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Summary 

An ongoing challenge to seismic interpreters is to identify and 

extract heterogeneous seismic facies on data volumes that are 

continually increasing in size. Geometric, geomechanical, and 
spectral attributes help to extract key features but add to the number 

of data volumes to be examined. Common analysis tools include 

interactive co-rendering, crossplotting, and 3D visualization where 

we examine more than one attribute at a time, data reduction, where 
we mathematically reduce the number of data volumes to a more 

manageable subset, clustering, where the goal is to identify voxels 

that have similar expressions, and supervised classification, where 

the computer attempts to mimic the skills of an experienced 
interpreter. In this study we compare several of the more well-

established machine learning techniques: waveform classification, 

principal component analysis (PCA), k-means clustering, and 

supervised Bayesian classification to a seismic data volume from 
the Delaware Basin. We also examine some less common 

clustering techniques applied to seismic attributes including 

independent component analysis (ICA), self-organizing mapping 

and generative topographic mapping.  We find that the machine 
learning methods hold promise as each of them exhibits more 

vertical and spatial resolution than the waveform classification, or 

the supervised Bayesian classification.   

Introduction 

The Delaware Basin is one of the most important resource plays in 
North America, with production being drawn from multiple zones. 

Depending on the operator and the acreage, the Bone Spring and 

Wolfcamp Formations are most prolific and thus serve as the most 

common development target, followed by the Barnett and the 
Mississippian (Figure 1). The Bone Spring Formation exhibits 

thicknesses varying from 700 m to 1000 m and comprises 

sequences of dark gray deep-marine shales interbedded with sands 

and black limestones. The Wolfcamp Formation consists of dark 
shale and limestone with silt and sand zones in the central parts of 

the basin but as carbonate buildups and banks on the shelf areas. 

Below the Wolfcamp lies the Late Mississippian age brittle 

siliceous, gray-to-dark gray, and organic rich Barnett Shale. The 
Early-to-Mid-Mississippian Limestone underlies the Barnett Shale 

and provides a distinct marker on the seismic data. Our goal is to 

map the vertical and lateral variations of the facies within each of 

these lithounits.   

Seismic facies classification using machine learning techniques 

Machine learning uses mathematical operations to learn from the 

similarities and differences in the provided data and make 

decisions or predictions.  There are three broad families of machine 

learning algorithms. The first algorithm family 
includes dimensionality reduction algorithms such as PCA and 

ICA. When plotted against a 2D color bar, the interpreter may 

“see” clusters, but the algorithm output is a continuum of data in a 

lower dimensional space. The second, unsupervised classification 
algorithm family attempts to explicitly cluster the data into a finite 

number of groups that in some metric “best represent” the data 

provided. Before the analysis, there is no interpretation assigned to 

any given group; rather, “the data speak for themselves”. However, 
the choice of input attributes biases the clustering to features of 

interpretation interest. Biasing the training data to favor geologic 

features of interest (e.g. by more heavily weighting a bright-spot 

anomaly) also provides interpreter control of the output. In this 
paper, we apply self-organized mapping (SOM) and generative 

topographic mapping (GTM) to the Delaware Basin data volume. 

The third, supervised classification algorithm family attempts to 

map each data point or voxel to a suite of features defined by the 
interpreter. In this paper, we illustrate supervised learning using the 

well-established Bayesian classification workflow, where the 

classes are defined by petrophysical analysis. Other supervised 

learning algorithms such as multilayer feed-forward neural 
networks, support vector machines, random forest decision trees, 

and convolutional neural networks require the interpreter to define 

facies of interest by picking voxels, drawing polygons, or 

extracting data about microseismic events and or image log 

anomalies.   

Principal component analysis 

Principal component analysis (PCA) is a useful dimensionality 

reduction tool and assumes that the input seismic attributes exhibit 

a Gaussian distribution.   

As mentioned above, many of our attributes are coupled through 

the underlying geology, such that a fault may give rise to lateral 

changes in waveform, dip, peak frequency, and amplitude. Less 

desirably, many of our attributes are coupled mathematically, such 
as alternative measures of coherence (Barnes, 2007) or of a suite 

of closely spaced spectral components. The amount of attribute 

redundancy is measured by the covariance matrix. The first step in 

multiattribute analysis is to subtract the mean of each attribute from 
the corresponding attribute volume. If the attributes have radically 

different units of measure, such as frequency measured in Hz, 

envelope measured in mV, and coherence without dimension, a Z-

score normalization is required. The element Cmn of an N by N 
covariance matrix is then simply the crosscorrelation between the 

mth and nth scaled attribute over the volume of interest. 

