

Engine HILS

Engine Hardware-in-the-loop | HELIOS

Easy to Design environment for HILS verification

A&D's Engine HILS provides hardware and software that reduces the user's burden on ECU testing environment creation and dramatically shortens the development period.

Six features to shorten development period

Direct measurement of injector drive current

Measure the injector drive current and obtain injection time. Since the current can be directly measured, an external shunt resistance circuit is unnecessary. In addition, it supports both direct injection and port injection, and can be switched from software.

Direct measurement of solenoid current

The solenoid current of each actuator can also be measured directly. Furthermore, software can be set according to each solenoid.

External power supply for ECU is unnecessary

Supports up to 10 ECU's with one power supply board(VB-SW). In addition, it is possible to monitor current and voltage for each system.

Graphical pattern of creation

Crank · Cam · Knock patterns can be created while displaying the waveform.

Easy real load connection

A load box is provided that can store actual ECU loads. The user can connect the loads to HILS simply by wiring to the terminal blocks in the box. The user can lay out loads of various shapes using the included mounting brackets.

Easy altitude simulation

An optional negative pressure box can control the pressure on the ECU body. High altitude simulation up to altitude of 6000m can be easily performed.

Highlights:

- Compact
- Measures the injection drive current directly and obtains the injection time
- Direct measurement of solenoid current
- Failure function(short to power/ground, open circuit)
- Self-diagnosis function for all I/O boards
- Built-in power supply in HELIOS chassis for driving ECU (600 W)
- Load box with free load layout (optional)
- Negative pressure box enabling high altitude simulation(optional)
- Multinode configuration with multiple HiLS supports tests requiring high computing requirements.
 - Scenario-based tests
- High precision model execution
- Working with test bench
- LabWorX collectively manages test data of bench test and HiLS test

Output signal pattern creation

Crank \cdot Cam \cdot Knock output signal patterns can be created graphically. It is also possible to import patternscreated in csv format.

Resolution 0.1 Range 720 Pattern Length 7200 \$			Resolution = Range[deg] / Pat			rpm		LinitR) LinitRi	LimitRPMipm3 = MsxSamples / DataCountPerPotation (Hz + 01(5) (110(det) / Resolution) LimitRPMipm3 = MsxSamples + RPMResolution (Hz + 01(5) (Resolution / 311(det))								
Basic Setting		Cł.	stine	Teeth Set	ine	Nis	int	Teeth Setting	A	inar	y Settin	e i					
GearCount	72		No.	GearNo.	Position		No	GearNo.		No.	Vol	tage	StartAngle	Width			
HighLevel[V]	5		1	1	0.50		1	1		1	Low		0.0	0.0			
LowLevel[V]	0		2	1	0.50	10	2	4		2	Low		0.0	0.0			
Duky [%]	50		3	1	0.50		\$	33		- 8	Low		0.0	0.0			
Offset[dee]	0		4	1	0.50		4	41		4	Low		0.0	0.0			
2 Inver	t High/Low Level		5	1	010		5	1		5	Low		0.0	0.0			
-			8	1	0.50		6	1		8	Low		0.0	0.0			
			7	1	0.50		7	1		7	Low		0.0	0.0			
			8	1	0.50		8	1		8	Low		0.0	0.0			
			9	1	0.50		5	1	112	9	Low		0.0	0.0			
Graph List							10			10	Low	×	0.0	- 0.0			
Graph List	-www	00	NU	ບບບບ		וות	лл			10		ັ		••	1780 1780	JU	
Graph List		1	nu 1				M			UU		vuu	•••		, 1000,0000 1000,0000	JU	

I/O board specifications

Actual loads are stored in rack

Actual loads and resistance for the ECU can be stored in load box which is stored in HiLS rack. The temperature inside the box is monitored, and HiLS can be stopped safely when a temperature abnormality is detected.

Board	Channels	Description					
ENG-IO	4CH: INJ meas	Injection angle/time measurement, input current range: 0-20A (isolated type), variable threshold, Direct injection/port injection compatible					
	4CH: IGN meas	lgnition angle/time measurement, operation Input voltage range: 0 to $36 V$					
	1CH: Crank angle out	Single-ended AMP output (range: ± 10 V, output current: $\pm 5 \rm mA)$ Open collector output (output level: 5V or VB, drive current: $100\rm mA)$					
	4CH: Cam angle out						
	4CH: Pulse out						
	4CH: Knock sensor out	Single-ended AMP output (± 10 V), output current: ± 5 mA					
PLS-IO	16CH: Pulse voltage meas	Comparator input (Range: 0-30V, Frequency: ${\sim}100 \text{kHz})/\text{TTL}$ input(Range: 0-5 V, Frequency: ${\sim}1\text{MHz})$					
	16CH: Pulse voltage out	Push-pull output (range: 0-30V, drive current: $\pm 100{\rm mA})/{\rm CMOS}$ output(range: 0to5 V, drive current: 5mA					
ACT-IO	12CH: Solenoid meas	Measurement current range: $\pm 5A$ (isolated type), measurement voltage range: 0-30 V, frequency: 100kHz or less, resolution: 24bits					
	2CH: Motor meas	Measurement current range: ± 20 A(isolated type), measurement voltage range: 0-30 V, frequency: 100kHz or less, resolution: 24 bits					
	2CH: Throttle sensor meas	Measurement voltage range: 0-5V					
SENSOR-IO	16CH: Analog in	Single ended input, range: $0-5$ V/ $0-30$ V/ ± 10 V switchable, filter switchable, resolution: 24bits					
	16CH: Analog out	Single ended output, range: $0-5V/\pm10V$ switchable, output current: $\pm5mA$ ($\pm100mA$ switchable), resolution: 16bits					
COM-IO	6CH:CAN/CANFD	CANFD MAX 4Mbps, terminating resistance switchable					
	2CH:CAN	MAX 1Mbps, terminating resistance switchable					
	4CH:LIN	LIN 1.x/2.0/2.1/2.2A, bus voltage switchable					
	1CH:K-Line	VB input range:6-36V, pull-up switchable					
	2CH:Serial	RS232-C/RS422/RS485/TTL, terminating resistance switchable $(120\Omega/60\Omega/none)$					
VB-SW	10CH: VB supply relay	Mechanical relay 60V/50A×1、60V/20A×9、Maximum total current: 50A, voltage/current monitor					
	1CH: Sub battery input	MAX 30A					

Americas

Europe

A&D Technology, Inc. Ann Arbor, MI USA Ph: +1 (734)973 1111 www.AandDTech.com

A&D Europe, GmbH Griesheim, Germany PH: +49 (0)6155-605 250 www.AandDEurope.com

A&D Europe - UK Branch Abingdon, Oxon, UK PH: +44 (0)1235-550 420 www.AandDEurope.com Asia

A&D Technology Trading Co. Shanghai, China PH: +86 (0)21-3393 2340 www.AandDTech.com

A&D Company, Ltd-Tokyo, Japan PH: +81 (0)3-5391 2753 www.AandD.co.jp

Australia

A&D Australasia Pty Ltd. Kensington, VIC, Australia PH: +61 (0)3-9372 1522 www.andaustralasia.com.au

A&D Technology

v20190207 Copyright 2019 A&D Technology, Inc. All rights reserved. All products and brand names are trademarks or registered trademarks of their respective holders. In keeping with our commitment to continuous product improvement, information contained herein is subject to change. Printed in the U.S.A.