
2018

Containerization with
dotCMS:
Everything You Need
to Know

02CONTAINERS 101:
Everything Yoy Need to Know About Containerization

CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know 02

Key Takeaways .. 04

An Introduction to Containers ... 06

How Do Containers Work? ... 08

Containers: The Perfect Home for Your Microservices ... 09

What are Microservices? .. 09

How Containers Help With Microservice Management ... 10

01. Reduced Costs, Enhanced Processing Power ... 10

02. Freedom for Developers .. 10

03. More Flexibility, More Consistency ... 11

Docker Images and Reference Implementations from dotCMS .. 12

Why Docker and Docker Swarm? ... 15

Container Orchestration: Running dotCMS in Kubernetes .. 18

Beyond Theory: How dotCMS Customers Can Leverage Containers 19

The Future is Contained ... 20

About dotCMS .. 21

References .. 23

03CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know 03CONTAINERS 101:

Everything Yoy Need to Know About Containerization 03CONTAINERS 101:
Everything Yoy Need to Know About Containerization

CONTAINERS 101:
Everything You Need to Know About Containerization 03

$2
.7

$7
62

Growth of the
Containerization

Market

2016 2017 2018 2019 2020

bi
lli

on

bi
lli

on

As big
name brands like

Google, Uber, Netflix and Amazon move further
away from monolithic architectures and embrace
microservices instead, the discussion around
containers is heating up.

However, the growth of the containization market
isn’t restricted to the big names alone. In fact, the
application container market is set to grow from
$762 million in 2016 to $2.7 billion in 20201 — a
sharp rise that’s set to be facilitated by large and
medium-sized companies alike.

dotCMS has invested significant developer time and
resources into scaling dotCMS with containers via
Docker, giving dotCMS customers the opportunity
to build with a platform that they can independently
scale and different dimensions of their ecosystem
depending on the load they need to support.

04CONTAINERS 101:
Everything Yoy Need to Know About Containerization

CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know 04

Key Takeaways

dotCMS is a hybrid CMS that helps enterprises make content
the centerpiece of their brand. With dotCMS, organizations
can build, manage, and scale all of their content in one
centralized system. We provide the delivery, integration, and
APIs needed to meet your needs in an ever-changing digital
world.

Many months prior to the release of dotCMS 5.0, the
dotCMS team were running and testing dotCMS in Docker in
order to keep dotCMS in line with the industry’s latest pivot;
to containerize everything. Now that dotCMS 5.0 is here —
and now that we’ve moved several of our own properties to
Docker-ized installations — we’re ready to guide dotCMS
customers towards containerization.

05CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

01. How does dotCMS Fit in
a Containerized Application
Architecture?

dotCMS provides a Docker Image for dotCMS
itself, enabling users to run dotCMS in a Docker
container. Further Docker Images are provided via
dotCMS’ Docker repositories2, including images
for ElasticSearch, Postgres, and HazelCast,
empowering dotCMS users with the ability to
containerize the different elements of their dotCMS-
powered project, making them easier to scale and
manage independently — while also allowing them
to communicate and work in tandem.

02. Does dotCMS Provide any
Reference Implementations?

dotCMS provides reference implementations for

docker-compose

Docker Swarm

Kubernetes

03. Are There Any Prerequisites
to Containerize dotCMS?

You’ll need an instance of dotCMS 5.0 or above,
as well as access to Docker. As for container
orchestration, our containers are orchestrator
agnostic, meaning they can be run in any Docker-
compliant orchestrator such as Kubernetes,
Docker Swarm, Docker Community Edition, Docker
Enterprise Edition, Mesos, OpenShift, Rancher, and
docker-compose.

Also, our Docker containers can be run in the custom
cloud provider environments such as AWS (EKS,
ECS, Fargate), Azure, Google Cloud Platform, and
Digital Ocean.

04. Can dotCMS Assist our
DevOps Team to Containerize
dotCMS?

Absolutely, dotCMS has extensive documentation
as well as experienced DevOps engineers to help
make your transition to containers fast, smooth, and
beneficial.

Key Takeaways
Here are the key takeaways from this whitepaper.

06CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

An
Introduction
to Containers

Available for both Linux-based and Microsoft-based
applications, a container virtualizes the operating
system instead of hardware, making a container
a more portal and efficient alternative to virtual
machines (VMs) in many cases. Containers also
afford developers the ability to scale individual
containers up or down in isolation, depending on
their needs.

