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Summary 

Utica shale is one of the major source rocks in Ohio and extends 

across much of eastern US. Its organic richness, high content of 

calcite, and development of extensive organic porosity makes it a 

perfect unconventional play and has gained the attention of the oil 

and gas industry. The primary target zone in the Utica includes 

Utica, Point Pleasant, and Trenton intervals. In the present study, 

we attempt to identify the sweet-spots within the Point-Pleasant 

interval using 3D seismic data, available well data, and other 

relevant data. This has been done by way of organic richness and 

brittleness estimation in the rock intervals. The organic richness 

is determined through TOC content which is derived by 

transforming the inverted density volume. The core-log 

petrophysical modeling provides the necessary relationship for 

doing so. The brittleness is derived using rock-physics parameters 

such as Young’s modulus and Poisson’s ratio. Deterministic 

simultaneous inversion along with a neural network approach are 

followed in order to compute rock-physics parameters and density 

using seismic data. The consistency of sweet spots identified 

based on the seismic data with the available production data 

emphasize the integration of seismic data with all other relevant 

data.  

Introduction 

The Utica shale is considered a source rock for oil and natural gas, 

which migrated upwards and were produced by conventional 

means in the overlying rock formations.  According to a 2012 

USGS report, the formation holds 940 million barrels of oil and 

approximately 38 tcf of natural gas (Kirschbaum et al., 2012), but 

with more drilling and production, these estimates have been 

revised and stand at 2 billion barrels of oil and 782 tcf of natural 

gas (Cocklin, 2015). The thermal maturity studies in the Utica 

shale have indicated a northeast to southwest trend over eastern 

Ohio and western Pennsylvania, with a western oil phase window, 

a central wet gas phase window and an eastern dry gas phase 

window. 

We present our attempts at seismic reservoir characterization of 

the Utica – Point Pleasant package in eastern Ohio. Beginning 

with a discussion about the data that are available for the exercise, 

next we describe the workflow that is followed. The goal of 

seismic reservoir characterization is essentially the identification 

of sweet spots that represent the most favorable drilling areas.  

Such an exercise entails understanding the elastic properties of 

the reservoir intervals, lithology, fluid content and their areal 

distribution.  A good starting point for doing this is to use the 

available well data and understand the parameters that populate 

the reservoir intervals at the location of the wells. The sonic, 

density, gamma ray, resistivity, porosity well log curves are 

sought for the available wells over the 3D seismic volume. Core 

analysis results, geochemical as well as geomechanical data are 

available for one well.  

3D seismic data acquisition and processing 

The acquisition of a 702 mi2 (1818 km2) 3D seismic survey spread 

over Carroll, Tuscarawas, Guernsey, Noble, Belmont, Harrison 

and Jefferson counties of eastern Ohio, was completed in late 

2015.  The survey falls in the wet gas and light oil windows of the 

Utica-Point Pleasant.  The acquisition parameters include 220 ft 

(67.056 m) for source and receiver intervals, 660 ft (201.168 m) 

for receiver line spacing, 1320 ft (402.336 m) source line spacing, 

maximum offset as 19,186 ft (5847.89 m), 2 ms sample interval, 

5 s record length, which yielded a bin size of 110 ft by 110 ft (33.5 

m X 33.5 m).  Two vibrator sweeps of 16 s are used as the seismic 

source.  The processing of this large data volume was completed 

in June 2016, with anisotropic prestack time migration (PSTM) 

gathers and stacked volume with 5D interpolation made available 

for reservoir characterization and quantitative interpretation. 

Well-log correlation 

Correlation of well log information with 3D surface seismic data 

is a convenient way to extend the measured rock properties at well 

locations spatially over the 3D volume. 

