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Summary 

The size of the individual seismic surveys has increased over the 

last decade, along with the generation of megamerge and even 

larger, what some operators call “gigamerge” surveys. The number 

of useful attribute volumes has also increased, such that 
interpreters may need to integrate terabytes of data. During the past 

several years, various machine learning methods including 

unsupervised, supervised and deep learning have been developed 

to better cope with such large amounts of information. In this study 
we apply several unsupervised machine learning methods to a 

seismic data volume from the Barents Sea, on which we had 

previously interpreted shallow high-amplitude anomalies using 

traditional interactive interpretation workflows. Specifically, we 
apply K-means, principal component analysis, self-organizing 

mapping and generative topographic mapping to a suite of 

attributes and compare them to previously generated P-impedance, 

porosity and Vclay displays, and find that self-organized mapping 
and the generative topographic mapping provide additional 
information of interpretation interest. 

Introduction 

In the late 1980s, seismic facies analysis was carried out on 2D 

seismic data by visually examining the seismic waveforms that can 

be characterized by their amplitude, frequency and phase 

expression. Such information would be posted on maps and 

contoured to generate facies maps.  As seismic data volumes 

increased in size with the adoption of 3D seismic data in the early 

1990s, interpreters found that 3D seismic attributes highlighted 

patterns that facilitated the human recognition of geologic features 

on time and horizon slices, thereby both accelerating and further 

quantifying the interpretation. More recently, computer-assisted 

seismic facies classification techniques have evolved. Such 

methods or workflows examine seismic data or their derived 

geometric, spectral, or geomechanical attributes and assign each 

voxel to one of a finite number of classes, each of which is assumed 

to represent seismic facies.  Such seismic facies may or may not 

represent geologic facies or petrophysical rock types.  In this 

workflow, well log data, completion data, or production data are 

then used to determine if a given seismic facies is unique and 

should be lumped (or “clustered”) with other similar facies 

determined from attributes with similar attribute expression. 

As 3D seismic data volumes and their generated attributes have 

increased in size, it has become increasingly difficult for the human 

interpreter to carefully analyze each seismic line and time slice.  

An increasing trend is to adapt methods such as pattern recognition 

and machine learning methods used in market research, voice 

recognition, security, and other fields to the problem of automated 

seismic facies analysis (Zhao et al., 2015).  

Partially driven by the success of companies like Google and 

Amazon, the terms machine learning, deep data, and data analytics 

have become buzz words in geoscience. Machine learning refers to 

teaching computers via mathematical operations how to learn from 

the provided data and make decisions or predictions.  The learning 

style adopted for a given problem to be solved with computers can 

be specific, depending not only on the geologic processes 

examined, but also on the quality of the seismic data used, where 

an example of the latter is the radically different appearance of the 

interior of salt domes on older, narrow azimuth time-migrated data 

and more modern wide-azimuth depth migrated data.   

Unsupervised learning uses the attributes themselves as both 

training data and data to be analyzed. The simplest algorithm is K-

means, wherein the interpreter defines the number of facies 

(clusters) to be found. The algorithm then finds means and standard 

deviations (more generally, covariance matrices) to determine the 

center and the extent of each cluster in multidimensional attribute 

space. Using Bayesian classification rules, the attribute vector at a 

given voxel is then assigned to the cluster to which it is nearest. 

Although the term neural networks and clustering are often used to 

describe self-organized mapping and generative mapping, they are 

implemented and perhaps better understood to be projection 

techniques, similar to principal component and independent 

component analysis, where the goal is to reduce the dimensionality 

of the data. In this case, the clustering is done after the projection, 

either through the use of a color map or by drawing polygons on 

the lower dimensional “latent space”. 

Supervised learning extracts seismic facies by using that part of the 

data for which we have already classified using well control,  

production data, or human experience, as training data, whereby 

the algorithm constructs a mathematical relation between the 

seismic attributes at a given voxel and the predefined classes. This 

relation is then applied to the remainder of the data with the goal 

of predicting the most likely class or rock property.  Artificial 

neural networks and probabilistic neural networks commonly use 

seismic attributes as input and typically incorporate only one 

hidden layer (Hampson et al., 2001) to classify the data. Deep 

learning is a more recent innovation, whereby some developers 

propose eliminating the use of seismic attributes, and through the 

introduction of seven or more hidden layers, let the algorithm find 

the voxel-to-voxel amplitude relationships that define a given 

facies. All these methods come under the umbrella of machine 

learning.  