Here’s how Docker defines
a container:

“A container is a standard unit of software that
packages up code and all its dependencies so
the application runs quickly and reliably from one
computing environment to another. A Docker
container image is a lightweight, standalone,
executable package of software that includes
everything needed to run an application: code,
runtime, system tools, system libraries and settings.

Container images become containers at runtime
and in the case of Docker containers - images
become containers when they run on Docker
Engine. Available for both Linux and Windows-based
applications, containerized software will always
run the same, regardless of the infrastructure.
Containers isolate software from its environment and
ensure that it works uniformly despite differences
for instance between development and staging3.”

While virtual machines (VM) virtualize a machine,
a container virtualizes an entire operating system
so that multiple workloads can run on a single
OS instance. With VMs, the hardware is being
virtualized to run multiple OS instances — which,
in some instances, slows applications down, slows
development down, and gradually increases the
total cost of ownership as the ecosystem scales.
While VMs still have a place in the modern IT
ecosystem, containers are becoming increasingly
sought after, as they leverage just one OS for multiple
applications, increasing speed and portability while
also lowering costs.

07CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

Like virtual
machines, containers
provide an environment for
microservices to be deployed,
managed, and scaled
independently — but in a
more streamlined fashion as
mentioned above.

As you’ll discover in this white paper, containers
aren’t a new technology, they’re a tried-and-tested
solution that has stood the test of time, and
will continue to do so as we enter a new era of
microservice-based applications.

In fact, the first recorded instance of containerization
occurred in 1979 with the release of UnixV74.
It brought with it the chroot5 system call, which
allowed for modification of the root directory of
a process and its children to a new location in the
filesystem. In other words, enabled developers to
segregate and isolate file access for each process.

The next major step towards modern
containerization wasn’t taken until the turn of the
21st century, but we have come a long way since
then, as this timeline illustrates:

1979:
Unix7

2001:
Linux VServer

2005
Open VZ
(Open Virtuzzo)

2008
LXC

2013
LMCTFY * and
Docker

* LMCTFY: Let Me Contain That For You

2004
Solaris

Containers

2006
Process

Containers

2011
Warden

2000
FreeBSD

Jails

08CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

How Do
Containers Work?

Containers make it easy to package applications
— including microservices — for faster and easier
development, deployment, and maintenance. By
isolating services, you remove the conflicts that can
arise in monolithic architecture.

Containers, unlike VMs which provide hardware
virtualization, provide operating-system-level
virtualization. Even though containers are similar
to VMs, since they have its own private space for
processing, executing commands, mounting file
systems, and having its own private network interface
and IP address; the significant difference between
containers and VMs is that containers share the
host’s operating system with other containers. Thus,
making them more lightweight.

Multiple containers can run on a single OS, and
since the OS is shared across all the containers, the
components that need to be developed from scratch
are the binaries and libraries — which can easily
be added via Docker images (we’ll explain Docker
images, and how dotCMS provides them, later in this
whitepaper).

Graphic Above: These containers sit on top of a
Docker engine, which in turn, sits on top of the host
operating system. The Docker engine utilizes a Linux
or Windows Kernel which allows developers to easily
create containers on top of the operating system.

Containerized Applications

Docker

Operating System

Server

09CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

Containers: The
Perfect Home for
Your Microservices

Containers serve as isolated digital capsules for
microservices, making them easier to maintain,
update, and scale independently.

A recent microservices survey6, which compiled the
views of over 2,100 developers and IT specialists,
found that larger enterprises see microservices
as a path to modernization, with 36 percent of
microservices efforts being related to modernizing
legacy applications.

What are
Microservices?

A microservice can be defined as an isolated
application that works in tandem with other
services. A microservice architecture is formed
of multiple, isolated, yet communicating services
— a contrast to monolithic architecture, where all
the applications operate from a single, rigid stack.

In short, monolithic architecture becomes
increasingly difficult to manage and maintain as the
digital ecosystem scales. For instance, developers
aren’t able to update or modify a single component
of the stack without system-wide implications. This
often leads to downtime, friction between developers
and engineers, testing issues, and ultimately a slower
time-to-market coupled with a patchy customer
experience post-launch.

A microservice architecture addresses these
issues by segmenting components into individual
services that can be deployed, scaled, and modified
in isolation — and thus, without interfering with the
other individual components. A key advantage of
microservices is that they can be scaled individually
based on its own resource requirements.

10CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

01. Reduced Costs, Enhanced
Processing Power

In contrast to using virtual machines, with
containerization you can leverage a single operating
system instance that supports multiple containers,
each running within its own, separate execution
environment.

With multiple containers running on a solitary OS,
you reduce your expenditure while simultaneously
freeing up more processing power for your
applications. Even if we consider efficiency alone,
containers easily trump virtual machines when it
comes to housing microservices.

How
Containers Help
With Microservice
Management

02. Freedom for
Developers

Because microservices are isolated inside their
containers, developers can use different tools and
languages for different services, increasing freedom
and preventing technology lock-in. Yet, standardized
packaging simplifies testing and development. This
is achieved by creating a Dockerfile that defines the
language, framework, and library for that particular
microservice.

For example, you can create a Dockerfile to create
a Docker image for a microservice that uses Java
on the Spring framework. The container created for
this Docker Image can easily be placed on a host
next to another container created from a Docker
image using Ruby and the Sinatra framework. Since
the container execution environment isolates each
container running on the host, there is no risk of the
language, library or framework colliding with one
another.

11CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

03. More Flexibility, More
Consistency

Containers, and the microservices within, can be
deployed in the cloud on on-premise, and can be
orchestrated individually via container orchestration
tools such as Docker Swarm and Kubernetes — both
of which play nicely with dotCMS.

And yet, developers will find it easier to keep a
level of consistency throughout their ecosystem.
Because containers organize microservices in the
same containerized environment, collaboration
between developers, testers, and administrators
becomes easier, more seamless, and therefore
more consistent across the delivery chain. In other
words, containers help you build a healthy DevOps
environment.

12CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

Docker Images and
Reference Implementations
from dotCMS

You could look at Docker images as the building
blocks of your container. Made up of multiple, read-
only layers, a Docker image is a static and executable
version of an application or service.

An image becomes a container when a readable/
writable layer is added on top of static layers. Those
underlying static layers can be reused in different
containers across your ecosystem. The base image
contains all of the dependencies needed to execute
code in a container.

The “Docker run” command takes the Docker image
as a template and produces a container from it.
Docker engine takes an image, adds the top writable
layer, and then initializes various settings such as
network ports, resource limits, and the container
name.

Docker Container Containers Leveraging One ImageDocker Image

R/O R/O

R/W R/W R/W R/W

R/O

R/O R/O R/O

R/O

R/O = Read Only Image Layers R/W = Read and Write Layers

R/O R/O

13CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

01. dotCMS:

This is the default dotCMS image. It can be used by
itself as a standalone demo which uses H2 or with
a plugin it can be configured to use a production
ready database. When used by itself without a
plugin, it is essentially the same as pulling down the
tar/zip file of the release, uncompressing release,
and running it. It will run using H2 as its database
and with embedded ElasticSearch and Caching.

02. Haproxy:

This is included for an example of a load balancer
properly configured to work with dotCMS. If your
infrastructure has a load balancer, you should
consider using it for production use rather than this
image. This image is useful for demo, development,
and testing purposes.

03. Hazelcast:

This image provides Hazelcast 3.9.2 along with
our configuration and discovery scripts that allows
dotCMS to dynamically discover these nodes and
to enable dynamic scaling of the Hazelcast caching
layer independent of the number of dotCMS nodes.

06. Postgres

A very popular open source database engine. Even if
you chose not to run your production database in a
container, this image can be helpful for development
and testing purposes.

05. ElasticSearch

This image provides ElasticSearch 6.1.3 along with
our configuration and discovery scripts that allows
dotCMS to dynamically discover these nodes and
enable dynamic scaling of ElasticSearch layer
independently of the number of dotCMS nodes.

04. Hazelcast Management Center

An image for running Hazelcast’s Management
Center in your containerized environment. Please
note that if you scale your Hazelcast nodes to more
than two, you will need to secure a license from
Hazelcast for this tool to work properly.

Currently, there are six different docker images made available by dotCMS:

As for reference implementations, these are example configurations for container orchestrators that show how
the containers interact with one another. dotCMS provides reference implementations for docker-compose,
Docker Swarm, and Kubernetes.

14CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

Docker Images
Available by dotCMS

06

15CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

Why Docker
and Docker Swarm?

dotCMS is a best-of-breed solution. Our history
is laden with examples of dotCMS customers
integrating with leading technologies. This is down
to our mission to give our customers access to the
best third-party technologies via APIs and strategic
partnerships so that they can serve every dimension
of their digital presence with cutting-edge and
industry leading technology.