Mathematically, the number of linearly independent attributes is 

defined by the value of eigenvalues and eigenvectors of the 
covariance matrix. The first eigenvector is a linear combination 

that represents the most variability in the scaled attributes. The 

corresponding first eigenvector represents the amount of 

variability represented. Commonly, each eigenvalue is normalized 
by the sum of all the eigenvalues, giving us a percentage of the 

variability represented.   

By convention, the first step is to order the eigenvalues from the 

highest to the lowest.  The eigenvector with the highest eigenvalue 
is the first principal component of the data set (PC1); it represents 

the vector representing the maximum variance in the data and 

thereby the bulk of the information that would be common in the 

attributes used.  The eigenvector with the second-highest 
eigenvalue, called the second principal component, exhibits lower 

variance and is orthogonal to PC1.  PC1 and PC2 will lie in the 

plane that represents the plane of the data points.  Similarly, the 

third principal component (PC3) will lie in a plane orthogonal to 
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Unsupervised machine learning facies classification in the Delaware Basin 

the plane of the first two principal components.  Since seismic 
attributes are correlated through the underlying geology and the 

band limitations of the source wavelet, the first two or three 

principal components will almost always represent the vast 

majority of the data variability.    

In Figure 2a we show stratal slices extracted from PCA-1, PCA-2 
and PCA-3 data volumes co-rendered together using RGB color 

scheme, at the top of the Mississippian marker of the Delaware 3D 

seismic survey. The 3D color bar shown alongside the image is 

multiplexed into a 1D color bar, which can be used for displaying 
the co-rendered data volumes from the three principal components. 

Overlaid in black are the fault/fracture lineaments from the most-

positive curvature attribute using transparency. 

Independent component analysis 

Independent component analysis (ICA) is an elegant machine 
learning technique that separates multivariate data into 

independent components, without the requirement of a Gaussian 

distribution for data going into the analysis. The other differences 

between ICA and PCA are that the independent components are 
not orthogonal, and their order is not defined, in that the first, 

second and third ICAs are ordered by visual examination, and are 

not mathematically ordered in the process as in PCA (Lubo-

Robles, 2018; Chopra et al., 2018).  

Given a combination of different seismic attributes as input data, 

ICA attempts to find the ‘mixer’ that acts on a number of 

independent components, which is mathematically cast as a matrix 

equation, and solved using higher order statistics. We demonstrate 
its application to multiattribute seismic data, wherein the resultant 

independent components exhibit better resolution and separation of 

the geologic features. 

In Figure 2b is shown an equivalent stratal display at the 
Mississippian level from the ICA-1, ICA-2 and ICA-3 RGB co-

blended data volume. Notice the appearance of the clusters in 

different colors resemble the cluster patterns obtained from the 

PCA co-blended data display in Figure 2a. 

k-means clustering  

k-means clustering is one of the simplest clustering algorithms and 

is available in most seismic interpretation software. k-means 

organizes a given distribution of N data points, xn, where n = 1, 2, 

…N, into a desired number of k clusters. The clustering process 
begins by assigning at random k centroids which can serve as 

centers of the groups we wish to form, where each centroid defines 

one cluster.  Next, the distance between each data point and the 

centroid of that cluster is calculated. A point may be within a 
cluster if it is closer to the centroid in that cluster than any other 

centroid. As some reorganization of the points in different clusters 

has taken place, the centroids are recalculated for each cluster. 

These two steps are carried out iteratively, until there is no more 
shifting of the centroids, and the process has converged. The 

calculation of distance between the centroid and the data points 

referred to above is the traditional Euclidean distance, which 

assumes there is no correlation between the classification variables. 
If this is the case, then the classification variables would exhibit a 

spherical shape of the clusters in crossplot space. In many cases, 

this is not found to be true, as the classification variables exhibit 

cluster that are elliptical in shape, and hence are correlated. In such 
cases, the traditional k-means clustering method might not achieve 

convergence and hence fail. To avoid this a different distance 

metric called Mahalanobis distance is used instead of the Euclidean 

distance. Thus, the k-means clustering method using the 
Mahalanobis distance metric correctly classifies nonspherical and 

nonhomogeneous clusters.  

k-means can be computed along horizons or volumetrically. In 

Figure 2c we show a stratal slice at the Mississippian marker from 

the facies volume generated using k-means clustering method with 
five clusters. The input seismic attributes comprising P-impedance, 

S-impedance, instantaneous amplitude, weighted instantaneous 

frequency, GLCM-energy, GLCM-homogeneity and total energy. 