In this study, we discuss some of the methods that are used under 
unsupervised learning and show their comparative performance on 
a seismic dataset from the Barents Sea. 

Crossplotting 

Interpreters have long used commercial software packages to 

crossplot two or three seismic attributes within a reservoir to define 
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lithofacies. To calibrate such crossplots, the interpreter also 

crossplots well log information, using gamma ray and resistivity 

responses not measured by surface seismic data, along with P-

wave, S-wave, and density logs to construct probability density 

functions for each desired facies, thereby calibrating the seismic  

crossplot.  By enclosing anomalous cluster points in crossplot 

space, and projecting them back onto the vertical or horizontal 

sections, the facies of interest are then plotted on vertical or 

horizontal slices. However, crossplotting more than three attributes 

becomes difficult to not only implement but also to comprehend. 

k-means clustering  

k-means clustering partitions a given distribution of unlabeled 

points into a desired fixed number of groups or clusters.  If there 

are n data points xi, where I = 1,2, … n, then these need to be 

partitioned into k clusters, such that a cluster is assigned to each 

data point, and the points within each cluster have greater 

similarity with one another than the points in another group. 

The clustering process begins by assigning at random, k centroids 

which can serve as centers of the group we wish to form.  This way 

each centroid defines one cluster.  The distance between each data 

point and the centroid of that cluster is now calculated. 

Traditionally, this distance has been Euclidean distance between 

two points.  A point may now be considered to be within a 

particular cluster if it is closer to the centroid in that cluster than 

any other centroid.  This way the points in each cluster get 

reorganized.  The next step is to recalculate the centroids based on 

the reorganized points within each cluster. These two steps are 

carried out iteratively, until there is no more movement of the 

centroids, when convergence is achieved. 

The Euclidean distance metric assumes that there is no correlation 

between the classification variables, and that is why it has been 

used traditionally. What this means is that when the classification 

variables exhibit a spherical shape of the clusters in crossplot 

space, a Euclidean distance approach will work. Many times, this 

requirement is not found to be met as the classification variables 

are correlated, and the clusters exhibit elliptical shape. In such 

cases, the traditional k-means cluster method will fail in that 

convergence may not be achieved. In those cases, the k-means 

clustering algorithm is modified in that it adopts a different 

distance metric called the Mahalanobis distance instead of the 

Euclidean distance. 

Thus, by choosing the centroids as points that have high density of 

neighbouring points as well as using the Mahalanobis distance 

metric instead of the Euclidean distance in the k-means clustering 

algorithm, allows it to correctly classify nonspherical and 

nonhomogeneous clusters. 

Principal component analysis 

Principal component analysis (PCA) is a useful dimensionality 
reduction tool.  Many of our attributes are coupled through the 

underlying geology, such that a fault may give rise to lateral 

changes in waveform, dip, peak frequency, and amplitude. Less 

desirably, many of our attributes are coupled mathematically, such 
as alternative measures of coherence (Barnes, 2007) or of a suite 

of closely spaced spectral components. The amount of attribute 
redundancy is measured by the covariance matrix. The first step in 

multiattribute analysis is to subtract the mean of each attribute from 

the corresponding attribute volume. If the attributes have radically 

different units of measure, such as frequency measured in Hz, 
envelope measured in mV, and coherence without dimension, a Z-

score normalization is required. The element Cmn of an N by N 

covariance matrix is then simply the cross-correlation between the 

mth and nth scaled attribute over the volume of interest. 
Mathematically, the number of linearly independent attributes is 

defined by the value of eigenvalues and eigenvectors of the 

covariance matrix. The first eigenvector is a linear combination 

that represents the most variability in the scaled attributes. The 
corresponding first eigenvector represents the amount of 

variability represented. Commonly, each eigenvalue is normalized 

by the sum of all the eigenvalues, giving us a percentage of the 
variability represented.   

