grades. The nominal ST Math users are an aggregation of 33 grades 3,4 , and 5 at 12 schools. They were matched to 33 similar, randomly selected control grades at 33 schools never using ST Math. Grade-wise growth in math proficiency was evaluated (i.e. growth in same grade, same school, from 2012/13 to 2014/15) on the STAAR proficiency levels and scale scores. ST Math users outperformed controls in both scale scores and percent Satisfactory or Advanced.

Contents

1 Introduction 5
1.1 Background 5
1.2 Program Description 5
2 Data Collection 6
2.1 Proficiency Levels Definition 6
2.2 Treatment Grades Pool and Selection 6
2.3 Control Grades Pool and Selection 7
3 Data Analysis 7
3.1 Final Treatment and Control 8
3.1.1 ST Math Grade-Aggregated Implementation ($\geq 85 \%$ Enrollment Grades Only) 8
3.1.2 Filtering Treatment and Controls 9
3.1.3 Match of Controls to Treatment 10
3.2 Grade-Aggregated Analysis 11
3.3 Grade-Level Analysis 13
3.3.1 Grade Level Result Tables 13
3.3.2 Grade-Level Analysis of Changes in STAAR Math Level 2 or above 15
3.3.3 Grade-Level Analysis of Changes in STAAR Math Scale Scores 17
4 Findings Summary 18
5 Reference Tables Grouped By School Year 19
6 Lists of Schools 20
6.1 Treatment Schools 20
6.2 Control Schools 21

List of Figures

1 Histogram of ST Math Percent Progress for $\geq 85 \%$ Enrollment Grades 2014/15 8
2 Baseline Year Density Plot Showing Match between TRT and CTRL - 2012/13 10
3 Change between 2012/13 and 2014/15 at each Proficiency Level for GradeAggregated TRT and CTRL Datasets
4 Changes in STAAR Math Scale Scores and Level 2 or above for Grade-Aggregated TRT and CTRL datasets between 2012/13 and 2014/15
5 Changes in Percent of Students at STAAR L2 or above for TRT and CTRL Datasets between 2012/13 and 2014/15
6 Changes in Grade-Mean STAAR Math Scale Score for TRT and CTRL Datasets between 2012/13 and 2014/15

List of Tables

1 Proficiency Level Naming 6
2 Descriptive Statistics of ST Math Percent Progress for $>=85$ percent Enrollment Grades 8
3 Number of ST Math Grades with $>=85$ percent Enrollment and with $>=50$ percent progress 8
4 Treatment Pool Filtering and Controls: Counts of Grades, Schools, and Students 9
5 Yearly Math Proficiency and Counts for TRT and CTRL Grade-Aggregated Datasets 11
6 Statistics for the Differential Changes in Math Scores Growth (TRT - CTRL) 13
7 Grade 3 - Yearly Math Performance and Counts for TRT and CTRL Datasets 13
8 Grade 4 - Yearly Math Performance and Counts for TRT and CTRL Datasets 13
9 Grade 5-Yearly Math Performance and Counts for TRT and CTRL Datasets 14
10 Statistics for the Differential Changes in STAAR L2 or above, TRT - CTRL 16
11 Statistics for the Differential Changes in STAAR Math Scale Scores Growth, TRT - CTRL 18
12 TRT Grades Detail Sorted by Year 19
13 CTRL Grades Detail Sorted by Year 19
14 Treatment Schools (TRT Dataset) 20
15 Matched Control Schools (CTRL Dataset) 21

1 Introduction

1.1 Background

This is a quasi-experimental analysis at the grade level. Entire grades represent the units of analysis, and outcome measures are the 2-year changes in grade-mean STAAR Level 2 or above percentages. The treatment grades used the ST Math program for 2 years, beginning in the 2013/14 school year. The control grades were selected to have similar math attributes to the treatment grades during the baseline year (2012/13), and did not use ST Math in $2013 / 14$ or $2014 / 15$. The treatment grades' selection pool was all schools using ST Math in grades 3, 4, and 5 in Texas. The control grades' pool was all schools not using ST Math in grades 3, 4, and 5 in Texas.

