
Introduction

A direct correlation of lithology to stacked and mi-
grated seismic data, although an attractive goal, is usually 
an elusive one. In extreme cases, such as hard limestone 
formations encased in clastics, lithologic information 
may be obvious in the seismic amplitudes. For subsur-
face formations characterized by small velocity changes 
between different lithologies, however, such a correlation 
may not be possible. Similarly, acoustic logs themselves 
are poor indicators or differentiators of lithology, unless 
they are combined with other logs such as density or po-
rosity logs. One main reason for this is that reservoir rocks 
such as sandstone, limestone, and shale each exhibit large 
acoustic- velocity ranges that may overlap significantly. 
In addition, this limited information is available only at 
the location of a well, and seismic data are looked upon 
to provide it elsewhere. Although the goal of direct cor-
relation from seismic to lithology seems simple, serious 
thought suggests that it could be a complicated exercise. 
The seismic response of subsurface rocks depends on the 
contrasts in compressional- and shear-wave velocities and 
densities. Those contrasts in turn depend on the rock’s 
lithology, porosity, pore-fluid content, and pressure, all 
of which affect seismic-wave propagation (e.g., Gregory, 
1977; Castagna et al., 1993). That dependence requires 
knowledge about variations in the elastic properties of 
rock frames, their mineral constituents, and pore fluids, 
as well as a model for the interactions among them. Rock 
physics provides the link between the physical properties 
of rocks and their seismic response, and that link estab-
lishes the P-wave velocity (VP), S-wave velocity (VS), and 
density (ρ) of the subsurface rocks, along with their re-
lationships to the rocks’ elastic moduli (bulk modulus κ 
and shear modulus μ), porosity, pore fluid, temperature, 
pressure, and the like.

Velocities, densities, and many other physical prop-
erties can be measured directly in the laboratory from 

rock samples taken from boreholes. Such measurements 
are not available everywhere and may not be directly ap-
plicable to in-situ conditions, so empirical relations de-
rived from experiments and well logs are usually applied. 
Those empirical relations are based on certain data and 
therefore have assumptions that must be fulfilled before 
the relations can be applied in a meaningful way. In this 
 chapter, we discuss estimation of rock properties and how 
they are used to predict a rock’s pore-fluid properties and 
saturation.

Seismic velocities and density

Velocity estimation

The P- and S-wave velocities for homogeneous, non-
porous, and isotropic rocks are given, in terms of the 
elastic constants, by the well-known equations 1 and 2 of 
Chapter 1 –– that is, in terms of the bulk modulus and the 
shear modulus:

 
V VP Sand=

+
=

κ µ

ρ
µ
ρ

4
3 .

Both of these equations are derived by assuming the prop-
agation of elastic waves in isotropic elastic media. How-
ever, porous media, and therefore porous rocks, are not 
strictly elastic. For our purposes, we will assume that these 
equations are applicable, at least to the first order.

The ratio VP/VS is an important diagnostic value in 
seismic determination of lithology, and it can be written as
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A gas sand thus would show a decrease in VP (as a result 
of appreciably lower bulk modulus and somewhat lower 
density), but only a slight increase in VS, as a result of a 
decreasing bulk density. Thus, the ratio VP/VS is a good 
indicator of free gas in the rock’s pore space.

The elastic properties of any deformable material 
body are defined by its elastic moduli. Bulk modulus and 
shear modulus were defined previously. Here, we define λ 
another elastic constant, called Lamé’s first constant, 
which is related to the other two as κ λ µ= + 2 3/ .

The P-wave velocity can also be written in terms of 
Lamé’s constant:

 
VP = +λ µ

ρ
2

,
 

(2)

where μ is the shear modulus, or second Lamé’s constant, 
and ρ is the density.

Density estimation

The simplest way to compute density is by using the 
mass-balance equation, given as

 ρ ρ φ ρ φ ρ φsat m w w hc w= − + + −( ) ( ) ,1 1S S  (3)

where ϕ is porosity, Sw is water saturation, ρm is the den-
sity of the rock matrix, ρsat is the density of the saturated 
rock, ρw is the density of saline water or brine, and ρhc is 
the density of the hydrocarbon. Here we assume that the 
average density of the rock matrix is ρm and that we have 
two fluids (water and a hydrocarbon) filling the pores of 
the rock.

As expected, the density drops for a gas reservoir 
more rapidly than for an oil reservoir, and that distinction 
is sig nificant in interpretation of seismic AVO responses. 
Such observations are apparent on the curves in Figure 1a 
through 1e, plotted for different values of porosity. In Fig-
ure 1f and 1g, we show 3D plots for density variation as 
a function of water saturation and of porosity, for gas and 
oil. We note that for a given porosity, density decreases as 
water saturation decreases. Similarly, density decreases 
as porosity increases for a given saturation.

The P- and S-wave velocities are affected by factors 
such as porosity, lithology, saturation, pressure, and tem-
perature, among others.

Factors affecting seismic velocity

As a general tendency, higher-porosity rocks tend to 
exhibit lower P- and S-wave velocities than do low-po-
rosity rocks. However, velocities depend on a variety of 
other factors, including lithology, pore shape, fluids (fluid 

type, saturation, and distribution), effective stress, tem-
perature, frequency, degree of cementation, coordination, 
grain-contact area and type, and structural arrangement. 
For example, a  low-porosity rock with flat pores may have 
a lower velocity than a high-porosity rock with the same 
composition but with spherical pores. That pore-shape de-
pendence is  particularly important in rocks with a wide 
variety of pore-shape distributions, such as carbonates. 
Generally, velocity-porosity transforms in such forma-
tions require extensive local calibration. In granular sedi-
mentary rocks –– such as sandstones –– velocity-porosity 
transforms, pore-shape distributions, and other factors 
may vary more regularly. In such cases, more universal 
velocity-porosity transforms may be applicable.

A familiar velocity-porosity empirical transform that 
is used in well-log analysis is the Wyllie et al. (1956, 
1958) time-average equation (also known as the volume-
average equation), given as

 

1 1 1
V V

S
V

S
VP P

w

w

w

hcma

= − + +
−φ φ φ( )

,
 

(4)

where VP is the P-wave velocity in the saturated rock, VPma
 

is the P-wave velocity in the matrix (or the grain), Vw is 
the P-wave velocity in water or brine, Vhc is the P-wave 
velocity in the hydrocarbon, Sw is water saturation, and ϕ 
is porosity. This equation is often used for determining 
porosity from well logs for well-consolidated sandstones. 
In this equation, note that if the matrix velocity and the 
velocities of brine and hydrocarbon are known, the only 
other variable in the equation is porosity. As expected, the 
velocity drops more rapidly for a gas reservoir than for an 
oil reservoir. That distinction is significant in interpreta-
tion of seismic AVO responses.

Wyllie’s equation 4 above seems reasonable for 
clean, well-lithified sandstones that have porosities in the 
range of 10% to 25%, but it overestimates P-wave veloc-
ity at high porosities or low effective stress and for poorly 
lithified rocks. The Wyllie equation generally does not 
predict the effect of hydrocarbons correctly and should 
not be used for that purpose. In view of this, the develop-
ment of other velocity-porosity transforms has also been 
reported. Raymer et al. (1980) introduced a modified 
equation in terms of inverse velocity:

 
V V VP P fsat ma

= − +( ) ,1 2φ φ
 

(5)

where VPma
 is the P-wave velocity in the rock matrix, and 

Vf is the P-wave velocity in fluid comprising brine and 
hydrocarbon. This equation is supposed to be valid for 
lithified sandstones with porosities lower than 37%. In 
view of the empirical nature of the equation, it may not be 
valid in all circumstances and may need correction.
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Figure 1. (a through e): Variation of density as a function of water saturation for oil and gas for different values of porosity.  
(f and g): 3D plots for variation among density, water saturation, and porosity. These graphs indicate that for a gas reservoir, the 
density drops more rapidly than for an oil reservoir. This distinction is significant in the interpretation of seismic AVO responses.
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Similar to the Raymer et al. equation above is the 
one for S-waves that Castagna (1985) and Castagna et al. 
(1993) presented:

 
V VS S1

ma
= −( ) ,φ 2

 
(6)

where VSma
 is the shear-wave velocity in the rock matrix.