As we started collating well data for our study we realized that 

the wells that had density curves are located in a cluster to the 

northern part of the survey, and very few wells had both sonic and 

density curves.  A frequently encountered situation is when not 

many wells have shear sonic log curves available.  It is always 

desirable to have a uniform location of wells with sonic, density 

and other curves (GR, porosity, resistivity, etc.) though sparse, as 

it helps with the generation of a reliable low-frequency 

impedance model for impedance inversion, as well as for carrying 

out any neural network analysis for computation of a reservoir 

property.  Besides, any crossplotting carried out on well data 

located sparsely on a 3D volume, and in localized clusters may 

not be a true representation of relationships between the 

crossplotted variables.  We therefore selected wells that had an 

optimum distribution as shown in Figure 1. Some of the wells 

located at the edge of the 3D survey were projected a little bit 

inside, as the seismic data close to the edges of the survey are not 

very trustworthy.   
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 Seismic reservoir characterization of the Utica-Point Pleasant shale 

Once the final seismic data are loaded on the workstation, we 

assessed its quality and frequency content.  The data were 

preconditioned for random noise attenuation by putting it through 

structure-oriented filtering (Chopra and Marfurt, 2007; Marfurt, 

2006).   

In Figure 2 we show the correlation of the sonic, density and GR 

log curves and synthetic seismograms for well W-3 with the 

seismic data.  Five horizons corresponding to Trenton Limestone, 

Point Pleasant, and Above-Utica in our zone of interest, and 

Clinton sandstone and Onondaga limestone above it were picked 

and are indicated in Figure 2.  While the Trenton and Onondaga 

limestones show good contrast at their levels on the log curves 

(and thus prominent reflections on seismic), reflections 

corresponding to Point Pleasant and Clinton sandstone were also 

pickable.  But no individual reflection corresponding to Utica 

shale could be picked, and so the closest pickable reflection was 

considered and called ‘Above-Utica’. A zero-phase wavelet was 

extracted from the seismic data using a statistical process (shown 

on the top) and was used for generating the synthetic seismogram.  

An overall good correlation is seen between the two. A 

representative seismic section from the 3D seismic volume 

passing through two wells is shown in Figure 3.  Good correlation 

is seen between the impedance curves and the seismic. 

As shear log curves were available in only three of the eight wells 

over the 3D survey, that had sonic and density curves, we 

crossplot the P- and S-impedance for these three wells as shown 

in Figure 4.  The linear relationship seen therein is used to 

generate the shear curves for five wells that didn’t have the shear 

curves, and then used those seven shear impedance curves (3 

measured and 4 predicted using the relationship) for the 

generation of the low-frequency S-impedance model for 

inversion. Using the low-frequency model generated with a single 

well as one of the inputs, and some other seismic data volumes 

(relative acoustic impedance, instantaneous amplitude, dominant 

frequency, filtered seismic (10-20-30-40 Hz and 10-20-50-60 

Hz), a multiregression approach (Ray and Chopra 2015, 2016) is 

used, wherein a target log is modeled as a linear combination of 

several input attributes at each sample point. This approach 

results in more accurate low-frequency impedance models. 

Having determined the low-frequency models for both P- and S- 

impedance, the next step was to carry out preconditioning of the 

prestack data for enhancing its signal-to-noise ratio. We found 

that the useable angle range was 34o, and thus the output attributes 

were P-impedance and S-impedance, but the density attribute 

could not be determined with simultaneous inversion. 

Sweet spot determination  

The main goal for shale resource characterization is usually the 

identification of sweet spots which represent the most favorable 

drilling targets. Such sweet spots can be picked up as those 

pockets in the target formation that exhibit high total organic 

carbon (TOC) content, high porosity, as well as high brittleness. 

The organic richness in the shale rocks influences properties such 

as compressional and shear velocities, and density. Therefore, 

attempts have been made to detect changes in TOC from the 

surface seismic response using impedance and other attributes 

such as VP-VS ratio, Lambda-rho, Mu-rho etc. (Sharma and 

Chopra, 2016). In this study we have tried to bring in data from 

core analysis, as well as geochemical and geomechanical 

analysis, and integrate that with surface seismic data.  The density 

and TOC measurements made on the core samples in the Point 

Pleasant interval were crossplotted as shown in Figure 5.  A 

strong linear relationship is seen between them.  This suggests 

that the density attribute would be required if the organic-rich 

zones in the Point Pleasant interval are to be determined from 

seismic data.   

