
1TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

How dotCMS Enables
Interoperability &
Extensibility

2019

dotCMS White Paper

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

02TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

Inside the White Paper ... 03

Interoperability vs. Extensibility 04

Interoperability
Extensibility
Different, But Equally Important

The OSGi Implementation .. 07

What is OSGi?
How dotCMS Implements OSGi
Why OSGi Improves Interoperability & Extensibility

The API-Driven Architecture 11

What is REST?

What is GraphQL?
How dotCMS Implements APIs
Why an API-Driven Architecture Enables Agile Development

The NoCode & LowCode Features 17

Scriptable API Builder
NoCode Every Step of the Way
Benefits of NoCode & LowCode

Why Interoperability is Key to DXP Success .. 20

Complimentary Evaluation Support 22

About dotCMS .. 23

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

03TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

Inside the White
Paper

Building a digital experience platform
(DXP) is expensive. And for the majority
of implementations, the greatest costs
of a project can be attributed to systems
integration and development. That’s
because one software solution will never
completely meet the needs of a business
out of the box. Enterprises, therefore,
often turn to a best-of-breed approach
that requires connecting a variety of
applications & tailoring them to fit the DXP
requirements of their business.

That’s why a highly interoperable and
extensible platform like dotCMS is critical
to lowering the total cost of ownership of
a CMS implementation while increasing
the platform’s overall ROI. With the best-
of-breed approach to a DXP, integrated
systems that avoid data silos is essential.
Software that enables deep integrations,
therefore, can lay the foundation for a
highly effective DXP for the future.

Let’s look at the

multitude of ways
that dotCMS allows
for interoperability
and extensibility

by not only developers but also by
business users.

In particular, we’ll cover:

Interoperability vs. Extensibility

The OSGi Implementation

The API-Driven Architecture

The NoCode & LowCode Features

Summary

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

04TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

Interoperability vs.
Extensibility

When it comes to building out a DXP ecosystem, there are two
key software architecture characteristics that dictate a successful
outcome: interoperability and extensibility.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

05TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

Interoperability

Refers to how straightforward it
is for software to integrate with
external systems.

Usually, the most significant challenge developers face when it
comes to interoperability is the exchange of data. If the systems
can’t communicate at all, or the way systems connect isn’t robust
enough, then data silos will form. That’s why developers rely on
communication methods like APIs and standardized frameworks
for tightly integrating software.

With a CMS, for example, interoperability is crucial when building
out a DXP ecosystem because sharing data and services amongst
systems is vital for building a seamless digital experience across
touchpoints. If a CMS isn’t highly interoperable, data silos could
exist within external systems that limit the overall effectiveness of
your DXP. If marketers can’t access sales information from a CRM
within the CMS, for example, they’ll lose out on vital information
about their customers and target audience. Interoperable software,
therefore, is critical for enabling a best-of-breed approach to a DXP.

Extensibility

Refers to how easily software
can be extended to have
additional functionality.

Some software enables this through a modularized core
system, accessible data, standardized interfaces, and detailed
documentation. The most extensible software, however, is open-
source software that lets developers have full control over the
source code and modify it as necessary.

For CMSs, extensibility is critical for customizing the software to
meet a company’s specific DXP needs. If a CMS doesn’t have the
ability to create new modules, companies will be stuck with generic
functionality that meets the needs of most companies but isn’t
tailored to delivering digital experiences for a particular company’s
audience. Extensible software, therefore, enables developers to
better meet business requirements.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

06TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

Interoperability Extensibility

01. Refers to how straightforward it is for software to integrate
with external systems.

01. Refers to how easily software can be extended to have
additional functionality.

02. APIs & standardized frameworks are used to integrate
software.

02. Open-Source software that lets developers have full control
over the source code.

03. Critical for enabling a best-of-breed approach to a DXP. To
build a seamless digital experience across touchpoints.

03. Critical for customizing the software to meet a company’s
DXP needs. If not it will be stuck with generic functionalities.

Different, But Equally Important

Both interoperability and extensibility are essential characteristics
when it comes to choosing a CMS & implementing it within your
DXP ecosystem.