Notice that in Raymer et al.’s equation 5 above, if 
Vf is set to zero, equation 6 above for shear waves is 
obtained. Both Wyllie’s time-average equation 4 and 
Raymer et al.’s equation 5 have a restrictive validity for 
sandstones, and both equations can overestimate veloci-
ties for unconsolidated sandstones, shaly sandstones, and 
shales.

By measuring velocities at ultrasonic frequencies and 
as a function of differential pressure and state of satura-
tion, on sandstone samples that had varying porosities and 
volumes of clay content, Han et al. (1986) suggested the 
following empirical equations for VP and VS:

 V CP km/s( ) . . . ,= − −5 59 6 93 2 18φ  
(7)

and

 V CS km/s( ) . . . ,= − −3 52 4 91 1 89φ  (8)

where ϕ is the porosity and C is the fractional volume of 
clay content. The above equations are valid for water-sat-
urated sandstones at 40 MPa. The coefficients in the equa-

tions change slightly as the confining 
pressure is varied, although they are 
stable above 10 MPa.

As is seen in Figure 2, Han et al. 
(1986) found that velocities tend to 
decrease with an increase in poros-
ity, but they exhibit significant scatter 
about the regression lines when clay is 
present (and is water saturated). Also, 
the effects of porosity and clay content 
on shear velocity VS are larger than on 
compressional velocity VP. That im-
plies that a sample with high porosity 
and high clay content tends to have a 
high VP /VS value. If ϕ and C are set 
equal to zero in the above equations, 
VP and VS are significantly lower than 
the corresponding velocities for quartz 
aggregates; i.e., VP = 6.05 km/s and 
VS = 4.09 km/s. This implies that a 
small amount of clays (a 1% or 2% 
volume fraction) can significantly 
soften the sandstone matrix, thereby 
yielding reduced velocities. Thus, the 
clay content in the sandstone should be 
considered when one is quantifying ve-
locity. Because of the empirical  nature 
of these relationships, the coefficients 
in the equations could be recalibrated 
with the available well-log or core data.

Tosaya and Nur (1982) found simi-
lar empirical relationships between P-
wave velocities and porosity, P-wave 
velocities and clay content, and S-wave 
velocities and porosity and clay content. 
For water-saturated rocks at 40 MPa 
confining pressure, they found:

 V CP km/s( ) . . . ,= − −5 8 8 6 2 4φ  (9)
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Figure 2. Velocity versus porosity, based on Han et al.’s (1986) empirical 
relationships for (a) the compressional case and (b) the shear case. Han et al. (1986) 
found that velocities tend to decrease with an increase in porosity, but they exhibit 
significant scatter about the regression lines when clay is present (water-saturated). 
Also, the effects of porosity and clay content are larger on shear velocity than on 
compressional velocity.
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and

 V CS km/s( ) . . . .= − −3 7 6 3 2 1φ  (10)

Castagna et al. (1985) determined the following em-
pirical equations from well logs for water-saturated sam-
ples of shaly sands of the Frio Formation

 V CP km/s( ) . . .= − −5 81 9 42 2 21φ  (11)

and

 V CS km/s( ) . . . .= − −3 89 7 07 2 04φ  (12)

The coefficients are remarkably similar to the results of 
Tosaya and Nur (1982) and Han (1986), although the 
rocks and the methods employed were entirely different.

Trends of VP versus VS generally are defined more 
accurately than velocity-porosity trends are, because 
factors such as porosity, pore shape, and pressure tend 
to affect VP and VS similarly. Pickett (1963) first showed 
that VP-VS trends are well-defined and lithology-depen-
dent (Figure 3). Castagna et al. (1985) and Greenberg 
and Castagna (1992) followed up on Pickett’s work to 
show that, with global empirical equations, VS can be 
predicted with an accuracy of about 5% if lithology and 
pore-fluid content are known. For mudrocks, Castagna 
et al. (1985) determined the relationship between VS and 
VP to be

 V VP Skm/s( ) . . ,= +1 36 1 16  (13)

which became known as the mudrock equation (Figure 
4). Note that this equation is valid for a clastic silicate 
rock that is composed primarily of clay and silt-size par-
ticles. Similar relationships were given for clay shales, 
limestones, and dolomites (Figure 5).

Xu and White (1995) incorporate pore–aspect ratio 
information to improve VS predictions.

These empirical equations provide a framework for 
AVO analysis (e.g., Smith and Gidlow, 1987; Castagna, 
1993; Castagna et al., 1998). For reference, the papers by 
Goldberg and Gurevich (1998), Greenberg and Castagna 
(1992), Castagna (1993), and Xu and White (1995) are 
included on the USB flash drive version of this book.

An exception to reliance on pure empiricism is the 
fluid-substitution problem, in which Gassmann’s theo-
retical equations (Gassmann, 1951) commonly are ap-
plied in practice to predict velocity dependence on pore-
fluid properties and saturation. (An English translation 
of Gassmann’s 1951 paper is included on the USB flash 
drive.) Gassmann’s equations are critical for AVO analy-
sis because they define the dominant hydrocarbon signal 
that AVO is used to detect; that signal is the change in 

Figure 3. Reciprocal compressional velocity versus 
reciprocal shear velocity, based on Pickett’s laboratory 
measurements on limestones, dolomites, and sands. After 
Figure 8 of Pickett (1963). Used by permission.

Figure 4. Crossplot of VP versus VS for (a) shales and 
(b) sandstones. The solid line is the linear regression, fitted 
to the experimental data. After Figure 4 of Castagna et al. 
(1993). Used by permission.
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bulk modulus (and thus in VP) with changes in pore-fluid 
properties. Given the importance of these equations in 
AVO analysis, it is perhaps surprising that relatively lit-
tle attention has been devoted to the nature and implica-
tions of Gassmann’s results as they relate to AVO analy-
sis. Smith et al. (2003; included on the USB flash drive) 
provide an excellent review of the rock-physics aspects 
of the use of Gassmann’s equations. Dey et al. (1999) 
discuss stochastic fluid substitution. Mavko and Mukerji 

(1998b) investigate the derivation of statistically valid 
inferences from AVO attribute crossplots, and White 
and Castagna (2002) perform stochastic fluid-modulus 
inversion.

The general applicability of Gassmann’s equations is 
probably more limited than most practitioners recognize. 
We devote the remainder of this chapter to a discussion 
of the applicability and implications of Gassmann’s equa-
tions in the context of their use for AVO analysis.