1.2 Program Description

The ST Math program is a supplemental math program covering grade-level Texas math standards. The ST Math content consists of visual representations of math standards, concepts, and procedures, presented to students as "Puzzles" of virtual manipulatives, with which they interact to pose solutions. Each time the student poses a solution, the computer visually animates the Puzzle, diagram, or symbols to show why the posed solution correctly solves, or why it does not solve, the math problem (puzzle). The Puzzles are arranged into sequential groups, called "Levels". To proceed to the next Level in sequence, the student needs to master his/her current Level. Mastering a Level requires solving 100% of the math problems, or Puzzles correctly. In this way, the program is self-paced. Students must correctly solve approximately 4-12 Puzzles, with only 1 failure and retry allowed, to proceed. Levels are sequenced together into Games and, again, the student must master each Game to get to the next Game in sequence. Games are sequenced into "Learning Objectives" (e.g. 'Fractions Concepts'). The ST Math curriculum of approximately 20-25 Learning Objectives can be rearranged in a year-long, grade-level syllabus to match district math pacing through the school year.

The Puzzles typically start with concrete representations of the math, without abstract symbols, math vocabulary, or even English words. Gradually, through subsequent Levels or Games, abstractions are introduced. For example, a Puzzle might start with "n" green blocks on the screen, and then at a subsequent Level may represent the quantity with the numeral for "n" (no green blocks anymore). In this way, three things are accomplished: i) language proficiency prerequisites to engage with the program are minimal, ii) non-mathematical distractions (e.g. back-stories for word problems) are minimized or eliminated - thereby reducing load on working memory, and iii) the actual math in the problem can be represented clearly, simply, and unambiguously.

Besides the self-paced progress made by students in their one-to-one environment, the program is designed to be referenced by teachers during their regular math instruction. It is supplemental to core or basal math instruction and instructional materials. As the great majority of grade-level math standards are covered in the ST Math digital curriculum, completion of 100% of the entire ST Math curriculum (i.e. completing every Game) is required to cover all grade-level math standards.

To achieve nominal progress through the program, there is a time-on-task requirement. MIND Research Institute has found that application of adequate time-on-task is generally sufficient to get virtually all students to make sufficient progress through the program. Students are recommended to use the program in school for at least two 45-minute sessions per week, or 90 minutes per week, over about 35 weeks. Analyses of ST Math usage have shown that consistently following this schedule throughout the school year is usually sufficient to achieve 50% or more Progress through

ST Math content. Progress is a percentage of ST Math content coverage, and is defined as Levels completed by the student, divided by the total number of Levels in the curriculum. In addition, MIND's historical analyses have shown that it is necessary to complete at least 50% of the program in order to expect significantly higher performance compared to non-users.

2 Data Collection

Since this analysis uses grades as the unit of analysis, and states publish grade-mean state standardized test scores and math proficiency distributions, the data for student math outcomes is collected from each state education agency's research files (retrieved from state websites). The treatment students use ST Math student accounts served by MIND. Student ST Math usage data is aggregated to grade-level metrics by MIND.

2.1 Proficiency Levels Definition

The following (Table 1) are Texas's proficiency level descriptions:

Proficiency Level	State Proficiency Level Name
L1	Unsatisfactory
L2	Satisfactory
L3	Advanced

Table 1: Proficiency Level Naming

2.2 Treatment Grades Pool and Selection

The Treatment grades pool originated with all schools and grades using ST Math in Texas. From these schools, every grade that had used the ST Math program for the years 2013/14 and 2014/15 was identified. They comprise the Treatment grades pool for this evaluation of 2 year usage.

Because the analysis uses grade-mean data, such as grade-mean scale scores or grade-mean proficiency level percentages, it is necessary that the program also be a grade-wide treatment, with the great majority of students in treatment. Otherwise, the grade-means reported by the state of 100% of tested students would not be valid measures if there existed a significantly smaller fraction of treatment students. MIND's site implementation requirement is that an entire grade, including all teachers and all classes within that grade, use the ST Math program. We validate how closely this is the case for each individual treatment grade by comparing the number of ST Math student accounts at a grade level to Texas's reported enrollment at that grade level. We discard from the Treatment pool any grade with a ratio of ST Math student accounts to state reported grade enrollment lower than 85%.

