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Summary 

 

Seismic facies analysis is commonly carried out by 

classifying seismic waveforms based on their shapes in an 

interval of interest.  It is also carried out by using different 

seismic attributes, reducing the dimensionality of the input 

data volumes using Kohonen’s self-organizing maps 

(SOM), and organizing it into clusters on a 2D map.  Such 

methods are computationally fast and inexpensive.  

However, they have shortcomings in that there is no 

definite criteria for selection of a search radius and the 

learning rate, as these are parameters dependent on the 

input data.  In addition, there is no cost function that is 

defined and optimized and so usually the method is 

deficient in providing a measure of confidence that could 

be assigned to the results.   

 

Generative topographic mapping (GTM) has been shown to 

address the shortcomings of the SOM method and 

suggested as an alternative to it.  We demonstrate the 

application of GTM to a dataset from central Alberta, 

Canada and show that its performance is more encouraging 

than the simplistic waveform classification or the SOM 

multiattribute approach. 

 

Introduction 

 

The shape and character of the seismic waveform is often 

used to characterize reservoir quality. Such a seismic 

waveform carries information about the phase, frequency 

and amplitude; any variation in these parameters is a 

function of the lateral variations in lithology, porosity and 

fluid content. If the shape and character of seismic 

waveforms in a given target zone can be studied using 

some pattern recognition type of a process and then 

displayed in a map view, the display would indicate seismic 

facies variation at the target level. 

 

One approach to pattern recognition is with the use of 

neural networks to compare seismic waveforms within the 

interval of interest with a series of synthetic traces.  These 

synthetic traces are generated according to the user-defined 

number of groups that best represent the different shapes in 

the interval. They are arranged in a progression (assigning 

numbers to these traces), which is examined to get a feel 

for the shapes of the waveforms.  Next, each trace in the 

interval is compared with the different synthetic traces and 

those traces that have maximum correlation with a given 

synthetic trace are classified into a group. The resulting 

map is essentially a facies map, or a similarity map of the 

actual traces to the different synthetic traces. The seismic 

facies so generated also can be overlaid on a vertical 

seismic section to study their lateral variation. Since this 

method does not require any input in the form of any well 

log or any guidance about where the character divisions 

should occur, this approach is referred to as unsupervised 

waveform classification. We apply this classification to a 

3D seismic volume from central Alberta, Canada, where we 

focus on the Mannville channels at a depth of 1150 to 1230 

m that are filled with interbedded units of shale and 

sandstone. On the 3D seismic volume, these channels show 

up at a mean time of 1000 ms plus or minus 50 ms.  In 

Figure 1 we show a segment of a vertical slice through the 

seismic amplitude data, which shows differential 

compaction within the channels, indicated with yellow 

arrows.  The 11 waveforms are shown in Figure 1c. Note 

that each waveform is very similar to the one to its left and 

right, but quite different from those far away. The seismic 

facies distribution is computed by cross-correlating these 

seismic waveforms with the windowed data. The colors in 

the waveform classification map in Figure 1b correspond to 

the waveform with the highest cross-correlation coefficient. 

Note that the channel fill within the main channel to the left 

is different from the other features on the display.  Some of 

the colored patches are seen on the lower and upper right 

side of the display. These patches could be further 

subdivided into more detail, but is not attempted here. 

 

The self-organizing maps (SOM) waveform classification 

algorithm that produced the 2D seismic facies display in 

Figure 1b was introduced by Kohonen (1982, 2001) in 

speech recognition work. This work was subsequently 

applied to seismic data by Poupon et al. (1999), Strecker 

and Uden (2002), and Coleou et al. (2003). Essentially, the 

16-sample vertical waveforms in an analysis time window 

are projected into a 1D manifold lying in 16-dimensional 

space, which is then displayed using a 1D color bar.  

Attempts have been made to extend such analysis into 2D 

or 3D subspace.  Using seismic attributes such as amplitude 

envelope, bandwidth, impedance, AVO slope and intercept, 

dip magnitude and coherence, Strecker and Uden (2002) 

projected them into 2D latent space and plotted the results 

with a 2D color bar. 

 

Roy et al. (2012) used 3D SOM multiattribute application 

to generate a 3D seismic facies volume.  The different 
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mathematically independent input attributes determine the 

dimensionality of the latent space.  The input data vectors 

are first normalized and then projected into the 2D latent 

space using principal component analysis in the form of 

eigenvalues and eigenvectors.  As part of the training 

process, each vector is chosen at random and compared to 

all the other vectors on the 2D latent space grid in a 

neighborhood radius and the vectors with good correlation 

are updated.  Next, smaller neighborhoods around the 

correlated vectors are also updated, and gradually the 

neighborhood radius is shrunk iteratively.  If there are five 

attributes and we are using a 2D latent space, the initial 

PCA plane is deformed into a 2D nonplanar manifold (or 

surface) in 5D space that best fits the data. Colors are 

assigned to the vectors according to their distance from the 

center of a given cluster of points.  In this way a 3D volume 

of facies is generated. 