Gassmann’s equations

When a seismic wave passes through a porous, satu-
rated rock, the pore fluid contributes to the rock’s resis-
tance to compression (i.e., to its incompressibility). The 
ratio of the applied volumetric stress to the resulting volu-
metric compression is the bulk modulus, κ. Gassmann’s 
equations mechanically relate the bulk modulus of the 
saturated rock, κsat, to the bulk moduli of the pore fluid, κf, 
the nonporous solid material comprising the rock, κ0, and 
the porous rock frame, κ*:

 

κ
κ κ

κ
κ κ

κ
φ κ κ

sat

sat

f

f

*
*0 0 0− = − + −( )

 
(14)

or

 

κ κ

κ
κ

φ
κ

φ
κ

κ
κ
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f

*

*

*
= +

−





+ − −

1

1
0

2

0 0
2

( )
,

 

(15)

and

 µ µ* ,sat=  (16)

where ϕ is the porosity, μ* is the shear modulus of the rock 
skeleton, and μsat is the shear modulus of rock with pore 
fluid. Equation 14 is elegant in its symmetry and reveals 
that, for a given frame modulus, the higher the porosity is 
the smaller the fluid effect will be. This is contrary to the 
observation that higher porosity rocks have larger fluid ef-
fects. The explanation for this apparent discrepancy is that 
the large fluid effect in high-porosity rocks is entirely the 
result of the low frame bulk modulus associated with high 
porosity. (A highly porous but incompressible rock frame 
has a smaller fluid effect than does a low-porosity but 
equally incompressible rock frame). From that reasoning, 
one can conclude that for a given porosity, a low- aspect-
ratio pore structure will have a larger fluid effect than do 
spherical pores. It is worthwhile to point out that equation 
14 behaves poorly as porosity approaches zero and as the 

Figure 5. Crossplot of VP versus VS for water-saturated (a) 
shales, (b) limestones, and (c) dolomites. The solid line is the 
linear regression, fitted to the experimental data. After Figures 
3, 5, and 6 of Castagna et al. (1993). Used by permission.
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frame modulus approaches the solid-grain modulus. Those 
conditions result in very inaccurate fluid substitutions in 
low-porosity rocks because small errors in the porosity 
and other parameters are greatly magnified.

Equation 15 is the standard form (e.g., Domenico, 1976) 
of the bulk-modulus equation that is used to compute the 
saturated bulk modulus as the pore-fluid modulus changes, 
given a known frame bulk modulus, solid-grain modulus, 
and porosity. It is obvious from an inspection of equation 15 
that the maximum fluid-substitution effect occurs when the 
frame modulus is zero and the saturated modulus is simply 
the Reuss average of the solid and fluid moduli. We shall 
see below that the frame bulk modulus can be explicitly ex-
cluded from the fluid-substitution calculation.

As Berryman (1999; included on the USB flash drive) 
pointed out, equation 16 is not an assumption but instead 
follows from theory.

In the terminology adopted in this paper, we use the 
broader term “frame modulus” rather than “dry frame 
modulus,” because frame hardening or softening occurs 
when fluids are changed. Gassmann’s equations do not 
take into account modification of the rock frame proper-
ties by the pore fluids. Thus, the frame modulus should 
be taken as the modulus of the frame in the presence of 
the wetting fluid. In most cases, the wetting fluid will be 
brine. Additional complications arise in comparing brine- 
and hydrocarbon-saturated moduli for the case of oil-wet 
reservoirs.

Gassmann’s assumptions

Gassmann’s derivation uses the following seven sim-
plifying assumptions:

1) As the medium is deformed, there is enough time for 
the pore pressure to equilibrate throughout the inter-
connected pore space. This assumption requires that, 
for any given frequency, the fluid mobility (perme-
ability/viscosity) is sufficiently high to allow pres-
sure equilibration. That is certainly not a good as-
sumption in low-permeability rocks or in heavy-oil 
reservoirs. It is commonly assumed that seismic 
and sonic-log data correspond to the low-frequency 
region where moduli are virtually the same as they 
are at the zero-frequency limit, whereas laboratory 
pulse-transmission-type measurements correspond to 
the high-frequency regime where moduli are stiffer. 
Biot’s (1956) theory, as made accessible by Geertsma 
and Smit (1961), is used to perform fluid substitu-
tion at laboratory frequencies. Sonic-log data in low-
permeability shale-rich or tight-gas sands may not 
be consistent with Gassmann’s equations and may 
require correction for dispersion (and consequently, 

for invasion). It is likely that at high frequencies, 
modulus-versus-saturation curves depend on spatial 
distribution (Mavko and Mukerji, 1998a), distribution 
between pore shapes (Endres and Knight, 1997), or 
some combination thereof. Those effects are smaller 
at seismic frequencies, where Gassmann’s equations 
are expected to be more applicable. A notable excep-
tion would be a finely layered medium of alternating 
permeable and impermeable layers (sands and shales) 
with saturation measured for the entire interval. That 
would occur, for example, in laminated sands in which 
the layering is finer than the resolution of acoustic log-
ging tools (i.e., when the laminations are much small-
er than approximately 1 m). In such a case, saturations 
need to be distributed to the individual laminations 
where Gassmann’s equations are applied; the interval 
properties would then be determined by appropriate 
layer averaging (e.g., Backus, 1962). Less significant 
for seismic applications, but also of interest, is satura-
tion inhomogeneity within an otherwise uniform, per-
meable medium (Mavko and Mukerji, 1998a).

2) All of the pores are in communication. If there is 
“acoustically ineffective” isolated porosity (i.e., po-
rosity through which fluids do not flow during passage 
of the wave), it should be excluded from the porosity 
used in equation 14 and instead incorporated into the 
solid-grain modulus (Brown and Korringa, 1975).

3) The rock frame is chemically and physically inert. 
Gassmann’s equations are purely mechanical and do 
not account for changing chemical forces, or for phys-
icochemical changes to the rock frame as fluids are 
changed, or for pore-pressure changes associated with 
changing fluid content. It is not uncommon for fluid-
saturation changes to be accompanied by pore-pres-
sure changes (e.g., pressure depletion during primary 
production or pressure increases caused by water or 
steam injection). If pore pressures drop, the rock 
frame usually becomes stiffer as a result of consolida-
tion of the pore space. If pore pressure increases, mi-
crofractures may open and reduce the frame modulus.

4) The rock is isotropic and homogeneous. Gassmann’s 
relations can be readily extended to include anisot-
ropy, but that is not commonly done in practice.

5) The rock is monominerallic and saturated with a single 
fluid. In complex mineralogies, a Hill (1963) or similar 
average of solid-grain properties is often used. However, 
if the grain bulk moduli are radically different –– par-
ticularly if there is a highly compressible solid mate-
rial such as clay –– the physics is much more complex 
and a simple Hill average will not apply (Berryman and 
Milton, 1991). Similarly, when there are multiple fluids, 
Wood’s (1941) equation is generally used to compute 
the effective fluid modulus of the mixture. That equa-
tion assumes that the stress in each fluid component 
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is the same; thus, the strains within the different fluid 
phases vary greatly. It is not necessarily clear that that 
must be the case if there is a nonuniform distribution of 
fluids inside a complex pore space of highly variable 
pore shapes. It is likelier that some variation of stress 
occurs within fluid components at different locations 
in the pore space (which again violates Gassmann’s 
assumption of pressure equilibration), and that this 
should result in a more uniform distribution of strains 
and therefore a stiffer modulus than is given by Wood’s 
equation (Castagna and Hooper, 2000). The question 
has not been completely resolved and must be viewed 
as an area of ongoing research.

6) There is no cavitation, and the pore fluid remains 
coupled to the solid material. This is probably a good 
assumption.

7) The rock system is closed; there is no fluid flow in or 
out of the rock. The validity of this assumption at all 
locations in situ seems perilous.