Furthermore, the outcomes measure is a summative year-end test, i.e. Texas's standardized math assessment (STAAR). The math assessment thus covers all the math standards for the entire grade level. Meanwhile, the ST Math program curriculum (arranged into Learning Objectives) is also aligned to Texas math standards. To infer that the ST Math grade-level content is having a valid effect on student outcomes on the grade-level summative assessment, we discard any grade with grade-mean of ST Math Progress for its students lower than 50% by year-end.

Progress is a percentage, and is defined as Levels completed by the student, divided by the total number of Levels in the grade-level curriculum. Note that student achievement of at least 50% progress in ST Math is accomplished primarily by teacher assignment of computer session time to students. With sufficient time on task, students make progress. The program helps them self-pace through providing real-time informative feedback for each puzzle.

2.3 Control Grades Pool and Selection

The control grades are randomly selected from a control pool of schools in Texas. Though they are randomly selected, they are also matched to be similar to the Treatment grades' math attributes during the baseline 2012/13 year. The matched math attributes include scale score and student percentages at each math proficiency level, for each grade.

In order to mitigate the risk of randomly picking an unusually favorable or unfavorable set of Control grades, a Monte Carlo approach is used to perform many random picks. The control pool's size is large enough that there are many possible "picks" of closely matched Control grades.

Dozens, or up to hundreds, of randomly matched picks are made and sets of matched control grades are generated. For each set, the differential math growth is evaluated. Some picked sets have high average math growth, some have low average math growth. From the set of all picks, a median pick is chosen. This avoids either an unlikely overestimate, or underestimate, of the Control grades' differential growth.

3 Data Analysis

The set of all schools and grades using ST Math in Texas is evaluated for Enrollment percentage and Progress percentage parameters. A filtered Treatment set (TRT) of all ST Math grades with $\geq 85 \%$ Enrollment and $\geq 50 \%$ Progress is identified. State math assessment data is tabulated. A matching set of Control grades based on baseline year state math assessment is identified.

Changes in math performance, i.e. the difference in math performance of a grade from a baseline year to the final year, are evaluated and tabulated. Statistical tests of the significance of the difference in math performance changes between Treatment grades and Control grades are performed. Finally, after all this analysis has been performed on a grade-aggregated basis, a grade-by-grade disaggregation is performed.

3.1 Final Treatment and Control

3.1.1 ST Math Grade-Aggregated Implementation ($\geq \mathbf{8 5 \%}$ Enrollment Grades Only)

ST Math Percent Grade Mean Progress Distribution - 2014/15

Figure 1: Histogram of ST Math Percent Progress for $\geq 85 \%$ Enrollment Grades 2014/15
For all ST Math grades with Enrollment $\geq 85 \%$, Figure 1 shows the frequency distribution of grade-average Progress percentage through the program. Note that we will only be using grades with $\geq 50 \%$ Progress as the Treatment Group.

Table 2 provides some descriptive statistics of the Progress distribution. Table 3 shows the number of remaining treatment grades after applying enrollment and progress filters.

	Min.	Max.	Average	S.D.
ST Math \% Progress	62.2	90.5	80.0	8.2

Table 2: Descriptive Statistics of ST Math Percent Progress for $>=85$ percent Enrollment Grades

Grades with $>=85 \%$ Enrollment:	33
Grades with in addition $>=50 \%$ Progress:	33

Table 3: Number of ST Math Grades with $>=85$ percent Enrollment and with $>=50$ percent progress

3.1.2 Filtering Treatment and Controls

Table 4 shows the total number of grades in the Treatment pool, the number of grades that exceeded the 85% Enrollment figure, and also the 50% Progress filter. Other rows in the table indicate counts of numbers of students (2014/15 from state testing count) and counts of number of schools represented. The number of matched Control (CTRL) grades, students, and schools is also shown.

