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Summary 

 

We studied the feasibility of deblending of ocean bottom 

node (OBN) data with the purpose of using low frequency 

long offset signals for full waveform inversion (FWI) 

velocity-model building. We used unblended field records to 

simulate heavily blended data up to 8 Hz with a maximum 

offset of 30 km. Our inversion-based deblending method 

involves many iterations of separating the most coherent 

hyperboloidal events in a cube of data formed by all traces 

recorded in a single node. Coherent hyperboloidal 

components are modeled by using an amplitude threshold in 

the 3D f-k domain, while various temporal shifts are applied. 

The leakage of blending noise into the estimated model is 

then reduced by using further coherency enhancement 

algorithms during the inversion process. This study shows 

that it is possible to reveal the signals required for an FWI 

workflow. 

 

Introduction 

 

Acquiring seismic data in a ‘blended’ style has become a 

new standard, and several deblending methods have been 

developed for various scenarios. A common way of 

acquiring blended data is continuously recording while 

multiple sources are firing impatiently, causing interference 

in their wavefields. This approach not only reduces the 

acquisition cost, but also facilitates an increase in the trace 

density in all directions. A continuous record is then 

fragmented into conventional truncated records. Hence, each 

desired record is contaminated with weak noise from 

preceding shots, and strong noise from next shots. Once the 

records are arranged based on their intended zero times, 

desired signals appear coherent, and blended data appear 

incoherent in both inline and crossline directions.  

 

Abma et. al. (2010) proposed a method of separating the 

overlapping wavefields by using sparse inversion. Zhan et. 

al. (2015) presented a data-driven deblending scheme which 

uses a combination of adaptive subtraction and median 

filtering to separate simultaneous sources recorded in OBN 

data. Masoomzadeh et. al. (2018) presented an inversion-

based method applicable to streamer data, that estimates the 

deblended model by capturing and accumulating hyperbolic 

cylindrical components via horizon flattening and various 

constant moveout corrections in different iterations. In this 

paper we extend the latter method to the field of OBN data. 

 

The aim of this study is to find an answer for the following 

question: if we plan to acquire blended long-offset OBN 

data, using 3 source vessels towing a pair of air gun arrays 

each, and sailing 10 km apart, is it possible to successfully 

reveal the low-frequency refractions required for an FWI 

study? To answer this question, we used an unblended OBN 

data set to simulate the above scenario, then we used the 

method presented here to deblend that data set.        

 

Deblending OBN data with sparse inversion 

 

Our inversion-based deblending method, involves iterations 

of modeling the most energetic and coherent events, 

updating and enhancing the total model, reblending the latest 

model and subtracting the result from the input data to work 

out the residuals, until the residual energy is insignificant. 

This process is performed in a cube of data containing 

successive inline gathers transformed into the frequency 

domain. Every frequency slice is then transformed into the 

kx-ky domain, where amplitudes are calculated and 

normalized. While in the transformed domain, we apply a 

criterion so that only those elements with a higher amplitude 

than a given threshold will be accepted and inverse 

transformed. This thresholding criterion passes sparse 

components corresponding to hyperboloids in the time-

space domain.  

 

Since the coherent energy in the node data is mainly from 

hyperboloidal events, we apply constant moveout shifts 

before performing the spatial transformation and reverse the 

shifts after the inverse transformation. This feature not only 

supports modeling more coherent energy in a smaller 

number of iterations, but also enhances the antialiasing 

feature of the method. These shifts are expected to flatten 3D 

surfaces corresponding to strong events in the data, such as 

the direct arrival event and its multiples. As a result of this, 

hyperboloidal events become more likely to participate in 

the formation of the deblended model than other events. To 

give a fair chance to those events that do not fit into a 

hyperboloidal pattern, we apply the temporal shifts for four 

iterations, corresponding to the two-way-times of the seabed 

event and its first to third multiples, then we turn this shifting 

feature off for another four iterations. In the next round of 

shifting we use a different velocity in the hyperboloid 

equation, to address a new set of events.  

 

Finally, since some blending noise can leak into the model 

domain, we apply more constraints to the model. For 

example, we apply a tapered mute above the direct arrival 

times, and an f-x deconvolution operation in the inline 

direction to reduce the leaked random noise. Since the node 

data is essentially a receiver gather, we apply a velocity filter 

while in the kx-ky domain. Furthermore, a time-frequency 

trimming process can be applied to overlapping trace 
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Deblending of OBN data by sparse inversion 

segments. The frequency content of a noisy segment is 

adjusted based on a comparison against the median 

amplitude of its adjacent traces. Obviously, the rejected 

elements will be given a new chance to reappear in a more 

coherent form in the next iterations. A summary of the 

procedure explained above is presented by a flowchart in 

Figure 1. 