We see different colored patches on the display, which are a 

representation of the different facies in the data at that level.  

Self-organizing maps 

Like k-means, self-organizing mapping (SOM) is a technique that 

generates a seismic facies map from multiple seismic attributes, 

again in an unsupervised manner. In contrast to k-means, SOM 
defines its initial cluster centroids in an N-dimensional attribute 

data space, by least-squares fitting the data with a plane that best 

fits the data defined by the first two eigenvectors of the covariance 

matrix (Kohonen, 1982, 2001).  This plane with centroids locked 
to it is then iteratively deformed into a 2D surface called a manifold 

that better fits the data. After convergence, the N-dimensional data 

are projected onto this 2D surface, which in turn are mapped 

against a 2D plane or “latent” (hidden) space, onto which the 
interpreter either explicitly defines clusters by drawing polygons, 

or implicitly defines clusters by plotting the results against a 2D 

colorbar.  

Figure 2d shows the equivalent stratal display at the Mississippian 
marker extracted from the SOM-1 and SOM-2 crossplot volume 

using a 2D color bar as shown alongside. Some of the clusters seen 

on this display are better defined than the ones shown earlier from 

PCA and ICA analysis in Figures 2a and b or the k-means 

clustering display in Figure 2c. 

Generative Topographic Mapping 

The Kohonen self-organizing map described above, while the most 

popular unsupervised clustering technique, being easy to 

implement and computationally inexpensive, has limitations.  
There is no theoretical basis for selecting the training radius, 

neighborhood function and learning rate as these parameters are 

data dependent (Bishop et al., 1998; Roy, 2013).  No cost function 

is defined that could be iteratively minimized and would indicate 
the convergence of the iterations during the training process, and 

finally no probability density is defined that could yield a 

confidence measure in the final clustering results.  Bishop et al. 

(1998) developed an alternative approach to the Kohonen self-
organizing map approach that overcomes its limitations.  It is called 

a generative topographic mapping (GTM) algorithm and is a 

nonlinear dimension reduction technique that provides a 

probabilistic representation of the data vectors in latent space. 

The GTM method begins with an initial array of grid points 

arranged on a lower dimensional latent space, e.g. the first three 

principal components or the ICA components.  Each of the grid 

points are then nonlinearly mapped onto a similar dimensional non-
Euclidean curved surface as a corresponding vector (mk) embedded 

into different dimensional data space in GTM.  Each data vector 

(xk) mapped into this space is modeled as a suite of Gaussian 

probability density functions centered on these reference vectors 
(mk).  The components of the Gaussian model are then iteratively 

made to move toward the data vector that it best represents.  Roy 

(2013) and Roy et al. (2014) describe the details of the method and 
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Unsupervised machine learning facies classification in the Delaware Basin 

demonstrate its application for mapping of seismic facies to the 

Veracruz Basin, Mexico.  

As it may have become apparent from the descriptions above, the 

PCA, ICA, SOM and GTM techniques project data from a higher 

dimensional space (8D when 8 attributes are used) to a lower 

dimensional space which may be a 2D plane or a 2D deformed 
surface.  Once they are projected on a lower dimensional space, the 

data can be clustered in that space, or interactively clustered with 

the use of polygons. Though not shown here, this aspect will be 

demonstrated in the formal presentation.  

In Figure 2g we show a stratal slice at the Mississippian markers 

from the GTM crossplot volumes respectively.  Comparing with 

the equivalent SOM display in Figure 2d, one may conclude that 

the GTM displays are crisper, and could lead to more accurate 
interpretations. The log strips by the side depict the facies obtained 

by machine learning technique application on log data comprising 

the VP, GR, NPHI, DPHI log curves. As the input data for facies 

computation for the logs are different from the input data that goes 
into the facies computation from seismic data, the two facies 

classification results may be considered independent. As pointed 

out with the green arrows, the facies at the location of well W1 is 

different from the facies seen at the location of the well W2 and is 
corroborated with the colors on the display.  Similarly, on the right-

hand-side, the colors on the display at the two well locations (W3 

and W4) pointed at with green arrows are similar, and so also are 

the facies as seen on the two facies strips. 