	Grade 3	Grade 4	Grade 5	Total
ST Math Using Grades	12	11	11	34
ST Math Using Schools	12	11	11	12
ST Math Students	989	865	796	2650
ST Math Grades (Enroll $>=85 \%)$	12	11	10	33
TRT Grades (Enroll $>=85 \% \& \operatorname{Prog}>=50 \%)$	12	11	10	33
TRT Schools (Enroll $>=85 \% \& \operatorname{Prog}>=50 \%)$	12	11	10	12
TRT Students (Enroll $>=85 \% \& \operatorname{Prog}>=50 \%)$	989	865	743	2597
CTRL Grades	12	11	10	33
CTRL Schools	12	11	10	33
CTRL Students	1176	886	1309	3371

Table 4: Treatment Pool Filtering and Controls: Counts of Grades, Schools, and Students

3.1.3 Match of Controls to Treatment

Figure 2 shows the density plot of the baseline STAAR Math scale scores (left plot) and baseline percent students at STAAR Level 2 or above (right plot) for treatment grades overlayed on control grades, showing the closeness of the match obtained between Treatment and Control sets of grades in the baseline year, $2012 / 13$. It is important to keep in mind that we only have a small number of treatment and control grades (33) and that the Control set was arrived at through a Monte Carlo process (see Section 2.3) rather than a closest math performance match.

STAAR Scale Score 2012/13 - TRT vs CTRL

Figure 2: Baseline Year Density Plot Showing Match between TRT and CTRL - 2012/13

3.2 Grade-Aggregated Analysis

Table 5 below shows for both the Treatment (TRT) and Control (CTRL) sets of grades the aggregation across grades of proficiency level distributions. The far right column also shows the average ST Math Progress for the TRT set.

	\# Grades	\# Schools	\# Students	Scale Score	L1	L2	L3	L2_or_above	ST Math Per Prog.
TRT.12.13	33	12	2786	1489.2	76.76	13.48	9.76	23.24	-
TRT.13.14	33	12	2746	1503.6	72.85	15.30	11.88	27.18	70.05
TRT.14.15	33	12	2597	1517.2	63.27	22.30	14.45	36.76	79.84
TRT.Delta	-	-	-	27.9	-13.48	8.82	4.70	13.52	-
CTRL.12.13	33	33	3260	1488.8	76.21	13.48	10.30	23.79	-
CTRL.13.14	33	33	3420	1506.0	69.39	17.42	13.18	30.61	-
CTRL.14.15	33	33	3371	1497.1	70.06	19.06	10.88	29.94	-
CTRL.Delta	-	-	-	8.3	-6.15	5.58	0.58	6.15	-

Table 5: Yearly Math Proficiency and Counts for TRT and CTRL Grade-Aggregated Datasets

The following chart (Figure 3) shows the changes in percentage of students at each math proficiency level for the grade-aggregated Treatment and Control sets (TRT.delta and CTRL.delta).

Figure 3: Change between 2012/13 and 2014/15 at each Proficiency Level for Grade-Aggregated TRT and CTRL Datasets

Similarly, Figure 4 shows the changes in STAAR Math Scale Scores and changes in percent of students at STAAR Level 2 or above for the grade-aggregated Treatment and Control sets.

Changes in STAAR Scale Scores - 2014/15 vs 2012
 Changes in L2 or above 2014/15 vs 2012/13

Figure 4: Changes in STAAR Math Scale Scores and Level 2 or above for Grade-Aggregated TRT and CTRL datasets between 2012/13 and 2014/15

Finally, Table 6 shows the statistics for the differences in changes between TRT and CTRL (Treatment - Control) for these same STAAR math proficiency and scale score changes as in the above figures.

	Estimate	P-Value	Int.Low	Int.High
L2_or_above	7.36	0.02^{*}	1.39	13.34
Scale Score	19.64	0.05^{*}	0.45	38.82
L1	-7.33	0.02^{*}	-13.31	-1.36
L2	3.24	0.12	-0.91	7.40
L3	4.12	0.04^{*}	0.19	8.06

Table 6: Statistics for the Differential Changes in Math Scores Growth (TRT - CTRL)

3.3 Grade-Level Analysis

3.3.1 Grade Level Result Tables

The following tables (Table 7, 8, and 9) present a disaggregation of results by grade level. The far right column in each table also shows the average ST Math Progress for the TRT set.