In other words, dotCMS doesn’t intend to be a “Jack
of all trades”, we intend to be the best at content
management — while allowing our customers to
access and leverage the best solutions for other
industries. With this same mission in mind, we
chose to provide our reference implementation using
Docker Swarm, and we chose to provide containers

that can be run in any Linux Docker-compatible
orchestrator.

There are several reasons for this choice, but most
importantly of all, the YAML file for Swarm is easy to
understand and is an effective way of communicating
the needed configuration for services, volumes, and
networks. The YAML file also works with docker-
compose which makes it easy for simple POCs and
for developers to use the entire stack locally on their
development machines.

All our reference implementations can be ported into
any orchestration environment other than Docker
Swarm, as demonstrated by dotCMS’ Senior DevOps
Engineer Brent Griffin7.

16CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

02. Built for the Microservices
Boom

For granular control, lower expenditure, and to
facilitate a DevOps environment, the world’s largest
brands have already transitioned from monolithic
architecture to microservices — and the digital world
is following in droves. Docker was built with this
microservice boom in mind.

03. Portability

Containerization provides you with a way to
standardize application environments. The
Docker engine provides portability where you can
operate the application across several different
environments.

01. Reputation

Launched in 2013, Docker is known to be the
leading containerization tool on the market. While
Docker didn’t invent the practice of containerization,
it did package and popularize the idea. For the last
five years, Docker has become the darling of the
container market.

Here are some additional reasons for our selection
of Docker and Docker Swarm.

17CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

06. Modularity and Scalability

The Docker ecosystem enables you to break up your
application’s functionality into individual containers.
For instance, you could have a database in one
container and a Node.js app in another. The docker
ecosystem allows you to link these containers
together via API calls. And since these components
are running independently, you can update and scale
your component more efficiently.

05. Ease of Use

Docker has made it easier for developers, system
admins, architects, and programmers to utilize
containers to quickly build and test portable
applications. Anyone can create and package an
application on their laptop and run it on either public
cloud, private cloud or even bare metal.

04. Fast, Efficient Deployment
Cycles

Docker helps to reduce the cycle time between
writing code, testing code, and deployment. The
Docker ecosystem enables developers to write code
locally and share their development stack with their
colleagues. Once the code is ready, developers can
push both their code and their stack to a testing
environment to run the required tests. On successful
completion of the testing stage, developers can
then push the Docker Image into production and
deployment.

18CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

Container
Orchestration:
Running dotCMS
in Kubernetes

dotCMS provides a Kubernetes reference
implementation to make it easy for users to leverage
the container orchestration software.

When it comes to alternative tools, experienced
engineers will have no problem running dotCMS
in the container orchestration tool of their choice.
As dotCMS’ Senior DevOps Engineer Brent Griffin
demonstrated on the dotCMS blog8, our Docker
reference implementation can quickly be ported to
Kubernetes — even without a Kubernetes-specific
reference implementation — without issue. Similar
steps can be taken to marry dotCMS Docker images
and containers with third-party orchestrators.

Our current plans are to release
a ‘Docker Compose.

yml’ file along with our Docker images as a reference
implementation that shows how each container
needs to be configured and how the containers
depend on each other.

We believe that the Docker-Compose file succinctly
captures all of the relevant information needed
for configuring the containers to work in any
orchestration environment. Of course, the Docker-
Compose file can be used to run directly in Docker
Swarm and Docker Compose.

Reference implementation from a Docker-
Compose file and ported it over to Kubernetes.
While Kubernetes does not native dependency
management, one of the reasons for our customized
third-party containers is that we have added
some custom discovery logic that ensures their
dependencies are in place prior to the main process
in the container starting up.

19CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

Beyond Theory:
How dotCMS
Customers Can
Leverage
Containers

Our support for Docker now enables dotCMS
customers to easily jump on the containerization
bandwagon. Along with dotCMS’ Docker image,
a Docker compose file is also on the horizon for
dotCMS users, which enables the Docker image to
work with the container management software of
your choice.

In a recent webinar hosted by dotCMS, Brent
Griffin, dotCMS’ Senior DevOps Engineer, provided
a demonstration of how dotCMS can be scaled
using Docker9. In the demonstration, Griffin broke
up dotCMS into seven different components,
highlighting how one of the components, the
Elastic Search functionality, normally comes under
heavy load due to numerous content pull requests.