These are key factors in enabling a best-of-breed approach and
reducing the overall total cost of ownership of implementation
projects. As we’ll see in the following sections,

dotCMS has a multitude of
features that make business-
specific integrations &
customizations possible.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

07TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

The OSGi Implementation

In a Java programming environment, one of the biggest challenges
is modularization. While component-based software makes the
development of individual functionality easier, as software gets
larger it can become more complex. It thewn becomes difficult
for developers to maintain the communication between various
services without running into incompatibilities. With this in mind,
let’s take a closer look at OSGi and how it’s a solution to many of
these issues.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

08TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

What is OSGi?

The Open Service Gateway Initiative (OSGi)
defines a Java-based framework that
makes it easier to manage many different
independent software components.
The core tenants of the framework are
encapsulation and loose coupling of
components.

01. Encapsulation: means the internal
workings of components and their
dependencies are self-contained.

02. Loose coupling: means that
components can run independently while
relying on other components as little as
possible. These attributes make highly
modularized software much easier to
maintain.

With OSGi, independent software
components are known as bundles, which
run in an OSGi container. Once a container
is deployed, bundles can be installed and
managed without requiring the platform to
reboot because the OSGi service registry

automatically detects bundle changes.
These bundles run in isolation with all of
their own dependencies included.

This means developers avoid the
challenge of resolving dependency
conflicts — different versions of libraries
or Jar files running in the same Java

Runtime Environment. The bundles also
hide their internals from each other and
communicate through limited interfaces.
That’s why running bundles in isolation has
the added benefit of reducing the impact
that additional code can have on core
source code.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

09TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

How dotCMS Implements
OSGi

dotCMS implements OSGi using Apache
Felix, so that bundle plugins can be hot-
swapped while the CMS is running. These
plugins include:

Viewtools

Actionlets

Service

Custom Admin Portlets

Servlets & more

OSGi is enabled by default, so new plugins
can be added at any time manually or
using the Dynamic Plugins Portlet web
interface.

Beyond managing bundles, dotCMS gives
you the tools necessary to develop your
own plugins. Using an Eclipse development
environment, you can write an entirely new
plugin in Java by following the examples
dotCMS provides.

You can quickly
install your new
plugin while ensuring
the custom code is
isolated from the
core dotCMS code.
Further Reading:
OSGI Explained: Extending Your Software
to Embed an OSGi Framework >>

Why OSGi Improves
Interoperability &
Extensibility

When it comes to extensibility, OSGi
lets developers quickly create custom
functionality and integrate the new
code with dotCMS without worrying
about versioning conflicts. The code is
completely isolated, so major or minor
software upgrades of the core platform
won’t be impacted going forward.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences
https://dotcms.com/blog/post/navigating-osgi-extending-your-software-to-embed-an-osgi-framework
https://dotcms.com/blog/post/navigating-osgi-extending-your-software-to-embed-an-osgi-framework

10TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

This means
developers are free
to create business-
specific capabilities
& deploy them
without impacting
the platform’s
durability.
Extended functionality can include deep
integrations with third-party applications,
or additional features within the dotCMS
interface.

OSGi also enables interoperability with
other applications because each bundle
is entirely independent. This means the
dependencies one component needs
won’t conflict with those necessary for
other applications or components when

deployed within the OSGi container.
Dependency conflicts are a common issue
many developers face when deploying
applications to web containers. dotCMS
has many ready-made OSGi plugins for
common use cases, which dramatically
reduces the time to market and cost for
integrating with the most popular external
applications.

OSGi reduces the
complexity of
adding additional
functionality and
integrating with
third-party systems
by leveraging a transparent component-
based framework for building your DXP. For
these reasons, OSGi leads to a faster time
to market when implementing dotCMS.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

11TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

The API-Driven Architecture

Along with the Java-based OSGi framework, there are situations
where developers want language-agnostic integrations. OSGi
modules aren’t practical for integrating with systems developed in
languages other than Java. That’s where APIs come into play.

There are many types of APIs from REST to SOAP, but what they
have in common is enabling programs written in different languages
to communicate with standardized data formats like JSON or XML.
The ability to exchange information has become crucial with the
rise of microservices, and the best-of-breed approach. That’s why
there’s been a 30% increase in new APIs released in 2019 than the
previous four years.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17

12TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

What is REST?