And as stated above, as the angle range was not favorable for 

computing density from seismic data through simultaneous 

inversion, we turned to neural network analysis for its 

determination.  We decided to determine density with 

probabilistic neural network analysis, employing amongst others 

some of the attributes determined from simultaneous inversion.  

The details of the neural network approach followed, as well as 

some other work with regard to the integration of core, 

geochemical and geomechanical data and seismic data are being 

presented in a companion paper (Sharma et al., 2017).  But in 

Figure 6 we show how the predicted density compares with the 

measured density at the location of well W-7.  The good match 

between the curves enhanced our confidence in this approach. 

Once the density volume was determined from neural network 

analysis, the linear relationship shown in Figure 5 was used to 

transform it to a TOC volume.  High TOC content was noticed in 

the northern part of the survey, which is consistent with TOC 

trend observed in the Utica-Point Pleasant play (Wickstrom, 

2013). 

Besides the organic richness consideration, it is vital that reservoir 

zones are sufficiently brittle as fracturing potential of a shale 

reservoir is a fundamental function of its brittleness. Attempts are 

usually made to identify the brittle zones with the help of 

Poisson’s ratio and Young’s modulus as a rock’s ability to fail 

under stress is represented by the former, while the ability of 

sustaining fractures is reflected by the latter. 

We crossplot Young’s modulus and Poisson’s ratio for data for 

wells W-1 and W-7 from the Utica through Point Pleasant to the 

Trenton interval.  We notice a positive correlation between the 

two parameters and noticed that the Point Pleasant interval 

exhibits low Young’s modulus and Poisson’s ratio relative to the 

Utica interval.  As is seen in many other shale formations, 

brittleness is found to increase as Poisson’s ratio decreases and 

Young’s modulus increases (Rickman et al., 2008).  Point 

Pleasant does not seem to follow this behavior, even though the 

production from the multistage fracking in this interval has been 

established (Patchen and Carter, 2015). Within the Point Pleasant 
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interval we see a variation in these two parameters. To study the 

variation of these parameters within this interval, we restrict the 

data points coming into the crossplot to just the Point Pleasant 

interval and see that the cluster of points coming from W-7 (to the 

south) and the ones coming from W-1 (to the north), Poisson’s 

ratio and Young’s modulus both decrease going from north to 

south. 

Grieser and Bray (2007) proposed computing a brittleness 

average from Young’s modulus and Poisson’s ratio and 

demonstrated deciphering brittle and ductile shale pockets within 

the Barnett shale by considering all values of Poisson’s ratio less 

than 0.25 as threshold and all values of Young’s modulus greater 

than 3.1 x 106 psi.  

We follow a similar approach and demonstrate its application to 

the Utica-Point Pleasant play. Realizing that the Point Pleasant 

interval has higher calcite content, and therefore its ability to fail 

under stress and sustain fractures must be high, we picked up the 

P-impedance and S-impedance derived from simultaneous 

inversion and density derived from probabilistic neural network 

analysis to compute Young’s modulus and Poisson’s ratio 

attributes.  These are then crossplotted just for the Utica to 

Trenton interval as shown in Figure 7.  Notice all points below 

the value 0.23 for Poisson’s ratio (enclosed in red and green 

polygons) come from the Point Pleasant interval. Thus we 

interpret this interval to be prone to get fractured under stress.  

The ability of this interval to sustain fractures in a relative sense 

can be examined based on Young’s modulus attribute.  It can be 

seen from Figure 7a that the points enclosed by the green polygon 

correspond to higher values of Young’s modulus, than the points 

enclosed by the red polygon. When we project these points on the 

vertical arbitrary line passing through the wells, as exhibited in 

Figure 7b, we notice that the northern side of this line exhibits 

higher brittleness than the southern side.  