Waveform classification 

One of the earliest and more popular pattern recognition techniques 

is to define seismic facies along an interpreted horizon based on 

their seismic waveforms.  Commonly known as “waveform 

classification”, the actual clustering is generated using 
multiattribute self-organizing mapping (SOM) where the nth 

sample of each trace is the nth attribute. After the interpreter defines 

a hypothesized number of clusters, the SOM algorithm examines 

the data and determines which centroids in N-dimensional space 
best represent the data. Plotting a given centroid as attribute, 

followed by attribute 2, up to attribute N looks like a waveform, 

giving us the name waveform classification. Each windowed 

seismic trace is then compared to all of the cluster centroids 
(sometimes called neurons), where the result a color-coded map 

showing the nearest centroid. A variation of this workflow is to 

apply the analysis to stratal slices of Poisson’s ratio rather than 

seismic amplitude, thereby classifying the geomechanical stacking 
pattern at each mapped location. The resulting map is essentially a 

facies map, or a similarity map of the actual traces to the centroids 

(waveforms) that best represent the variability in the data. The 

seismic facies so generated also can be overlaid on a vertical 
seismic section to study their lateral variation. Since this method 

does not require any input in the form of any well log or any 

guidance about where the character divisions should occur, this 

approach is referred to as unsupervised waveform classification. 
Figure 2e shows a waveform classification about top Mississippian 

horizon of the Delaware Basin 3D seismic survey, where six 

classes were generated. 

Bayesian classification 

As we are trying to characterize the different lithology units from 
seismic data between Bone Spring and Mississippian markers, it is 

possible that different models that we deduce have the same 

seismic response. Understandably, some of these models will be 

more probable than others, which we can term as being realistic.  

Consequently, we can follow an approach that accounts for the 
uncertainties associated with reservoir characterization in the 

different lithounits.  This work follows the Bayesian classification 

approach (Grana, 2013) and provides a facies model reflecting the 

quality of the lithounits and a related uncertainty analysis. 

When using Bayesian classification, the interpreter defines the 
different facies based on the cut off values of density, porosity 

and neutron porosity well curves. In this paper we identify eight 

facies for the broad zone from Bone Spring to Mississippian, 

knowing fully well that all these eight facies may not be seen at 
either the Bone Spring or the Mississippian levels, but would be 

distributed over the full zone. Projecting these predictions onto 

the log curves, augmented by from mud log curves, are then used 

to ascertain their validity. Sharma et al. (2019) shows that the 
probability distributions for each of these facies can be 

represented by Gaussian ellipses. The density porosity and 

neutron porosity attributes derived from the seismic data using a 

neural network approach, and the probability density functions for 
each facies generated from well log data analysis provides the 

information necessary to generate facies volumes based on 

Bayesian classification. Stratal displays from the facies volume 

were generated at different levels and a representative display at 
the Mississippian level is shown in Figure 2f. The display at the 

Bone Spring level did not have enough spatial detail due to the 

lower resolution of the seismic data, as well as the discrete 

number of facies it was organized into, hence is not shown.  

Conclusions 

We have shown a comparison of seismic facies classification 

using the traditional seismic waveform classification, the 

supervised Bayesian classification, as well as the machine 

learning methods such as k-means, PCA, ICA, SOM and GTM to 
a seismic volume from the Delaware Basin.  Although supervised 

learning provides answer to questions we know how to ask, it 

does not answer questions that weren’t asked. A common 
problem is to define classes based on well log data, say sand, 

shale, and carbonate. In this scenario, any anhydrite found in the 

seismic data volume would be guaranteed to be misclassified. In 

contrast, while unsupervised may identify the anhydrite as a 
distinct class, it provides no indication of what it means 

geologically. Finally, the selection of the input data is critical. If 

we wish to differentiate lateral changes in shale properties, 

geomechanical attributes are valuable input, while attribute such 
as coherence and curvature may be valuable in delineating lateral 

compartments. 

In summary, we find that the machine methods hold promise as 

each of them exhibit more vertical and spatial resolution than the 

waveform classification, or the supervised Bayesian 
classification.  Amongst the machine learning methods, the ICA 

furnishes more detail than the PCA.  Both the SOM and GTM 

methods provide promising results, with the latter yielding more 

accurate definition as seen on the displays. 
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Figure 1 : The generalized stratigraphy of the

Delaware Basin and the expanded litho-

column for the Bone Spring and Wolfcamp

intervals.

Figure 2: Stratal slices at the Mississippian

marker from different volumes (a to g) as

indicated. The size of the survey is about

1050 km2. Overlaid is the most-positive

curvature attribute lineaments using

transparency.

GTM-1 and GTM-2 crossplot volume

(g)

W1

W2

W3

W4
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