A common misconception is that Gassmann’s equa-
tions require spherically shaped pores. That miscon-
ception  arises from the fact that crack-inclusion mod-
els such as that of Kuster and Toksöz (1974) agree with 
Gassmann’s equations only for spherical pores. The limi-
tation occurs because such models assume a situation of 
isolated pores and do not allow pressures to equilibrate 
throughout the pore space. Different pore shapes undergo 
differing  degrees of deformation, and thus the pores will 
have different pore pressures if they are isolated, thereby 
violating Gassmann’s pore-pressure-equilibration assump-
tion. However, spherical pores are all compressed to the 
same degree, have the same pore pressure, and thus obey 
Gassmann’s assumptions. Nonspherical pores are also valid 
within Gassmann’s assumptions, though, if fluid mobility 
is sufficiently high for pressure equilibration to occur.

As was stated above, the equality of frame and satu-
rated shear moduli (equation 16) is not an assumption, it 
is a consequence of the Gassmann theory. This does not 
mean that it is appropriate to assume that gas sands and 
brine sands have the same shear modulus. In practice, they 
represent different pieces of rock from different locations 
that may have been different from the moment of depo-
sition, and that certainly have undergone different diage-
netic histories while they contained different pore fluids. 
Cementation and other types of diagenesis can be radically 
different and may result in different porosities and degrees 
of cementation, as well as in very different frame moduli. 
In fact, we must revisit the entire idea of fluid substitu-
tion as being a good way to determine the dependence of 
rock moduli on fluid type. The instantaneous mechanics 
of Gassmann’s equations are correct, but it is probably er-
roneous to ignore geochemical and other factors that may 
become significant over geologic time.

Using Gassmann’s equations

We assume that VP, VS, and porosity are known at a given 
saturation. VS may be measured or estimated from a VP-VS 
relationship. Given solid and fluid densities, the bulk density 
is determined from the mass-balance equation 3 above.

Greenberg and Castagna (1992) developed a method 
for predicting shear-wave velocity in porous sedimentary 
rocks. The method couples empirical relations between 
VP and VS with Gassmann’s equations and accounts for 
mixed lithologies and fluids. VS can be estimated from 
VP in multimineralic, brine-saturated rocks on the basis 
of empirical VP-VS relations in pure monomineralic litholo-
gies, by using arithmetic and harmonic means of the constit-
uent pure-lithology predicted shear velocities. It is given as
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(17)

where L is the number of monomineralic lithologic con-
stituents, Xi are the volume fractions of lithologic con-
stituents, aij are the empirical regression coefficients, and 
Ni is the order of the polynomial for constituent i.

One can then estimate VS from measured VP for other 
fluid saturations by using Gassmann’s equation in an iter-
ative manner. The method consists of iteratively locating 
a point (VP,VS) on the brine relationship that transforms, 
by using Gassmann’s equation, to the measured VP and 
unknown VS for the new fluid saturation.

Figure 6 shows that the Raymer-Hunt-Gardner equa-
tion yields a VP-VS trend that is in almost perfect agree-
ment with Greenberg and Castagna’s (1992) sandstone 
VP-VS trend and the resulting trend obtained by combining 
Gassmann’s equations with a frame Poisson’s ratio of 0.1.

The saturated bulk and shear moduli are then obtained 
from equations 18 through 21:

 
V P

sat sat

b

=
+κ µ

ρ

4
3

 
(18)

 
κ ρ µsat b P sat= −V 2 4

3  
(19)
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(20)
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 µ ρsat S b= V 2 .  (21)

Equations 18 and 20 are the velocity equations for 
elastic waves propagating in elastic media. In reality, 
however, porous rocks are not strictly elastic. Seismic 
waves are thus attenuative and dispersive, and the veloc-
ity equations are more complicated (Biot, 1956). We will 
assume that it is safe to use equations 18 and 20 at seismic 
frequencies. However, it is debatable how applicable they 
are at sonic and ultrasonic frequencies, especially in low-
permeability rocks.

Usually, laboratory measurements help us to estimate 
the rock-frame bulk and shear moduli, the grain density, 
the porosity, and the fluid bulk modulus. When lab data 
are not available, well logs and rock-physics relationships 
are used to determine the input parameters for Gassmann’s 
equations. Elastic bounds can be used to determine the 
effective elastic moduli for rocks composed of different 
constituent layers and minerals.

To understand the different properties of rocks, we 
need information with respect to (1) the fraction, by vol-
ume, of various constituents, (2) elastic moduli of various 
phases, and (3) geometric details of how phases are ar-
ranged relative to one another (Avseth et al., 2005).

In practice, it is difficult to specify the internal geom-
etry. If we just have information on the volume fraction 
of the constituents and their elastic moduli, we can only 
predict the upper and lower bounds of the elastic moduli 
and velocities of the composite rocks.

Voigt (1928) suggests the stiff upper bound of the effec-
tive elastic moduli. The upper bound describes an isostrain 
situation, because the strain is equal in all of the columnar 
layers (Figure 7a). The stress must, therefore, be different 
in each constituent layer. The Voigt upper bound on the 
 effective elastic modulus of a mixture of N material phases is

 
M f Mi

i

N

iV =
=
∑

1

,
 

(22)

where fi is the volume fraction of the ith constituent and 
Mi is the elastic modulus of the ith constituent.

Reuss (1929) gives the soft lower bound of the ef-
fective elastic moduli (Figure 7b). The lower bound de-
scribes the isostress situation, because Reuss assumed 
that the stress applied to each of the constituent layers 
is the same, but the strain is different. Compressible lay-
ers will be more deformed by the compressive stress than 
stiff layers will. The Reuss lower bound is given as

 

1

1
M

f
M

i

ii

N

R

=
=
∑ ,

 
(23)

where M can represent any modulus — bulk or shear — 
and the subscript R designates Reuss.

Hill (1963) shows that when the shear modulus is 
the same in all of the constituents, the modulus of the 
mixture is the arithmetic average of the Voigt and Reuss 
bounds. That average is generally used to calculate effec-
tive matrix properties and works well when shear moduli 
are  similar. However, it is likely to be significantly in 
error when soft and hard components are combined (e.g., 
quartz and clay). Thus, when the mineralogy is known 
for a rock, the Reuss-Voigt-Hill average can be used to 
calculate effective bulk and shear moduli, as

 
M M M= +1

2
( ),V R

 
(24)

Figure 6. VP-VS relationships in sandstone from the Raymer-
Hunt-Gardner equation (“RHG,” blue line), Gassmann 
equations that use a frame Poisson’s ratio of 0.1 (green line), 
and an empirical VP-VS trend for sandstones (dotted red line). 
The trends are virtually identical.

Figure 7. Sketch showing the stress-strain situation in 
effective media leading to the bounds of (a) Voigt and  
(b) Reuss. Here, σ is the compressive stress.
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where M is the effective grain modulus, which can be 
bulk or shear, and subscripts V and R designate Voigt and 
Reuss, respectively. The medium is assumed to be isotro-
pic, linear, and elastic. Figure 8 shows the Voigt and Reuss 
bounds calculated for pure quartz and wet clay mixtures.

Wood’s (1941) equation is identical to the Reuss 
bound and is used to estimate the effective bulk modulus 
of the pore fluid (κf).

As was stated previously, when the ge-
ometries of the constituents are not known, 
the Voigt and Reuss averages give us the 
upper and lower extreme values of the 
bounds. Values for other sediment situations 
fall within those bounds. That can be under-
stood in the overall context as follows.

If we plot the variation of P-wave ve-
locity of, for example, water-saturated 
sediments that range from ocean-bottom 
suspensions to consolidated sandstones, 
we will probably get something similar to 
what is shown in Figure 9. A few observa-
tions are in order.