REST is an API design style that mimics
the internet itself. This means a

RESTful API follows
the HyperText
Transfer Protocol
(HTTP) methods like
GET, PUT, PATCH,
and DELETE.
They’re also stateless, which means each
API request and response is independent
and self-contained. Statelessness enables
the loose-coupling of systems when it
comes to integration.

When it comes to the actual data
transferred, most REST APIs use JSON

content for formatting because it’s easier
to read than formats like XML. In more
recent years, REST API standards have
become more popular than traditional
SOAP web services because they’re usually
more straightforward to work with and
often use less bandwidth. There’s been
a proliferation of APIs, and most SaaS
applications now expose an APIs with a
range of functionalities.

What is GraphQL?

GraphQL is a querying language
for APIs that

lets developers
describe the data
they want and get all
of it back from one
endpoint.

The standardized querying language
hides the implementation details of the
underlying APIs from developers, so
they don’t need to know where specific
resources are located or the structure
of the backend server. GraphQL is
introspective, which means the API can be
queried for the data types it supports, so
there are fewer challenges with versioning
and code changes on the backend.

Since GraphQL requests retrieve exactly
what’s been described, overfetching
and underfetching of data is virtually
eliminated. This means fewer API calls
and less bandwidth usage in the long
run. Many development teams have been
moving to GraphQL because of its ease of
use and potential performance increases.

Further Reading:
How dotCMS & GraphQL
Combine to Simplify Headless Content
Management >>

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences
http://How dotCMS and GraphQL Combine to Simplify Headless Content Management
http://How dotCMS and GraphQL Combine to Simplify Headless Content Management
http://How dotCMS and GraphQL Combine to Simplify Headless Content Management

13TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

How dotCMS Implements
APIs

dotCMS has out of the box support
for both REST APIs and GraphQL.
These dotCMS APIs have thorough
documentation and follow industry
standards for security, performance, and
control.

When it comes to security, dotCMS APIs
support a multitude of authentication
methods like Basic Authentication and
JSON Web Tokens (JWT) to validate the
identity of users. Beyond that, dotCMS
APIs support authorization down to the
granular-level, which lets administrators
set permission rules on specific pieces of
content.

With the dotCMS
REST APIs, you can
perform nearly any
function — which we
call Everything as a
Service.
There are hundreds of REST endpoints to
work with, which are fully documented
here. Using the APIs, objects and content
can be created, modified, and accessed
using the APIs. The dotCMS configurations
can be modified, and workflow actions like
publishing can be triggered through APIs
as well. Here are more details on some of
the most commonly used APIs:

...objects and
content can be
created, modified,
and accessed
using the APIs.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences
https://dotcms.com/docs/latest/rest-api-end-point
https://dotcms.com/docs/latest/rest-api-end-point

14TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

02. Content Type API:

Lets developers manage content
types. When integrating with third-party
systems, this API is useful for retrieving
the structure of various content types
before implementing data manipulation
processes.

Read more >>

03. Elasticsearch API:

Allows developers
to search & retrieve
content quickly
by leveraging an
Elasticsearch-index
content repository.

01. Content API:

Gives developers control over content and
assets. This includes full CRUD — create,
read, update, and delete — capabilities for
any content type. The Content API is the
most common way to work with content.
This API can be used to ingest content
from third-party systems or pull content for
frontend applications.

Read More >>

The API uses the Lucene syntax for basic
queries and full Elasticsearch JSON
syntax for more advanced features like
aggregation and geolocation searches.

Read more >>

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences
https://dotcms.com/docs/latest/content-type-api
https://dotcms.com/docs/latest/content-api
https://dotcms.com/docs/latest/elasticsearch-rest-api

15TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

04. Workflow API:

Lets developers create, modify, and
execute workflows and workflow actions.
Through this API, third-party applications
can trigger workflow actions and move
content through to the next step. External
translation services, for example, can
receive content from dotCMS, translate it,
and use the Workflow API to notify dotCMS
that the translated content is ready.

Read more >>

05. Layout API:

Allows developers to retrieve everything
necessary for a web page in a single API
call from the page layout to its theme,
content, and widget components. This
Layout as a Service approach gives
marketers control over web page layouts
while still enabling developers to integrate
with the frontend technologies of their
choice.