	\# Grades	\# Schools	\# Students	Scale Score	L1	L2	L3	L2_or_above	ST Math Per Prog.
TRT.12.13	12	12	987	1425.0	80.08	12.92	7.00	19.92	-
TRT.13.14	12	12	1024	1426.3	79.33	13.08	7.58	20.67	65.6
TRT.14.15	12	12	989	1440.7	61.33	24.92	13.83	38.75	78.11
TRT.Delta	-	-	-	15.7	-18.75	12.00	6.83	18.83	-
CTRL.12.13	12	12	1092	1424.7	78.58	13.00	8.42	21.42	-
CTRL.13.14	12	12	1198	1454.8	68.25	18.33	13.42	31.75	-
CTRL.14.15	12	12	1176	1424.4	68.67	21.00	10.33	31.33	-
CTRL.Delta	-	-	-	-0.2	-9.92	8.00	1.92	9.92	-

Table 7: Grade 3 - Yearly Math Performance and Counts for TRT and CTRL Datasets

	\# Grades	\# Schools	\# Students	Scale Score	L1	L2	L3	L2_or_above	ST Math Per Prog.
TRT.12.13	11	11	953	1500.5	77.73	13.45	8.82	22.27	-
TRT.13.14	11	11	871	1526.8	70.91	16.09	13.00	29.09	67.21
TRT.14.15	11	11	865	1525.2	70.64	16.00	13.36	29.36	78.1
TRT.Delta	-	-	-	24.7	-7.09	2.55	4.55	7.09	-
CTRL.12.13	11	11	924	1498.8	78.18	13.00	8.82	21.82	-
CTRL.13.14	11	11	903	1501.1	74.36	13.55	12.09	25.64	-
CTRL.14.15	11	11	886	1504.7	74.45	16.00	9.55	25.55	-
CTRL.Delta	-	-	-	5.9	-3.73	3.00	0.73	3.73	-

Table 8: Grade 4 - Yearly Math Performance and Counts for TRT and CTRL Datasets

	\# Grades	\# Schools	\# Students	Scale Score	L1	L2	L3	L2_or_above	ST Math Per Prog.
TRT.12.13	10	10	846	1554.0	71.70	14.20	14.10	28.30	-
TRT.13.14	10	10	851	1570.8	67.20	17.10	15.80	32.90	78.51
TRT.14.15	10	10	743	1600.1	57.50	26.10	16.40	42.50	83.85
TRT.Delta	-	-	-	46.1	-14.20	11.90	2.30	14.20	-
CTRL.12.13	10	10	1244	1554.9	71.20	14.60	14.20	28.80	-
CTRL.13.14	10	10	1319	1572.8	65.30	20.60	14.10	34.70	-
CTRL.14.15	10	10	1309	1576.0	66.90	20.10	13.00	33.10	-
CTRL.Delta	-	-	-	21.1	-4.30	5.50	-1.20	4.30	-

Table 9: Grade 5 - Yearly Math Performance and Counts for TRT and CTRL Datasets

3.3.2 Grade-Level Analysis of Changes in STAAR Math Level 2 or above

Figure 5 shows the difference in the growth of percentages of students at STAAR math Level 2 or above, for the TRT and CTRL datasets, disaggregated by grade:

Changes in Percent L2 or above - 2014/15 vs 2012/13

Figure 5: Changes in Percent of Students at STAAR L2 or above for TRT and CTRL Datasets between 2012/13 and 2014/15

Table 10 shows the statistics for the differences in changes between TRT and CTRL (Treatment - Control) for these same STAAR Level 2 or above math proficiency changes as shown in Figure 5.

	Estimate	P-Value	Int.Low	Int.High
Grade 3	8.92	0.08	-1.05	18.89
Grade 4	3.36	0.53	-7.63	14.35
Grade 5	9.90	0.07	-1.03	20.83

Table 10: Statistics for the Differential Changes in STAAR L2 or above, TRT - CTRL

3.3.3 Grade-Level Analysis of Changes in STAAR Math Scale Scores

Figure 6 shows the changes in the grade-mean math scale scores of students for the TRT and CTRL datasets, disaggregated by grade:

Changes in STAAR Math Scale Score - 2014/15 vs 2012/13

Figure 6: Changes in Grade-Mean STAAR Math Scale Score for TRT and CTRL Datasets between 2012/13 and 2014/15

Table 11 shows the statistics for the differences between TRT and CTRL (Treatment - Control) for these same STAAR math scale score changes as shown in Figure 6.