•	  When the particles are suspended in 
water, their acoustic properties must 
fall on the Reuss average of mineral and 
fluid moduli.

•	  When particles are deposited on the 
water bottom, their properties still lie on 
or slightly above the Reuss average, as 
long as they are weak and unconsolidat-
ed. The porosity of these particles will 
depend on the geometry of the particle 
stacking. Clean, well-sorted sands will 
be deposited with porosities near 40%. 
Poorly sorted sands will have lower po-
rosities and will be deposited along the 
Reuss bound (Figure 9). Chalk will be 
deposited at a high initial porosity of 
55% to 65%. Shales can have even high-
er initial porosities. As those sediments 
get buried, different processes set in –– 
such as effective stress, compaction, and 
cementing –– and these processes move 
the sediments off of the Reuss bound. 
The porosity at which the rock starts to 
become lithified and develop rigidity is 
called the critical porosity (ϕc).

•	  With increasing diagenesis, the moduli 
move farther above the Reuss bound.

•	  Sometimes the bounding methods are not 
seen as being very helpful as the upper 
and lower bounds are well separated be-
tween the end members. In such cases, the 
critical porosity seems to help because it 
separates the fluid-bearing suspensions 
from the load-bearing frame.

Hashin-Shtrikman bounds can be used to calculate the 
narrowest possible range for the bulk and shear modulus 
components, and those bounds are different for the two 
moduli. They would, therefore, lie within the Voigt and 
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Reuss bounds. The Hashin-Shtrikman bounds physically 
represent the cases of the medium being completely filled 
by concentric spheres of the constituent materials. The 
upper bound corresponds to the case of the softer mate-
rial occupying the interior spheres; conversely, the lower 
bound corresponds to the softer material occupying the 
outer spheres. For the case of one of the materials being 
fluid, it can be seen from the equation below that the upper 
bound corresponds to the case of equant porosity and the 
lower bound reduces to the Reuss bound (i.e., to a suspen-
sion). These bounds are sufficiently wide to accommodate 
all of the intermediate pore structures, including fractures.

If mineral 1 is stiffer than mineral 2, the upper Hash-
in-Shtrikman bounds are given as

   

κ κ
κ κ κ µ
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− + +
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In these equations, κ1, κ2 are the bulk moduli for the con-
stituent phases, μ1, μ2 are the shear moduli for the constit-
uent phases, f1, f2 are the volume fractions for the constit-
uent phases, ϕ is porosity, and the subscript HS represents 
Hashin-Shtrikman bounds.

The lower bounds can be computed by reversing the 
order of the two minerals in the equations.

Estimating κ*

Usually, the bulk modulus of the rock-frame skeleton 
is unknown, and a variety of empirical equations to esti-
mate the frame bulk modulus can be applied. The prob-
lem with this approach is that the empirical estimates of 
the frame modulus may be inconsistent with the observed 
velocities. Keep in mind that the frame modulus is the 
modulus measured at irreducible saturation, so the rock 
frame likely has interacted chemically with the wetting 
fluid. Thus, in fluid substitution, the “wetted” frame bulk 
moduli should be used. The use of laboratory measure-
ments of dry-rock moduli usually results in incorrect fluid 
substitutions, unless the measurements are made under 
appropriately “humid” conditions (Smith et al., 2003; in-
cluded on the USB flash drive).

For this reason, a common approach is to use in situ 
well-log measurements, in rocks of known saturation and 
fluid content, to calculate the frame modulus by inverting 
Gassmann’s equations:
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(27)

Unfortunately, errors in the parameters on the right 
side of equation 27 likely cause the inverted frame modu-
lus to be erroneous, and they can in fact be negative, even 
when what appear to be physically reasonable parameters 
are used. Thus, it is always necessary to check for negative 
frame moduli and Poisson’s ratios when using equation 27.

Another method for calculating κ* is to use VP and VS 
to determine the frame shear modulus and then to calculate 
the frame bulk modulus from an assumed frame Poisson’s 
ratio (Gregory, 1977; included on the USB flash drive). 
This method is preferred in clean sandstones for which it 
is safe to assume a Poisson’s ratio of approximately 0.1 
(Castagna et al., 1985; Castagna et al., 1993). In shaly 
sandstones, the frame Poisson’s ratio must be increased ac-
cording to the shale content (Smith et al., 2003; included 
on the USB flash drive).

The fluid-substitution paradox

If we consider a given rock frame with two different 
fluids or fluid mixtures in the pore space, exhibiting two 
different effective fluid moduli, κ f1

 and κ f ,
2

 equation 14 
can be written twice for the two corresponding saturated 
moduli, κ sat1

 and κ sat2
,  and subtracted to eliminate the 

constant frame modulus. This yields
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(28)

Upon first inspection of equation 28, it appears that 
the change in saturated modulus is independent of the 
frame modulus. This runs counter to the idea that com-
pressible rock frames have a larger fluid-substitution 
effect than incompressible rock frames have. The solu-
tion to the paradox, of course, is that the frame modu-
lus is contained implicitly in the saturated moduli. When 
the frame modulus is small, the corresponding saturated 
moduli are also small, and the fluid-substitution effect is 
large. Rearranging equation 28 gives

κ
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Thus, fluid substitution can be performed without explic-
itly using frame moduli.

Fluid properties

Pore fluids have highly variable fluid moduli and den-
sities that are strongly dependent on pressure, tempera-
ture, and composition (Batzle and Wang, 1992). Although 
the Batzle and Wang equations have been continuously 
updated since their first publication, as more calibration 
points have become available, the general conclusion that 
these factors must be taken into consideration when one is 
selecting fluid moduli for Gassmann’s equations remains 
intact. Figure 10 shows the ranges of fluid moduli from 
the Batzle and Wang equations, as a function of tempera-
ture and for a wide range of pore pressures and composi-
tions (the ranges of moduli for each fluid type include the 
effects of variations of gas density for gases, API gravity 
and gas-oil-ratio for oils, and salinity for brines, as well 
as the range of pressures encountered in petroleum explo-
ration). It is important to note that saline brines can have 
a significantly higher modulus than the typical value of 
2.5 GPa that is commonly used, and in those cases the 
contrast with hydrocarbons is enhanced. As a general rule, 
oil moduli are between brine and gas moduli and, as tem-
peratures increase, become more similar to gas moduli.

Saturated versus frame moduli

For given solid and fluid moduli, Gassmann’s equa-
tions can be used to determine the relationship between 
frame and saturated moduli at any constant porosity. 
As is shown in Figure 11 for sandstones, the constant-
porosity lines converge at the solid-grain modulus, but 
they also converge toward high porosities. For high 
frame moduli, there is little porosity dependence. For 

low frame moduli, the variation of saturated modulus 
with porosity increases. However, such low frame mod-
uli generally are associated with high porosities where 
the lines converge, and the greatest deviations would be 
associated with very unusual porosities. Using a frame 
Poisson’s ratio of 0.1 allows Figure 11 to be converted 
into a VP-versus-VS crossplot (Figure 12). The conver-
gence of the constant-porosity trends at high porosities 
is increased, so that there is little difference between the 
30% and 100% porosity lines. Thus, the 100% porosity 
line serves as a very useful lower bound for VP/VS over 
the entire range of velocities. The 100% porosity line 
on a VP-VS crossplot is only slightly below the observed 
empirical relationships in sandstones (Figure 12), sug-
gesting that natural processes tend to minimize Pois-
son’s ratio. Notably, we find that abnormally high VP/VS 
values occur for low-velocity rocks with abnormally low 
porosities. Without the need for inclusion modeling, we 
can conclude, then, that liquid-filled naturally fractured 

Figure 11. Saturated modulus versus frame modulus for 
sandstones of various porosities and a fluid modulus of 
2.5 GPa (brine).