 

Test data 

 

Aiming to evaluate practical challenges of deblending OBN 

data acquired using 3 source vessels firing independently, 

we first decided to synthesize the intended acquisition 

scenario by using a legacy OBN dataset. The original dataset 

was acquired using one source vessel sailing at a speed of 

4.5 knots firing every 25 m, with 100 m crossline intervals. 

Since the aim of this study is to focus on low frequencies and 

long offsets, we rearranged the recorded data into 40 s trace 

length, applied a high-cut filter at about 8 Hz and increased 

the sample rate to 50 ms.   

 

 

 

Figure 2 shows one of the inline gathers of the synthetically 

blended data, both before and after the application of 

constant moveout shifts. This figure shows that event 

flattening helps further concentration of coherent energy 

around the central k component, which in turn improves the 

chance of separation of coherent events from the incoherent 

random features in the background based on their amplitude 

levels in the transformed domain.   

 

 
 

Figure 1: A schematic expression of the inversion algorithm used 
for OBN data deblending. 

  
  

                     kx                                             kx 

  
 

 
Figure 2: a) An inline gather from a blended OBN data set, b) same 

gather after the application of hyperboloidal shifts. c) energetic 

components in the f-k domain before flattening, d) energetic 
components after flattening. It can be seen that while random 

features remain as random, coherent events are more focused 

around the center. This in turn improves the chance of segregation 
of desired coherent components from undesired incoherent noise 

by using an amplitude threshold.  

c) d) 

a) b) 
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Deblending of OBN data by sparse inversion 

Figure 3 shows an inline gather of the original unblended 

data, both before and after blending it with the data received 

from other shots in the same node, and after deblending 

using the method explained in the previous section of this 

paper. 

 

Not dissimilar to many other inversion schemes used in the 

field of seismic data analysis, the scheme presented above is  

also prone to the non-uniqueness problem. Hence, during the 

inversion process we impose further constraints to the latest 

solution to help it move further towards the ideal solution or 

the global minimum. 

 

Firstly, we apply a tapered top mute to the estimated model 

of deblended data. This muting is applied above the time at 

which the earliest arrivals, i.e. direct arrivals and refractions, 

are expected to be present. Secondly, since the node data is 

a 3D common receiver gather, no signal is expected to 

appear with a ray parameter larger than that of direct arrivals. 

Hence, while the data is in the transformed domain, we apply 

a velocity filter to suppress any components appearing 

outside the data cone. Finally, in every 5th iteration we apply 

an f-x deconvolution in the inline direction to remove the 

random features that may have leaked into the model 

domain. Figure 4 demonstrates the effect of velocity filtering 

and f-x deconvolution on the result of inversion both in the 

t-x and in the f-k domains 

 

It is worth mentioning that the rejected noise will appear as 

part of the inversion residuals in the next iteration, therefore 

it will be given a new chance to reappear in a more coherent 

form. Hence, implementing the above criteria can be 

considered as a coherency promotion strategy.  

 

Conclusions 

 

Aiming to examine practical aspects of long offset OBN data 

deblending we used an existing unblended data set to 

generate blended data and then deblend it, using our 

inversion-based algorithm. We iteratively model the most 

strong and coherent hyperboloidal events including direct 

arrivals by applying time shits after transformation to the 

frequency domain, and before transformation to the kx-ky 

domain. Aiming to suppress the residual interfering noise, 

we apply various filters and constraints to the latest 

estimation of the deblended data, which shows to help 

improve the result. 

 

Acknowledgements 

 

The authors would like to thank Shell for granting 

permission to show the OBN data set used in this study. 

Also, we are thankful to Connie VanSchuyver for 

proofreading this paper.  

 

Figure 3:  a) An inline gather acquired without any blending 

interference;  b) the same gather when an intended blending 

scenario is synthesized;  c) after deblending the latter by using our 

sparse inversion method aiming to model the most coherent 

hyperboloidal and planar components. Zone of interest for FWI 
study is highlighted by ellipses. It can be seen that a reasonable 

level of recovery is achivable in the low frequency and long offset 

range. 

 a) 

 b) 

 c) 
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Deblending of OBN data by sparse inversion 

 

   

     
 

                                   kx                                                                kx                                                                kx 

       

Figure 4: A demonstration of the improvement that can be achieved by imposing further coherency promotion tools. a) an inline gather before 
deblending, b) after deblending while a top mute of the model is applied during the inversion process, c) after deblending while both velocity 

filtering and random noise attenuation by usning an f-x deconvolution tool are in place. d) to f) Logarithmic amplitude spectra of a) to c) in the 

f-kx domain. It can be seen that the remaining backgroun noise is larger in the higher frequencies. That is because higher frequencies are less 
likely to appear coherent. This noise is reduced noticably by the application of further criteria. Since the rejected noise are given a chance to 
reappear as more coherent signals, the weaker events in the deblended model, highlighted by green ellipses, appear to become stronger.    

a) b) c) 

d)  
e) f) 
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