	Estimate	P-Value	Int.Low	Int.High
Grade 3	-5.43	0.32	-16.63	48.47
Grade 4	3.63	0.25	-14.94	52.57
Grade 5	25.00	0.19	-13.72	63.72

Table 11: Statistics for the Differential Changes in STAAR Math Scale Scores Growth, TRT CTRL

4 Findings Summary

Texas grades 3 , 4 , and 5 using ST Math in $2014 / 15$ averaged 80% ST Math Progress. $34 / 34$ grades (100%) averaged covering more than 50% of ST Math content. Statistically significant differences were found in this analysis within the grade-aggregated results. Looking at table 6 , a statistically significant difference was found for grade-aggregated scale score, with an estimate of 19.64 points favorable for ST Math treatment set and for grade-aggregated proficiency L2 or above, with a 7.36 point favorable differential for the ST Math treatment set.

5 Reference Tables Grouped By School Year

The following tables show grade-level details, grouped by school year and for treatment (Table 12) and controls (Table 13) separately.

| | \# Grades | \# Schools | \# Students | Scale Score | L1 | L2 | L3 | L2_or_above | ST Math Per Prog. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 3 (12.13) | 12 | 12 | 987 | 1425.0 | 80.08 | 12.92 | 7.00 | 19.92 | - |
| Grade 4 (12.13) | 11 | 11 | 953 | 1500.5 | 77.73 | 13.45 | 8.82 | 22.27 | - |
| Grade 5 (12.13) | 10 | 10 | 846 | 1554.0 | 71.7 | 14.2 | 14.1 | 28.3 | - |
| All Grades (12.13) | 33 | 12 | 2786 | 1489.2 | 76.76 | 13.48 | 9.76 | 23.24 | - |
| Grade 3 (13.14) | 12 | 12 | 1024 | 1426.3 | 79.33 | 13.08 | 7.58 | 20.67 | 65.6 |
| Grade 4 (13.14) | 11 | 11 | 871 | 1526.8 | 70.91 | 16.09 | 13.00 | 29.09 | 67.21 |
| Grade 5 (13.14) | 10 | 10 | 851 | 1570.8 | 67.2 | 17.1 | 15.8 | 32.9 | 78.51 |
| All Grades (13.14) | 33 | 12 | 2746 | 1503.6 | 72.85 | 15.30 | 11.88 | 27.18 | 70.05 |
| Grade 3 (14.15) | 12 | 12 | 989 | 1440.7 | 61.33 | 24.92 | 13.83 | 38.75 | 78.11 |
| Grade 4 (14.15) | 11 | 11 | 865 | 1525.2 | 70.64 | 16.00 | 13.36 | 29.36 | 78.1 |
| Grade 5 (14.15) | 10 | 10 | 743 | 1600.1 | 57.5 | 26.1 | 16.4 | 42.5 | 83.85 |
| All Grades (14.15) | 33 | 12 | 2597 | 1517.2 | 63.27 | 22.30 | 14.45 | 36.76 | 79.84 |