Figure 12. VP-VS constant-porosity curves from Gassmann’s 
equations, assuming a frame Poisson’s ratio of 0.1.

Figure 10. Pore-fluid moduli versus temperature for the 
range of pore pressures and compositions commonly found in 
exploration applications, using the Batzle and Wang (1992) 
equations.
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rocks should exhibit abnormally high VP/VS values rela-
tive to empirical VP-VS trends.

Low gas saturations

Figure 13 shows a typical Gassmann fluid-substitu-
tion curve for an unconsolidated sandstone. Most of the 
velocity change occurs with the first few percentages of 
gas saturation. In such situations, it is difficult to distin-
guish low gas saturations from commercial ones. This is 
a fundamental limitation of direct hydrocarbon detection 
using seismic amplitudes. In deeper reservoirs, the rock 
frame is typically stronger and the gas modulus is larger, 
so the partial-saturation effect may not be as pronounced 
(Han and Batzle, 2002) (Figure 14). The saturation curves 
in this particular case are for pressures corresponding to 
depths of 1000 ft (Figure 14a) and 20,000 ft (Figure 14b).

Sensitivity and uncertainty

As was previously discussed, at low 
porosities Gassmann’s equations predict an 
extremely large change in saturated modu-
lus with a small change in porosity. Figure 
15 shows, quantitatively, the magnitude of 
that  effect. Note that greater porosity sensi-
tivity occurs at smaller frame moduli.

The process of fluid substitution using 
Gassmann’s equations has many input 
parameters that are not perfectly known. 
Those parameters include VP, VS, density, 
porosity, matrix density, solid-grain bulk 
modulus, original water saturation, water 
density, brine modulus, hydrocarbon den-
sity, hydrocarbon modulus, and new water 
saturation. Castagna et al. (1993) deter-
mined from repeated logging runs that the 
precision of “good” P-wave sonic-log ve-
locities is approximately 2% and that for 
shear-wave velocities is on the order of 5%. 
Accuracies are another matter, and, even when the mea-
surements are repeatable, they can be very wrong for a 
variety of reasons (see Castagna et al., 1993, for a detailed 
discussion). Density logs have even more serious accura-
cy problems, and one might safely assume that “precise” 
means precisely wrong, unless there is reason to believe 
otherwise. Borehole gravity measurements can be more 
accurate, but they have limited vertical resolution and are 
only infrequently available. If rock composition is not 
perfectly known, matrix properties such as density and 
modulus can vary significantly. Porosity commonly is not 
known to better than ±2 porosity units. For example, for a 

calculated porosity of 10%, the true porosity might, with 
good probability, be anywhere between 8% and 12%. 
Water-saturation estimates are frequently on the order 
of 20% in error. When we are predicting velocities in an 
exploration mode, it is unlikely that the prospect’s water 
saturation for the hydrocarbon-bearing scenario will be 
known to better than ±20%. Fluid densities and moduli 
are rarely known precisely.

Such errors and uncertainties are propagated through 
Gassmann’s equations and result in significant error 
bars around predicted velocity changes. Apologists for 
Gassmann’s equations quote small percentage errors in 

Figure 13. Gassmann P-wave-velocity fluid-substitution 
curve for a shallow, unconsolidated, 29%-porosity sandstone 
and light dry gas. Solid modulus = 38 GPa; brine modulus = 
2.5 GPa; gas modulus = 0.05 GPa.

Figure 14. Seismic impedance versus water-gas saturation for (a) a shallow 
sandstone reservoir at 1000 ft and (b) a deep sandstone reservoir at 20,000 ft. 
The drop in impedance with the addition of the first few percentage points of 
gas saturation is less pronounced in deep reservoirs. After Figure 9 of Han 
and Batzle (2002). Used by permission.
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predicted velocities. Unfortunately, a “small” percent-
age error in the predicted velocity is often an enormous 
 percentage error in the change in velocity as fluids 
change –– which is, of course, the most relevant quantity 
of interest for hydrocarbon detection. Indeed, the problem 
is so severe that it is not meaningful for explorationists to 
speak of “the” brine-sand or gas-sand model; rather, a prob-
ability density function of outcomes should be considered.

Figure 16 is the result of stochastic fluid substitution 
for a typical unconsolidated sand. It is the histogram of 
predicted gas-sand VP for fluid substitution from brine 
sand. More than 400 trials were conducted with the input 
parameters being perturbed randomly (as would result 
from uncorrelated errors) by using a uniform distribution 
over an assumed range of uncertainty (given in Table 1). 
The spread in the output histogram is as wide as the pre-
dicted change in velocity. Figure 17 is a quality-control 
histogram that shows that this spread is not related to non-
physical frame moduli being inverted from Gassmann’s 
equations, but instead is entirely the result of a propaga-
tion of errors. Similarly, the implied frame Poisson’s ratios 
are all physically reasonable. In the case of well-lithified 
sandstones, where the fluid substitution effect is smaller, 

the error can be many times the deterministic predicted 
change in velocities. It is clear that Gassmann’s equations, 
even if theoretically applicable to real world problems in 
some cases, must be taken with a grain of salt.

Differences in frame modulus from 
inverted modulus and between brine 

and gas sands

Differences between inverted and actual frame moduli 
are most severe in laboratory measurements, for which the 
wetting fluid may change, different rock samples may be 
used, or the same sample may change its frame properties 
during the course of various experimental runs as pressure 
is increased and decreased several times. Figure 18 shows 
a typical disagreement between laboratory measurements 
and Gassmann’s predictions (in this case the difference is 
too large to be explained by dispersion). Differences such 
as these are attributed to frame hardening or softening rela-
tive to the dry rock. That is because when water is added to 
the dry rock, the water can react chemically or  physically 
with the mineral components of the rock (particularly with 
clays). For example, water can form a silica gel around 
quartz grains, causing the grains to repel each other and 

Figure 16. Output histogram from stochastic fluid substitution 
for an unconsolidated sandstone, by using the parameters in 
Table 1. The input VP is 3.0 km/s and the deterministic 
Gassmann result is 2.81 km/s. The range of stochastic outputs 
is as large as the deterministic change in velocity.

Figure 17. Histogram of inverted frame moduli for the 
stochastic fluid substitution shown in Figure 16.

Table 1. Input parameters for stochastic fluid substitution 
using Gassmann’s equations in an unconsolidated sandstone. 
The exact Gassmann fluid substitution is 2.81 km/s.

Parameter Parameter value Range

VP 3.00 km/s 2%

VS 1.41 km/s 2%

Porosity 30% 2 P.U.

Grain density 2.65 g/cm3 0.2 g/cm3

Grain modulus 38 GPa 2 GPa

Water saturation 100% 0%

Water density 1.05 g/cm3 0.05 g/cm3

Water modulus 2.5 GPa 0.25 GPa

Gas density 0.1 g/cm3 0.1 g/cm3

Gas modulus 0.1 GPa 0.05 GPa

New saturation 30% 20%

Figure 15. Fractional change in saturated bulk modulus  
(Δκ/κ) from brine to gas as a function of frame modulus and 
porosity. Solid grain modulus = 38 GPa; brine modulus = 2.5 
GPa; gas modulus = 0 GPa.
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weaken the frame at a low effective stress. 
Water can also lubricate the frame by causing 
structural clays to lose rigidity. Alternatively, 
water can harden or soften the frame by causing 
clays to swell, thereby binding the other min-
eral components more tightly, or by reducing 
the frame modulus as the clays become more 
compressible. Such effects are very dependent 
on the rock mineralogy (clay type and struc-
tural position) and the salinity and pH of the 
pore fluid. None of these effects is considered 
in Gassmann’s equations.