 

The method 

 

The Kohonen self-organizing map described above, while 

the most popular unsupervised clustering technique, being 

easy to implement and computationally inexpensive, has 

limitations.  There is no theoretical basis for selecting the 

training radius, neighborhood function and learning rate as 

these parameters are data dependent (Bishop et al., 1998; 

Roy, 2013).  No cost function is defined that could be 

iteratively minimized and would indicate the convergence 

of the iterations during the training process, and finally no 

probability density is defined that could yield a confidence 

measure in the final clustering results.  Bishop et al. (1998) 

developed an alternative approach to the Kohonen self-

organizing map approach that overcomes its limitations.  It 

is called generative topographic mapping (GTM) 

algorithm, and is a nonlinear dimension reduction 

technique that provides a probabilistic representation of the 

data vectors in latent space. 

 

The GTM method begins with an initial array of grid points 

arranged on a lower dimensional latent space.  Each of the 

grid points are then nonlinearly mapped onto a similar 

dimensional non-Euclidean curved surface as a 

corresponding vector (mk) embedded into different 

dimensional data space in GTM.  Each data vector (xk) 

mapped into this space is modeled as a suite of Gaussian 

probability density functions centered on these reference 

vectors (mk).  The components of the Gaussian model are 

then iteratively made to move toward the data vector that it 

best represents.  Roy (2013) and Roy et al. (2014) describe 

the details of the method and demonstrate its application 

for mapping of seismic facies to the Veracruz Basin, 

Mexico. 

 

We applied GTM to the same data shown in Figure 1, and 

using the sweetness, GLCM-energy, GLCM-entropy, 

GLCM-homogeneity, peak frequency, peak magnitude, 

coherence and impedance attributes and derived GTM1 and 

GTM2 outputs.  These attributes provide the cluster 

locations (projection of the mean posterior probability of 

the data vectors) along the two axes in the latent space to be 

used in the crossplotting that follows. In Figure 2a we show 

a coherence stratal slice distinctively exhibiting the 

different channels.  In Figures 2b and c we show the 

equivalent displays for GTM 1 and GTM2 attributes.  

Breaking the 2D latent space into two components allows 

us to use modern interactive crossplotting tools. Notice, 

while GTM1 shows the definition of the edges very well 

for the channels, GTM2 exhibits the complete definition of 

the channels along with their fill in red and blue.  In a 

narrow zone passing through the center of the channels we 

crossplot the two attributes GTM1 and GTM2 and then by 

assigning red and green polygons on two clusters (not 

shown) we notice how the enclosed points are projected 

back on the coherence displays shown in Figure 3.  The two 

clusters highlight the fill of the channels differently.   

 

More work is underway to bring constraints into this 

unconstrained GTM classification, by using well log data, 

as has been demonstrated by Roy et al. (2013). 

 

Conclusions 

While Kohonen SOM is a popular method used for 

unconstrained seismic amplitude and attribute 

classification, it has limitations as mentioned above.  GTM 

analysis provides an alternative approach by way of 

nonlinear dimension reduction in latent space, and 

providing probabilistic representation of the data.  The 

application of the GTM analysis to a dataset from central 

Alberta, Canada shows encouraging results.  We expect 

that by using constrained GTM analysis with the help of 

well log data, the facies patterns we have derived using the 

unconstrained GTM method used here would be further 

tightened and made more distinct. 
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Figure 1: (a) Vertical slice through a seismic amplitude volume showing the interval that was chosen for waveform 

classification, (b) waveform classification map showing the features in different colors, and (c) the eleven different 

waveforms used in the waveform classification map shown in (b). Yellow arrows indicate two channels that have 

experienced less differential compaction than the surrounding flood plane. These two channels have radically different 

waveforms (one indigo, one reddish brown). 
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Figure 2: Stratal-slice close to the green horizon shown in the previous image through (a) energy ratio coherence, (b) GTM 

component 1 and (c) GTM component 2. 

 

Figure 3: Two interpreter selected clusters (one red, one green) selected by drawing polygons in GTM1 vs. GTM2 

crossplot histogram co-rendered onto a coherence background.  Note the two channels fall into different clusters indicating 

different thicknesses and or lithologies. Note that the infill of the two channels seen in Figure 1a both appear to be in the 

same red class in this image. 
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