By convention, the first step is to order the eigenvalues from the 

highest to the lowest.  The eigenvector with the highest eigenvalue 

is the first principal component of the data set (PC1); it represents 
the vector representing the maximum variance in the data and 

thereby the bulk of the information that would be common in the 

attributes used.  The eigenvector with the second-highest 

eigenvalue, called the second principal component, exhibits lower 
variance and is orthogonal to PC1.  PC1 and PC2 will lie in the 

plane that represents the plane of the data points.  Similarly, the 

third principal component (PC3) will lie in a plane orthogonal to 

the plane of the first two principal components.  In the case of N 
truly random attributes, each eigenvalue would be identical, and 

equal to 1/N. Since seismic attributes are correlated through the 

underlying geology and the band limitations of the source wavelet, 

the first two or three principal components will almost always 
represent the vast majority of the data variability.    

Self-organizing maps 

The self-organizing mapping (SOM) is a technique that generates 

a seismic facies map from multiple seismic attributes, again in an 

unsupervised manner. In a distribution of N attributes lying in an 
N-dimensional data space, the plane that best fits the data is defined 

by the first two eigenvectors of the covariance matrix.  This plane 

is then iteratively deformed into a 2D surface called a manifold that 

better fits the data. After convergence, the N-dimensional data are 
projected onto this 2D surface, which in turn are mapped against a 

2D plane or “latent” (hidden) space, onto which the interpreter 

either explicitly defines clusters by drawing polygons, or implicitly 

defines clusters by plotting the results against a 2D colorbar.  

Generative Topographic Mapping 

The Kohonen self-organizing map described above, while the most 
popular unsupervised clustering technique, being easy to 

implement and computationally inexpensive, has limitations.  

There is no theoretical basis for selecting the training radius, 

neighborhood function and learning rate as these parameters are 
data dependent (Bishop et al., 1998; Roy, 2013).  No cost function 

is defined that could be iteratively minimized and would indicate 

the convergence of the iterations during the training process, and 

finally no probability density is defined that could yield a 
confidence measure in the final clustering results.  Bishop et al. 

(1998) developed an alternative approach to the Kohonen self-

organizing map approach that overcomes its limitations.   

10.1190/segam2018-2997356.1
Page    2057

© 2018 SEG
SEG International Exposition and 88th Annual Meeting

D
ow

nl
oa

de
d 

08
/2

8/
18

 to
 2

05
.1

96
.1

79
.2

37
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



It is called a generative topographic mapping (GTM) algorithm, and is a

nonlinear dimension reduction technique that provides a probabilistic

representation of the data vectors in latent space.

The GTM method begins with an initial array of grid points arranged on a

lower dimensional latent space. Each of the grid points are then

nonlinearly mapped onto a similar dimensional non-Euclidean curved

surface as a corresponding vector (mk) embedded into different

dimensional data space in GTM. Each data vector (xk) mapped into this

space is modeled as a suite of Gaussian probability density functions

centered on these reference vectors (mk). The components of the

Gaussian model are then iteratively made to move toward the data vector

that it best represents. Roy (2013) and Roy et al. (2014) describe the

details of the method and demonstrate its application for mapping of

seismic facies to the Veracruz Basin, Mexico.

As it may have become apparent from the descriptions above, the PCA,

SOM and GTM techniques project data from a higher dimensional space

(8D when 8 attributes are used) to a lower dimensional space which may

be a 2D plane or a 2D deformed surface.

Figure 1: A segment of a section from a seismic volume from the Barents Sea. Time slices at 1280 ms indicated to the left have been extracted from the different

attributes and are shown in Figures 2 and 3. Some of the high-amplitude anomalies seen on the section are associated with channel sands, which we attempt to

characterize using some unsupervised machine learning techniques. (Data courtesy: TGS, Asker)

Figure 2: Time slices generated at 1280 ms from (a) energy-ratio coherence, (b) P-impedance, (c) porosity, and (d) Vclay volumes. The P-impedance volume was

generated using prestack simultaneous impedance inversion, and the porosity and Vclay volumes generated using extended elastic impedance. The channels are defined

well with the coherence attribute overlaid on the displays (b) to (d) using transparency. Some of the channels exhibiting low impedance, high porosity and low Vclay

are indicated with pink arrows. (Data courtesy: TGS, Asker)

Sometimes the above three techniques are collectively referred to as

projection techniques. Once they are projected on a lower dimensional

space, the data can be clustered in that space, or interactively clustered

with the use of polygons. Though not shown here, this aspect will be

demonstrated in the formal presentation

Case study

The case study we demonstrate the comparison of facies classification

techniques on is a 3D seismic volume from the Hoop Fault Complex

(HFC) area of the western Barents Sea. For this study, we focus on a 500

km2 section of a larger 22,000 km2 survey, where Chopra et al. (2017)

found multiple bright seismic amplitude anomalies, some of which are

associated with the presence of hydrocarbons and some that are not. This

previous workflow we adopted consisted of the computation of a set of

seismic attributes (spectral decomposition, prestack simultaneous

impedance inversion, etc.), and quantification of the hydrocarbon bearing

zones with the application of rock physics analysis, and an extended

elastic impedance approach.