Another situation in which care must be 
taken to use the proper frame moduli is when 
information from an existing well is used to 
model how seismic responses will change, 
away from a well, as fluid content changes, 
particularly in another trapping location. 
When different pieces of the same rock for-
mation are saturated with differing pore fluids 
over geologic time, there may be differences 
in their diagenetic history. There is a school 
of thought among geophysicists that claims 
porosity is better preserved in oil reservoirs 
than in the downdip fully brine-saturated 
rocks. This is not a universally accepted fact, particularly 
among knowledgeable geologists (A. Brown, personal 
communication, 1989), but the possibility must be con-
sidered unless there is evidence to the contrary. Differing 
diagenetic histories or not, in an exploration mode, brine-
filled and hydrocarbon-bearing sands occur at different 
spatial locations and possibly at different stratigraphic 
positions. Thus, some difference in rock-frame properties 
between brine sands and gas sands is to be expected, if 
only from natural variations in the geology. The velocity 
in an actual gas sand may, therefore, differ greatly from 
the velocity predicted from the corresponding brine sand 
by using Gassmann’s equations. If the brine sand and gas 
sand have different pore pressures, or if the brine sand is 
far downdip and is under a different confining pressure, 
differences in frame moduli are to be expected. In a time-
lapse mode, pressure changes with production may result 
in rock-frame properties that vary continuously with time.

Figure 19 shows a seismic section over a producing 
oil field that exhibited a bright spot where the seismic data 
were acquired about 15 years after production began. The 
original oil-water contact can still be seen on the seis-
mic, although the water level has risen significantly over 
the years. The sand thins updip and loses amplitude as it 
pinches out. By the time this vintage of seismic data was 
acquired, a significant gas cap had developed. The gas-wa-
ter contact is not obvious on the seismic amplitudes. The 
fact that the seismic data acquired after production seem 
to be responding to the original water level and not to the 
contemporaneous oil-water or gas-oil contacts is curious. 

Figure 19. Relative-amplitude-processed poststack 3D 
migrated section showing an oil-reservoir bright spot. Only 
negative amplitudes are shown. Yellow is the strongest 
negative amplitude. The sandstone increases in thickness 
downdip and pinches out updip. A clear amplitude increase at 
the original oil-water contact follows structural contours. The 
oil-water contact and gas-oil contact from the time that the 
seismic data were acquired are not evident. It is believed that 
the amplitudes here are controlled primarily by thickness and 
porosity, with hydrocarbon effects being secondary.
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Figure 18. Laboratory-measured brine-saturated and dry compressional- 
wave and shear-wave velocities in a well-lithified calcareous sandstone. 
The dashed line is the Gassmann-equation predicted VP given the dry VP 
and VS values. Note that according to Gassmann’s equations, the water-
saturated VS should have been lower than the dry VS; note also that the 
water-saturated VP is significantly higher than the Gassmann prediction. 
Figure courtesy of M. Batzle. Used by permission.
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The fact that residual oil remains is one possible explana-
tion, but the oil properties here are closer to brine proper-
ties than to gas properties. Furthermore, the lack of an am-
plitude change associated with the gas-oil contact needs 
an explanation. One possibility is that there is a dominant 
porosity overprint on the amplitudes, in addition to the hy-
drocarbon effect, and the rock is higher porosity wherever 
the oil was originally in place. That is little more than con-
jecture at this point, however, and a systematic study using 
reliable porosity information in wells is needed to resolve 
the issue on a case-by-case basis.

Alternatives to Gassmann’s equations

Given the uncertainties and violated assumptions of 
Gassmann’s equations, the question must be asked re-
garding whether a given Gassmann prediction should be 
believed, or is in fact superior to several alternative ap-
proximate fluid-substitution schemes. Approximations 
are generally easier to apply and require less input, but 
at the same time they have fewer parameters and are 
consequently more robust. Some of those alternatives 
follow.

•	 Raymer-Hunt-Gardner (RHG) equation. It is appar-
ent from the RHG equation (equation 5) that a crude 
form of fluid substitution can be accomplished by 
modifying the fluid velocity (i.e., stretching the RHG 
equation well beyond its range of calibration). It does 
at times produce reasonable answers.

•	 Mavko et al. approximation. Mavko et al. (1995) 
proposed replacing the bulk modulus in Gassmann’s 
equations with the plane-wave modulus (M) (the 
same as the P-wave modulus). This has the advan-
tage of being directly calculable from P-wave veloc-
ity and density, without requiring explicit knowledge 
of the shear modulus. Mavko et al. (1995) conclude 
that the method is accurate to within 3% of the origi-
nal velocity.

•	 Castagna et al. approximation. This is the simplest 
approximation and requires only a single input pa-
rameter. It is the relationship between brine-sand and 
gas-sand P-wave velocities, as given by Castagna 
et al. (1993). The equation is

 

V V Vgas sand brine sand brine sand

 km/s.

= − +

−

0 07 1 67

1 74

2. .

.  
(30)

 Figure 20 shows an example of the errors of the 
Mavko et al. and Castagna et al. (i.e., quick-estimate) 
approximations relative to the exact Gassmann pre-
diction (assuming that it is correct).

•	 VP-VS relationships: A simple way to perform fluid sub-
stitution, starting with brine-saturated rock replaced 

with light dry gas, is to predict VS from VP, correct  
VS for density as the fluid changes, and then recompute 
VP assuming a rock-frame Poisson’s ratio.

Recommendations for practical 
fluid substitution

The limitations of Gassmann’s equations are clear, but 
in the final analysis, they remain the theoretical basis for 
understanding the difference between brine-sand and gas-
sand velocities and for justifying VP-VS relationships for 
brine-saturated sandstones. In practice, one may wish to 
use one of the less exact, but perhaps more robust, methods 
discussed above, at least as a rough estimate to check the 
quality of the predictions made. In addition, one needs to 
be cognizant of such issues as frame-modulus variation be-
tween gas sands and brine sands, and of the uncertainty in 
the Gassmann predictions. Certainly, the use of Gassmann’s 
equations in low-porosity rocks must be viewed with great 
suspicion. Nevertheless, fluid  substitution is a necessary 
aspect of interpreting seismic-amplitude and AVO anoma-
lies. If the task must be performed, it might as well be done 
correctly. General considerations for performing a practi-
cal fluid substitution are as follows.

•	 It is important to know whether the log data are read-
ing true formation properties. Density logs, if they are 
in fact reading formation densities, are most  certainly 
measuring the density of the invaded zone. In gas 
sands, density logs do not measure true formation 

Figure 20. Percent error in the predicted change in velocity 
relative to the Gassmann prediction as gas is substituted for 
brine in sandstones that obey the Raymer-Hunt-Gardner 
P-wave velocity-porosity transform. The solid line is the 
Mavko et al. approximation, and the dashed line is the quick-
estimation technique of Castagna et al. (1993), as given by 
equation 30. The gas modulus is taken to be zero and the 
brine modulus is 2.5 GPa.
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density, because of the abnormal electron density of 
hydrocarbons. Density logs must be environmentally 
corrected properly in order to provide the true forma-
tion density. Sonic logs may or may not be reading 
formation velocities. If dispersion is significant, and 
Gassmann’s equations overestimate the fluid-substitu-
tion effect, the residually gas-saturated flushed zone 
may in fact demonstrate a higher velocity than the for-
mation does with commercial gas saturation. If that is 
the case, the sonic-log refraction problem becomes a 
“hidden-layer” problem, and first breaks will be from 
the invaded zone rather than from the formation.