This results in the overall system running slow, not
because of dotCMS getting taxed, but primarily
down to the rising number of Elastic Search queries
being backed up in a queue.

Griffin showed that, by containerizing the
Elastic Search capability, dotCMS users can
compartmentalize that component, integrate it with
the other components, and then scale it to allow
it to work more efficiently without overloading the
overall system.

dotCMS Docker images have been designed
as “Orchestrator Agnostic”, so brands can use
Kubernetes, Swarm, or any other orchestrator.
Additionally, dotCMS supports complete internal
testing against both Swarm and Kubernetes based
orchestrators. dotCMS uses can also externalize
services, like an ElasticSearch layer for example,
making them individually scalable.

In short, dotCMS helps its customers leverage
containerization to run websites and applications
more efficiently, and at a lower cost than ever
before — all while delivering a competitive customer
experience.

20CONTAINERS 101:
Everything Yoy Need to Know About Containerization

CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know 20

The
Future
is Contained

As well as facilitating headless content

orchestration,

dotCMS has taken steps to
ensure that containers and
container orchestration can
be done seamlessly — and
with the markets leading
tools.

Containers serve as the perfect home for
applications and microservices by facilitating
DevOps environments, decreasing expenditure,
and speeding up the time to market. Thus, you
can expect to see more of the world’s leading
brands leaving virtual machines behind in favor
of Docker-powered containers.

For more information on running dotCMS in
containers, contact us.

20CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

21CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

SCHEDULE A

dotCMS demo at dotcms.com

About
dotCMS

dotCMS is an open-source Java, customer experience
orchestration hub for companies that want to drive
business outcomes with their websites and other
content-driven applications. dotCMS provides the
technology to deliver connected and continuous
customer experiences that business teams can
orchestrate.

Extensible, scalable, and with headless content
management capabilities, organizations can rapidly
build their Digital Experience Platform and drive
innovation while their marketing and business teams
drive customer experiences for every touchpoint, in
every customer journey, on any device — all from a
single system

Founded in 2003, dotCMS is a privately owned U.S. company with offices in Miami (Florida), Boston
(Massachusetts), and San Jose (Costa Rica). With a global network of certified implementation partners and
an active open-source community, dotCMS has generated more than a half-million downloads and over 10,000
implementations and integration projects in over 70 countries. Notable dotCMS customers include: Telus,
Standard & Poors, Hospital Corporation of America, Royal Bank of Canada, DirecTV, Nomura Bank, Thomson
Reuters, China Mobile, Aon, DriveTest Ontario, and ICANN.

HEREDIA, CR

Eurocenter
Primera Etapa, Piso 1
106 Heredia, Costa Rica

BOSTON

200 Portland St
Boston, MA, 02114
U.S.A

MIAMI

3059 Grand Avenue
Miami, FL, 33133

U.S.A

About
dotCMS

contact
W E B: dotcms.com

P H O N E: + 1 - 305 - 900 - 2001

E M A I L : info@dotcms.com

office
locations

22CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

23CONTAINERIZATION WITH DOTCMS:
Everything You Need to Know

1 "7.72 Billion Function-as-a-Service Market 2017 ... - Business Wire." 27 Feb. 2017,
https://www.businesswire.com/news/home/20170227006262/en/7.72-Billion-Function-as-a-Service-
Market-2017---Global. Accessed 8 Aug. 2018.

2 dotCMS Docker Repositories https://hub.docker.com/u/dotcms/

3 Docker: What is a Container? https://www.docker.com/resources/what-container

4 A Brief History of Containers: https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-
to- docker-2016

5 Wikipedia: chroot: https://en.wikipedia.org/wiki/Chroot

6 Microservices Survey, Lightbend. http://www.zdnet.com/article/survey-of-2000-java-and-scala-developers-
reveals-shake-up-in-enterprise-application-architecture/

7 Container Orchestration: Running dotCMS in Kubernetes
https://dotcms.com/blog/post/container-orchestration-running-dotcms-in-kubernetes

8 Container Orchestration: Running dotCMS in Kubernetes
https://dotcms.com/blog/post/container-orchestration-running-dotcms-in-kubernetes

9 Webinar: Why Containerization Makes Sense for Your CMS https://dotcms.com/company/events/why-
containerization-makes-sense-for-your-cms

References