Read more >>

06. Navigation API:

Lets developers retrieve navigation and
menu information for a website based on
the dotCMS file and folder tree structure.
This means frontend applications can have
dynamic site navigation.

Read more >>

The GraphQL APIs
that dotCMS gives
developers access
to the entire content
repository

using the querying language. This means
developers have added flexibility in
shaping the responses they get back to
better fit with the data formats required for
new or legacy applications.

You can find out more about the
dotCMS GraphQL implementation here >>

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences
https://dotcms.com/docs/latest/page-rest-api-layout-as-a-service-laas
https://dotcms.com/docs/latest/page-rest-api-layout-as-a-service-laas
https://dotcms.com/docs/latest/navigation-rest-api
https://dotcms.com/docs/latest/graphql

16TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

Why an API-Driven
Architecture Enables
Agile Development

The API-driven nature of dotCMS means
companies can

access content at
whichever level they
want, from whole
pages down to layout
components or
individual content.
This means developers can use the
traditional CMS approach by delivering
static HTML pages or they can provide
fragments of pages in JSON format to

integrate with SPA frameworks like React
or Angular. Developers have complete
flexibility when it comes to content,
workflows, and most other dotCMS
functionality.
Everything as a Service streamlines the
integration with front-end frameworks and
enables developers to deliver web apps
faster than ever.

Besides integrating with nearly any
front-end, the dotCMS APIs enable
developers to connect with a variety
of third-party applications. Data can
easily be pulled from external systems or
actions within external applications can
trigger functionality within dotCMS. Most
modern web apps expose APIs, so the
integration options are truly endless. With
dotCMS, building a best-of-breed DXP is
straightforward.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

17TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

The NoCode & LowCode
Features

As enterprises look to deliver web apps to market faster, at a
much lower cost, they’ve been increasingly turning to NoCode
and LowCode solutions. That’s because enterprise IT teams are
spending 60% of their team maintaining existing application, which
leaves little room for digital innovation. For many IT implementation
projects, software development is a slow and costly endeavor.
Reducing heavy development with a lighter scripting language like
Velocity or even drag-and-drop interfaces can dramatically reduce
the costs of building a DXP ecosystem.

With that in mind, here’s a number of dotCMS features that
streamline development, and even enable non-technical staff to get
involved in the implementation process.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences
https://www.forbes.com/sites/johneverhard/2019/01/15/what-really-is-low-codeno-code-development/#73cb961d2a8e
https://www.forbes.com/sites/johneverhard/2019/01/15/what-really-is-low-codeno-code-development/#73cb961d2a8e

18TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

Scriptable API Builder

While dotCMS has powerful native APIs,
some companies may wish to create their
own custom endpoints to meet unique
business requirements. With the scriptable
API builder, this is now possible without
requiring Java code.

Using low code Velocity scripting,
developers can create new endpoints
to pull, manipulate, and render content
however they deem necessary.

Lightweight velocity
endpoints have
full access to
requests, responses,
& authentication
information just like
REST endpoint.

In addition, there are a variety of Viewtools
— Java classes with functionality that’s
accessible from Velocity code.

Velocity scripting requires much less
technical knowledge, so it’s no longer
necessary for developers to build custom
endpoint using heavy Java programming.
In many cases, business users can even
learn enough Velocity to perform some
tasks like creating templates themselves.

Scripting as a Service

Scripting as a Service takes Velocity-based
API endpoints a step further. Developers
can now dynamically generate API
responses at runtime by including Velocity
code with API requests. This means
external applications can define APIs that
fits exactly what they need, which makes
integrating with legacy applications much
easier than in the past.

Rendering an endpoint dynamically with
dotCMS is straightforward. Developers
can make an API request to the “dynamic”
REST endpoint and include a “velocity”
field in the JSON content that contains a
Velocity script. This Velocity code would
be executed on the fly as if it was already a
defined custom lightweight endpoint.

Scripting as a service lets

front-end developers
create customized
endpoints for web
apps without relying
on backend Java
developers.
This can reduce the time to market for
integrating with legacy applications as
well.

Watch Scripting as a Service Demo >>

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences
https://www.youtube.com/watch?v=CAz_XjZ1lU8&feature=youtu.be

19TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

NoCode Every Step of the
Way

While not directly implementation features,
there is a multitude of NoCode tools for
marketers that give developers some
breathing room. Creating content types
and workflows are tasks that should
be done by business users, but most
platforms require developer assistance.