•	 If the sonic-log traveltime is slower than the drilling-
mud traveltime, it is unlikely to be correct. Shallow 
unconsolidated gas sands often exhibit sonic-log 
readings that are equal to the drilling-mud velocity.

•	 As a result of free-gas-caused attenuation of the 
acoustic signal in the borehole and in the formation, 
and because of poorer coupling of acoustic energy 
into low-Poisson’s-ratio formations, sonic-log read-
ings in gas sands are notoriously unreliable. In fact, 
sonic-log cycle skipping is often used as a quick-
look indicator of gas.

•	 For the above reasons, brine-sand sonic-log velocities 
are generally more reliable than gas-sand velocities 
are. If one is performing fluid substitution, it is better 
to start with reliable velocities. Thus, it is better to sub-
stitute gas into a brine sand than brine into a gas sand.

•	 Density logs are notoriously susceptible to poor hole 
conditions. For seismic-modeling purposes, it is gener-
ally better to reconstruct a density log from other log 
information that is less subject to experi-
mental error, and to calibrate that recon-
struction in zones where the density log 
is deemed reliable. In practice, it is very 
common to simply ignore the density log 
and replace it with Gardner’s equation 
(Gardner et al., 1974) or with a constant 
density. When sand and shale velocities 
are similar, such substitutions result in 
large errors in shale and sand reflection 
coefficients.

•	 When performing fluid substitution in 
shaly sands, remember that residual-
water saturation in gas-bearing zones 
can be on the order of 50%.

Gas-saturated shales

Although shales are low-permeability 
rocks, there is no question that free gas 
exists in shales. It has long been known 
that most gas is generated in and migrates 

through shales, that shales have limited seal capacity, and 
that microseepage of gas above reservoirs generally oc-
curs. Gas chimneys and low-velocity zones are often at-
tributed to such a phenomenon. Today, shales are viewed 
as being unconventional reservoir rocks so the issue is 
moot. In everyday exploration practice, however, fluid 
substitution is rarely performed in shales. One reason is 
that Gassmann’s assumptions are violated in most shales. 
Clearly, for AVO applications, one should be concerned 
about the VP/VS values in shales above prospective reser-
voirs. If gas is present, one would expect some reduction 
in the VP/VS value, and that could impact the magnitude of 
the AVO anomaly because the contrast with gas-bearing 
reservoir would be reduced. Figure 21 shows acoustic-
log VP and VS measurements in a gas-bearing shale above 
a producing reservoir. The VP/VS values are suppressed 
compared with the brine-saturated (wet) shale VP-VS 
trend. However, they are not as low as would be predicted 
by Gassmann’s equations. The shale is less compressible 
than predicted by Gassmann because the pore-fluid pres-
sure has not had time to equilibrate and consequently the 
rock is stiffer. Thus, we consider the Gassmann result to 
be a lower bound on the shale velocity. We should note 
that the more porous and permeable the shale is, the more 
valid Gassmann’s equations can be, and the closer we can 
expect velocities to be to the Gassmann prediction.

Figure 22 compares shallow high-resolution mul-
ticomponent VSP measurements of VP and VS in mixed 
shales and poor-reservoir-quality sands over a producing 
reservoir and also off structure. The VP/VS values are clear-
ly suppressed above the reservoir, where gas microseepage 
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Figure 21. Acoustic-log measurements of VP and VS in a gas-bearing shale 
over a producing gas reservoir. The wet-shale trend and gas-sandstone trend 
are local empirical trends. The gas-shale trend is computed from the wet-
shale trend by using Gassmann’s equations.
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is presumed to be. The increased shear velocity over the 
field relative to that of brine-filled rocks off structure is 
believed to result from increased precipitation of cements 
caused by bacteria feeding on microseeping gas.

Equivalent versus fluid-substituted sands

Figure 23 compares AVO curves for a class 3 gas sand 
(defined later) and a fluid-substituted brine sand. Note 
that they have similar gradients. Because their gradients 
are  similar, the question arises regarding whether the gas 
sand is in fact an AVO anomaly. The answer, of course, is 
yes. Had the brine sand had the same AVO intercept that 
the gas sand did (i.e., that of the equivalent brine sand), 
its gradient would have been near zero. Thus, we see that 
the gas sand’s AVO response is very anomalous compared 
with that of the equivalent brine sand. Consequently, in 
exploration the brine-sand response against which the gas 
sand should be compared is not necessarily that of the flu-
id-substituted brine sand.

Conclusions and discussion

We can draw several conclusions that have implica-
tions for the influence of rock physics on AVO analysis.

•	 Precision errors in Gassmann’s equations may be 
larger than the predicted change in velocity.

•	 Errors in approximations may be within that precision.

•	 Gassmann’s equations can be expected to be most in-
accurate in low-permeability and low-porosity rocks. 
Dispersion and invasion corrections are likely to be 
important in those cases.

•	 Observed VP-VS relationships agree with Gassmann 
predictions and potentially can be used to perform 
fluid substitution more robustly.

•	 Gas-saturated shales have anomalously low VP/VS 
values, but those values are higher than Gassmann 
predictions.

•	 Comparison of gas-sand AVO responses with fluid-
substituted brine-sand responses is not necessarily 
the right exploration approach.

Figure 23. AVO curves for a class 3 gas sand (light-gray 
solid line), the fluid-substituted brine sand (dark-gray solid 
line), and the equivalent brine sand with the same AVO 
intercept as that of the gas sand (dashed line). The AVO 
gradient distinguishes the two cases.

Table 2. Reasons for Gassmann’s equations sometimes 
failing to be directly applicable for AVO modeling.

1.  Violation of assumptions (low permeability, highly 
compressible mineral components, invasion, dispersion)

2.  High sensitivity to input parameters that may be in error

3.  Variations in rock-frame porosity and compressibility 
between gas- and brine-saturated rocks as a result of 
lateral/vertical geologic variability or differences in 
diagenesis/cementation caused by different pore fluids

4.  Chemical effects at very low effective stress; frame 
hardening or softening

5.  Heterogeneous fluid distribution spatially and 
between pores of various sizes and shapes; possible 
inapplicability of Wood’s equation

6.  The exploration question at hand may not be answered 
by direct fluid substitution

Figure 22. Shallow high-resolution VSP measurements of VP 
and VS over a producing field (inverted triangles) where the 
sediments are presumed to contain microseeping gas (shot 
holes could be ignited with matches) and also off structure 
where the sediments are believed to be completely brine-
filled. The brine-saturated VP-VS trends are local empirical 
relationships that are similar to global trends. The dry-sand 
trend is from Castagna et al. (1985).
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The rock-physics basis for AVO analysis relies on sig-
nificant empiricism and a bit of theory. Gassmann’s equa-
tions shed light on the velocity differences between gas 
sands and brine sands, but the equations are not the entire 
story and should not be used naively. For a variety of rea-
sons, Gassmann’s equations may not be directly applicable 

to the exploration problem at hand (Table 2). It is important 
that one take Gassmann predictions with a grain of salt and 
understand that Gassmann’s equations are only applicable 
to clean, highly permeable reservoir rock. In addition, one 
should view a single deterministic Gassmann result as only 
one of many possible stochastic realizations.
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