Seismic facies classification using some unsupervised machine learning methods

10.1190/segam2018-2997356.1
Page    2058

© 2018 SEG
SEG International Exposition and 88th Annual Meeting

D
ow

nl
oa

de
d 

08
/2

8/
18

 to
 2

05
.1

96
.1

79
.2

37
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



In Figure 1 we show a representative vertical slice through the data

volume that exhibits many high amplitude anomalies, several of which

are associated with the presence of hydrocarbons. Many of these bright

spot anomalies appear to be associated with channels that can be

identified on time or horizons slices. Figure 2a, a time slice through

energy ratio coherence volume, shows northwest-southeast and northeast-

southwest faults as well as a number of well-defined channels. Figures

2b-d show the equivalent time slices first through the P-impedance

generated using prestack simultaneous impedance inversion, followed by

porosity and Vclay volumes derived from the application of extended

elastic impedance inversion reported earlier in Chopra et al. (2017). Note

those channels associated with high porosity and low Vclay values at

different levels, as indicated with pink and purple arrows respectively.

Next, we generated volumetric measures using k-means clustering,

principal component analysis, SOM and GTM techniques, where the

seven input attribute data volumes were P-impedance, S-impedance,

GLCM-energy, GLCM-entropy, GLCM-homogeneity, total energy and

instantaneous envelope volumes. Figure 3a-f show equivalent time slices

at t=1280 ms through these attributes. With the exception of Figure 3a, all

other figures are the result of plotting pairs of attributes using a 2D color

bar, i.e. PCA1 and PCA2 in Figure 3b, SOM-1 and SOM-2 in Figure 3c,

and GTM-1 and GTM-2 in Figure 3d. The energy-ratio coherence

attribute shown in Figure 2a is overlaid on these displays using

transparency, thereby clearly defining the faults and channel boundaries.

We notice that these displays highlight the channel features very nicely in

Figure 3: (a) Time slice generated at 1280 ms from (a) K-means clustering co-rendered with coherence using transparency. Equivalent time slice from the first two

principal components plotted against a 2D color bar is shown in (b). The 2D color bar as well as the 1D multiplexed 2D color bars are shown in the middle. Similarly, the

time slices at 1280 ms from SOM-1 and SOM-2 volume pair, and GTM-1 and GTM-2 volume pair, plotted against a 2D color bar are shown in (c) and (d) respectively.

Notice, that while the K-means and principal component displays show the facies distribution within the channels, there is better distribution of the channel facies on the

SOM display (channel to the left indicated with cyan arrow). The most detailed distribution of channel facies and their distinct definition is seen on the GTM display.

(Data courtesy: TGS, Asker)

terms of the distribution of properties within their boundaries. The k-

means clustering display in Figure 3a does a reasonably good job, and in

fact better than the porosity display in Figure 2c. The first principal

component (Figure 3b) displays higher values in those channels that are

seen to have higher impedance, and are crisper. Between SOM and GTM,

the GTM displays exhibit crisper channel features than the SOM displays.

Conclusions

We have shown a comparison of seismic facies classification using K-

means clustering, principal component analysis, self-organizing mapping

and generative topographic mapping unsupervised machine learning

techniques as applied to a seismic volume from the Hoop Fault Complex

area of the Barents Sea that had previously undergone careful human

interpretation, thereby establishing “ground truth”. Application of these

techniques to the same data allowed us to assess their relative strengths as

well as their suitability, considering the fact that simultaneous inversion

and extended elastic impedance require more time and effort.

We found that principal component analysis provided more convincing

results than K-means clustering. Both GTM and SOM show promising

results, with GTM having an edge over SOM in terms of the detailed

distribution of channel facies and distinct definition seen on the displays.
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