To examine the lateral variation in the Young’s modulus we draw 

a horizon slice from the Young’s modulus volume which is shown 

in Figure 8a. The northern part of the display shows higher values 

of Young’s modulus. Thus by restricting the values of Poisson’s 

ratio and examining the variation of Young’s modulus, we have 

been able to determine the variation in the brittleness of the Point 

Pleasant interval. In addition to brittleness, organic richness was 

also examined through the TOC volume. For doing this we draw 

an equivalent horizon slice from the TOC volume which is shown 

in Figure 8b. We notice higher TOC values in the northern part. 

The areas highlighted in the black polygons are thus the sweet 

spots that have been determined from the above analysis. This 

seems accurate enough as confirmed by the available production 

data overlaid on the TOC display. 

Conclusions 

We have characterized the Point Pleasant formation in eastern 

Ohio using 3D surface and its integration with core, geochemical 

and geomechanical data.  This has been done by deriving rock-

physics parameters (Young’s modulus and Poisson’s ratio) 

through deterministic simultaneous inversion and neural network 

analysis.  We find that the Point Pleasant formation does not seem 

to follow the commonly followed variation in terms of low 

Poisson’s ratio and high Young’s modulus for brittle pockets.  

Instead, by restricting the values of Poisson’s ratio and examining 

the variation of Young’s modulus, we are able to determine the 

brittleness behavior within the Point Pleasant interval. Combining 

the brittleness behavior with the organic richness determined 

through the TOC content, we are able to pick sweet spots in the 

Point Pleasant interval which match the production data. 

Through this case study, we emphasize the integration of 3D 

surface seismic data with all other relevant data so as to accurately 

characterize the Point Pleasant formation. 
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Figure 1: Picked 

horizon at the Point 

Pleasant level 

indicating the 

dipping reflections 

from northeast to 

southwest.  The 

locations of the 

available wells 1 to 

7 are also indicated. 

Figure 4: Crossplot of P-impedance versus S-impedance using 

well-log data from three wells 1, 4 and 7.  A high correlation 

coefficient is seen for the linear trend observed. 
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Seismic reservoir characterization of the Utica-Point Pleasant shale

Figure 2: Correlation of well W-3 P-velocity, density and

Gamma ray curves with seismic data. Notice the sharp

impedance contrast seen at the Onandaga Limestone and

Rochester Shale levels giving rise to strong reflections. The

horizons corresponding to Onandaga Limestone, ‘Clinton’

sandstone and Point Pleasant and Trenton levels are pickable and

seen clearly on the seismic. (Data courtesy: TGS, Houston)

Figure 3: A representative inline running east-west from the 3D seismic volume with P-velocity

curves overlaid on it The quality of the seismic data is good. The horizons picked on the line show

the Onandaga Limestone, ‘Clinton’ sandstone, Above-Utica, Point Pleasant and the Trenton to the

right. (Data courtesy: TGS, Houston)

Figure 7: (a) Crossplot

between Young’s modulus and

Poisson’s ratio as derived from

seismic data for the Utica to

Trenton interval. (b) The

cluster points in different

polygons on the crossplot

when projected on the vertical

show higher brittleness on the

northern side of the survey.

(Data courtesy: TGS, Houston)

Figure 8: Horizon

slices from (a)

Young’s modulus,

and (b) TOC

volumes, both

averaged in a 10 ms

window in the Point

Pleasant interval. The

highlighted portions

indicate the sweet

spots corresponding

to high Young’s

modulus and high

TOC. Overlaid on the

TOC display is the

production data.

(Data courtesy: TGS,

Houston)

Figure 6: The density trace predicted with

neural network application compared with the

measured density log curve at the location of

well W-7. The two curves overlay well and

thus enhance our confidence in neural network

density prediction.

Figure 5: Crossplot of density and TOC as determined

from core data in the Point Pleasant interval. A good

linear relationship is seen between the crossplotted

variables.
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