Table 12: TRT Grades Detail Sorted by Year

	\# Grades	\# Schools	\# Students	Scale Score	L1	L2	L3	L2_or_above	ST Math Per Prog.
Grade 3 (12.13)	12	12	1092	1424.7	78.58	13.00	8.42	21.42	
Grade 4 (12.13)	11	11	924	1498.8	78.18	13.00	8.82	21.82	-
Grade 5 (12.13)	10	10	1244	1554.9	71.2	14.6	14.2	28.8	-
All Grades (12.13)	33	33	3260	1488.8	76.21	13.48	10.30	23.79	-
Grade 3 (13.14)	12	12	1198	1454.8	68.25	18.33	13.42	31.75	-
Grade 4 (13.14)	11	11	903	1501.1	74.36	13.55	12.09	25.64	-
Grade 5 (13.14)	10	10	1319	1572.8	65.3	20.6	14.1	34.7	-
All Grades (13.14)	33	33	3420	1506.0	69.39	17.42	13.18	30.61	-
Grade 3 (14.15)	12	12	1176	1424.4	68.67	21.00	10.33	31.33	-
Grade 4 (14.15)	11	11	886	1504.7	74.45	16.00	9.55	25.55	-
Grade 5 (14.15)	10	10	1309	1576.0	66.9	20.1	13.0	33.1	-
All Grades (14.15)	33	33	3371	1497.1	70.06	19.06	10.88	29.94	-

Table 13: CTRL Grades Detail Sorted by Year

6 Lists of Schools

6.1 Treatment Schools

Table 14 shows the list of treatment schools and grades (after 85% enrollment and 50% progress filtering) used in the analysis.

	District	School Name	GRADE
1	KILLEEN ISD	East Ward El	3,4
2	KILLEEN ISD	Pershing Park El	$3,4,5$
3	KILLEEN ISD	Sugar Loaf El	$3,4,5$
4	KILLEEN ISD	West Ward Elementary	$3,4,5$
5	KILLEEN ISD	Bellaire Elementary	$3,4,5$
6	KILLEEN ISD	Clarke El	3
7	KILLEEN ISD	Clear Creek Elementary	$3,4,5$
8	KILLEEN ISD	Brookhaven Elementary	$3,4,5$
9	KILLEEN ISD	Montague Village El	$3,4,5$
10	KILLEEN ISD	Ira Cross Jr El	$3,4,5$
11	KILLEEN ISD	Oveta Culp Hobby El	$3,4,5$
12	KILLEEN ISD	Saegert El	$3,4,5$

Table 14: Treatment Schools (TRT Dataset)

6.2 Control Schools

Tables 15 show the control schools and grades (matched control grades to treatment grades) used in the analysis.

	District	School Name	GRADE
1	DILLEY ISD	DILLEY EL	3
2	CHANNELVIEW ISD	HARVEY S BROWN	4
3	LITTLE ELM ISD	LAKEVIEW EL	3
4	RICHARDSON ISD	NORTHRICH EL	4
5	WELLINGTON ISD	WELLINGTON EL	5
6	SAN ANTONIO ISD	MISSION ACADEMY	3
7	FORT WORTH ISD	A M PATE EL	4
8	IRVING ISD	JACKIE MAE TOWN	5
9	ABILENE ISD	BONHAM EL	3
10	DALLAS ISD	LIDA HOOE EL	4
11	TEXAS CITY ISD	FRY INT	5
12	DALLAS ISD	ELADIO R MARTIN	3
13	DALLAS ISD	ROGER Q MILLS E	4
14	DALLAS ISD	NATHAN ADAMS EL	5
15	BELLVILLE ISD	O'BRYANT PRI	3
16	HUFFMAN ISD	COPELAND EL	3
17	LA JOYA ISD	E B REYNA EL	4
18	POST ISD	POST EL	5
19	MIDLOTHIAN ISD	LARUE MILLER EL	3
20	DUNCANVILLE ISD	CLINT Q SMITH E	4
21	HARMONY SCIENCE	HARMONY SCIENCE	5
22	HOUSTON ISD	STEVENS EL	3
23	TARKINGTON ISD	TARKINGTON INT	4
24	DICKINSON ISD	JOHN AND SHAMAR	5
25	FORT WORTH ISD	LOWERY ROAD	3
26	ALDINE ISD	HARRIS ACADEMY	4
27	NIXON-SMILEY CI	NIXON-SMILEY MI	5
28	LATEXO ISD	LATEXO EL	3
29	HURST-EULESS-BE	HARRISON LANE E	4
30	SAN ANTONIO ISD	BOWDEN EL	5
31	SPRING BRANCH I	BUFFALO CREEK E	3
32	GARLAND ISD	GOLDEN MEADOWS	4
33	DALLAS ISD	JOHN H REAGAN E	5

Table 15: Matched Control Schools (CTRL Dataset)