With dotCMS, non-
technical users are
empowered to fulfill
many tasks that free
up IT staff

to work on more complex integration
tasks. These NoCode features, therefore,
indirectly contribute the interoperability
and extensibility of dotCMS, and reduce
the overall ROI of building a best-of-breed
DXP.

Benefits of NoCode &
LowCode

And it’s not just non-technical users that
benefit from NoCode and LowCode, but
developers as well. dotCMS streamlines
the development process when it comes
to API integrations with its API Builder and
Scripting as a Service capabilities. NoCode
shifts development teams from low-level
tasks to building unique business logic.
In most situations, Velocity scripting is
significantly faster than Java development,
so developers can complete integration
projects faster than ever before.

The benefits for organizations are
enormous when it comes to reducing
software development requirements.
Reduced development needs increases
productivity for developers and marketers,
which increases the ROI of implementation
projects. That’s why dotCMS continues
to develop features that fit its NoCode
philosophy.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

20TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

Why Interoperability is Key to
DXP Success

When building a best-of-breed DXP solution for your organization,
interoperability and extensibility are critical factors to consider.
That’s why open source software like dotCMS can act as a content
hub and foundation for enabling a seamless DX ecosystem.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

21TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

dotCMS is built from the ground up for
integration and customization. It’s API-
driven architecture and OSGi support
enable developers to choose the best
approach for each integration point —
whether it’s a front-end customer-facing
app or back-end system like a CRM
or marketing analytics tool. If further
customization is needed, developers can
look towards LowCode API tooling to
streamline the process further.

In the dotCMS 5.x
Series, dotCMS
doubles down
on integration
capabilities with
GraphQL & Scripting
as a Service.

The multitude of integration options
reduces the development cycle and leads
to better adaptability for the future.

Altogether, dotCMS has the capabilities
necessary for implementing the platform
fast and reducing the overall costs of
IT and development. A best-of-breed
approach is not only possible with dotCMS
but a guarantee. With dotCMS, you’re
choosing a low total cost of ownership for
your DXP ecosystem.

A best-of-breed
approach is not
only possible
with dotCMS
but a guarantee.
With dotCMS,
you’re choosing
a low total cost
of ownership
for your DXP
ecosystem.

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences

22TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

Complimentary Evaluation
Support

dotCMS offers a variety of tactics to test-drive and proof out
your key use-cases around your personalization strategy. It is our
investment and helps you to evaluate dotCMS effectively, way
beyond shiny product demos and slick sales presentation.

More on our evaluation support
Here>>>

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences
https://dotcms.com/cms-evaluation/

TRUSTED, CONTINUOUS & CONNECTED CUSTOMER EXPERIENCES

About dotCMS

dotCMS is a leading, open source
content and customer experience
management platform for companies
that want innovation and performance
driving their websites and other content-
driven applications. Extensible and
massively scalable, both small and
large organizations can rapidly deliver
personalized and engaging content across
browsers, mobile devices, channels,
second screens and endpoints -- all from a
single system.

Miami
3059 Grand Av.

Miami,FL,33133
U.S.A

Boston
200 Portland St.

Boston,MA,02114
U.S.A

Heredia, Costa Rica
Eurocenter

Primera Etapa, 2nd Floor
106 Heredia, Costa Rica

Founded in 2003, dotCMS is a privately
owned US company with offices in
Miami, Florida; Boston, Massachusetts
and San Jose, Costa Rica. With a global
network of certified development partners
and an active open source community,
dotCMS has generated more than a half-
million downloads and thousands of
implementations and integration projects
worldwide. Notable dotCMS customers
include: Telus, Standard & Poors, Hospital
Corporation of America, Royal Bank of
Canada, DirecTV, Thomson Reuters, China
Mobile, Aon, and DriveTest Ontario.

dotcms.com +1-305-900-2001 sales@dotcms.comON-DEMAND DEMO

https://dotcms.com/landing-pages/values/trusted-experiences
https://dotcms.com/landing-pages/values/continuous-experiences
https://dotcms.com/landing-pages/values/connected-experiences
https://dotcms.com/
https://dotcms.com/demo/ondemand

